
Programming Languages & 
Paradigms
PROP HT 2011

Lecture 12

Functional Programming I: Foundations – history and 
lambda calculus

Beatrice Åkerblom   
 beatrice@dsv.su.se      

Thursday, December 8, 11

What is a Programming Language?

• The design of the imperative languages is based directly on the von 

Neumann architecture

– Efficiency is the primary concern, rather than the suitability of the 

language for software development

• The design of object-oriented languages is based on cognitive 

psychology and philosophy

– Abstraction and classification is the primary concern, rather than 

efficiency

• The design of the functional languages is based on mathematical 

functions

– A solid theoretical basis combined with mechanisms to create 

abstractions, relatively unconcerned with the architecture of the 

machines on which programs will run
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EDVAC
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Lisp

6

Thursday, December 8, 11

Mathematical Functions

• A mathematical function is a mapping of members of one set, called the 

domain set, to another set, called the range set

• Define a function   
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1255

domain set range set

mapping
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real cube (real x)  { return x * x * x; }

cube (x) ≡ x * x * x   
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What is functional programming?

8

• At a high level: functional programming focuses on building functions.

• The programmer declares what the program does by defining a function 

that maps inputs to outputs.

• Complex functions are built by composing simpler functions.

– cube (x) ≡ x * x * x 
– sumCube (x,y) ≡ cube(x) + cube(y)

• Generally this means functions in the mathematical sense:

– In particular, variables are not modified by the code. 

– Instead variables are just names for values.
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Lambda Expressions

• The central concept in λ calculus is the “expression” 

• A “name”, also called a “variable”, is an identifier which, for our 

purposes, can be any of the letters a, b, c, . . .

• The only keywords used in the language are λ and the dot
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<expression> := <name> | <function> | <application> 

<function> := λ <name>.<expression>
<application> := <expression><expression>
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Lambda Expressions, cont’d

• Function application associates from the left, that is, the expression but 

parentheses can be used to change the order

will be evaluated as: 
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Lambda Expressions, cont’d

• A function – a lambda abstraction:

• Application:

• Substitution:
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• Names don’t carry any meaning and are local to definition,               

alpha equivalence:

Lambda Expressions, cont’d
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• Names don’t carry any meaning and are local to definition,               

alpha equivalence:

• Free and bound variables:

Lambda Expressions, cont’d
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free

bound
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• Names don’t carry any meaning and are local to definition,               

alpha equivalence:

• Free and bound variables:

Lambda Expressions, cont’d

14Bound and free, but no

connection
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Lambda Expressions, cont’d

• In the expression

– y is free because there is no enclosing λy 

– the expression is undefined until y is given a definition

– x is “defined” by its occurrence in λx  

– any meaning it had outside the expression (λx. x y) is hidden 

(“shadowed”)

– first x is the binding occurrence, second x is a bound occurrence

– an expression with no free variables is closed
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• α-conversion

– the only variables renamed are those bound to the same abstraction

Lambda Expressions, cont’d

16

Thursday, December 8, 11



• α-conversion

– the only variables renamed are those bound to the same abstraction

Lambda Expressions, cont’d
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• α-conversion

– the only variables renamed are those bound to the same abstraction

– not possible if it results in a variable getting captured by a different 

abstraction

Lambda Expressions, cont’d
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Can’t be replaced with y
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• Example:

Lambda Expressions, cont’d
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• Example:

Lambda Expressions, cont’d
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• Example:

Lambda Expressions, cont’d
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• Example:

Lambda Expressions, cont’d
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Philip Wadler
a.k.a Lambda Man
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• Be careful with substitutions:

Lambda Expressions, cont’d
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• Be careful with substitutions:

Lambda Expressions, cont’d
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no!
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• Be careful with substitutions:

Lambda Expressions, cont’d
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no!
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• Be careful with substitutions:

Lambda Expressions, cont’d
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no!
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• Be careful with substitutions, again:

Lambda Expressions, cont’d
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• Be careful with substitutions, again:

Lambda Expressions, cont’d
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only free x
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• Be careful with substitutions, again:

Lambda Expressions, cont’d
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wait a second!

only free x
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• Be careful with substitutions, again:

Lambda Expressions, cont’d
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wait a second!

only free x
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• Be careful with substitutions, again:

Lambda Expressions, cont’d
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wait a second!

only free x

Thursday, December 8, 11



Confluence
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((
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Shorter and Fewer Parentheses

  can be abbreviated as
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Church numerals

• Logically, we define natural numbers inductively:

– zero is a natural number.

– if n is a natural number then (succ n) is also a natural number.

0 = zero

1 = succ zero

2 = succ (succ zero)

3 = succ (succ (succ zero)) 

4 = ...

• But how do we define succ and zero?
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Church numerals

• A natural number n is represented as a higher order function, taking a 

value and a function f as arguments, where n should be the “starting 

value” and f will then be applied on the value n times
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. . .
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Successor
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• Successor function

number for which we want to find successor

function (same as for numbers)

value (same as for numbers)
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Successor
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• Successor function

• applied to our representation for zero

number for which we want to find successor

function (same as for numbers)

value (same as for numbers)

Thursday, December 8, 11

Successor
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• Successor function

• applied to our representation for zero

• needs some renaming

number for which we want to find successor

function (same as before)

value (same as before)
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• substitute all occurrences of n with (λgo.o)

Successor, cont’d
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• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

Successor, cont’d
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• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

• substitute all occurrences of o with x

Successor, cont’d
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• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

• substitute all occurrences of o with x

Successor, cont’d
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Looks familiar...
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• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

• substitute all occurrences of o with x

Successor, cont’d
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1
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•           :

use the number 3 as “starting point” when “creating” number 2 by using 

our successor function

Addition
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“how to create 2” successor where to start (3)
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Added to presentation 
after the lecture, only 
used as preparation 
notes.
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Booleans

• A Boolean value expresses a choice between two options:

• We can then define logical operations
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And

• And true false:
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Or

• Or true false:
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The End
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