
Programming Languages &
Paradigms
PROP HT 2011

Lecture 12

Functional Programming I: Foundations – history and
lambda calculus

Beatrice Åkerblom
 beatrice@dsv.su.se

Thursday, December 8, 11

What is a Programming Language?

• The design of the imperative languages is based directly on the von

Neumann architecture

– Efficiency is the primary concern, rather than the suitability of the

language for software development

• The design of object-oriented languages is based on cognitive

psychology and philosophy

– Abstraction and classification is the primary concern, rather than

efficiency

• The design of the functional languages is based on mathematical

functions

– A solid theoretical basis combined with mechanisms to create

abstractions, relatively unconcerned with the architecture of the

machines on which programs will run

2

Thursday, December 8, 11

3

Thursday, December 8, 11

4

Thursday, December 8, 11

EDVAC

5

Thursday, December 8, 11

Lisp

6

Thursday, December 8, 11

Mathematical Functions

• A mathematical function is a mapping of members of one set, called the

domain set, to another set, called the range set

• Define a function

3 27

1255

domain set range set

mapping

7

real cube (real x) { return x * x * x; }

cube (x) ≡ x * x * x

Thursday, December 8, 11

What is functional programming?

8

• At a high level: functional programming focuses on building functions.

• The programmer declares what the program does by defining a function

that maps inputs to outputs.

• Complex functions are built by composing simpler functions.

– cube (x) ≡ x * x * x
– sumCube (x,y) ≡ cube(x) + cube(y)

• Generally this means functions in the mathematical sense:

– In particular, variables are not modified by the code.

– Instead variables are just names for values.

Thursday, December 8, 11

Lambda Expressions

• The central concept in λ calculus is the “expression”

• A “name”, also called a “variable”, is an identifier which, for our

purposes, can be any of the letters a, b, c, . . .

• The only keywords used in the language are λ and the dot

9

<expression> := <name> | <function> | <application>

<function> := λ <name>.<expression>
<application> := <expression><expression>

Thursday, December 8, 11

Lambda Expressions, cont’d

• Function application associates from the left, that is, the expression but

parentheses can be used to change the order

will be evaluated as:

10

Thursday, December 8, 11

Lambda Expressions, cont’d

• A function – a lambda abstraction:

• Application:

• Substitution:

11

Thursday, December 8, 11

• Names don’t carry any meaning and are local to definition,

alpha equivalence:

Lambda Expressions, cont’d

12

Thursday, December 8, 11

• Names don’t carry any meaning and are local to definition,

alpha equivalence:

• Free and bound variables:

Lambda Expressions, cont’d

13

free

bound

Thursday, December 8, 11

• Names don’t carry any meaning and are local to definition,

alpha equivalence:

• Free and bound variables:

Lambda Expressions, cont’d

14Bound and free, but no

connection

Thursday, December 8, 11

Lambda Expressions, cont’d

• In the expression

– y is free because there is no enclosing λy

– the expression is undefined until y is given a definition

– x is “defined” by its occurrence in λx

– any meaning it had outside the expression (λx. x y) is hidden

(“shadowed”)

– first x is the binding occurrence, second x is a bound occurrence

– an expression with no free variables is closed

15

Thursday, December 8, 11

• α-conversion

– the only variables renamed are those bound to the same abstraction

Lambda Expressions, cont’d

16

Thursday, December 8, 11

• α-conversion

– the only variables renamed are those bound to the same abstraction

Lambda Expressions, cont’d

17

Thursday, December 8, 11

• α-conversion

– the only variables renamed are those bound to the same abstraction

– not possible if it results in a variable getting captured by a different

abstraction

Lambda Expressions, cont’d

18

Can’t be replaced with y

Thursday, December 8, 11

• Example:

Lambda Expressions, cont’d

19

Thursday, December 8, 11

• Example:

Lambda Expressions, cont’d

20

Thursday, December 8, 11

• Example:

Lambda Expressions, cont’d

21

Thursday, December 8, 11

• Example:

Lambda Expressions, cont’d

22

Thursday, December 8, 11

Philip Wadler
a.k.a Lambda Man

23

Thursday, December 8, 11

• Be careful with substitutions:

Lambda Expressions, cont’d

24

Thursday, December 8, 11

• Be careful with substitutions:

Lambda Expressions, cont’d

25

no!

Thursday, December 8, 11

• Be careful with substitutions:

Lambda Expressions, cont’d

26

no!

Thursday, December 8, 11

• Be careful with substitutions:

Lambda Expressions, cont’d

27

no!

Thursday, December 8, 11

• Be careful with substitutions, again:

Lambda Expressions, cont’d

28

Thursday, December 8, 11

• Be careful with substitutions, again:

Lambda Expressions, cont’d

29

only free x

Thursday, December 8, 11

• Be careful with substitutions, again:

Lambda Expressions, cont’d

30

wait a second!

only free x

Thursday, December 8, 11

• Be careful with substitutions, again:

Lambda Expressions, cont’d

31

wait a second!

only free x

Thursday, December 8, 11

• Be careful with substitutions, again:

Lambda Expressions, cont’d

32

wait a second!

only free x

Thursday, December 8, 11

Confluence

33

((

Thursday, December 8, 11

Shorter and Fewer Parentheses

 can be abbreviated as

34

Thursday, December 8, 11

Church numerals

• Logically, we define natural numbers inductively:

– zero is a natural number.

– if n is a natural number then (succ n) is also a natural number.

0 = zero

1 = succ zero

2 = succ (succ zero)

3 = succ (succ (succ zero))

4 = ...

• But how do we define succ and zero?

35

Thursday, December 8, 11

Church numerals

• A natural number n is represented as a higher order function, taking a

value and a function f as arguments, where n should be the “starting

value” and f will then be applied on the value n times

36

. . .

Thursday, December 8, 11

Successor

37

• Successor function

number for which we want to find successor

function (same as for numbers)

value (same as for numbers)

Thursday, December 8, 11

Successor

38

• Successor function

• applied to our representation for zero

number for which we want to find successor

function (same as for numbers)

value (same as for numbers)

Thursday, December 8, 11

Successor

39

• Successor function

• applied to our representation for zero

• needs some renaming

number for which we want to find successor

function (same as before)

value (same as before)

Thursday, December 8, 11

40

Thursday, December 8, 11

• substitute all occurrences of n with (λgo.o)

Successor, cont’d

41

Thursday, December 8, 11

• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

Successor, cont’d

42

Thursday, December 8, 11

• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

• substitute all occurrences of o with x

Successor, cont’d

43

Thursday, December 8, 11

• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

• substitute all occurrences of o with x

Successor, cont’d

44

Looks familiar...

Thursday, December 8, 11

• substitute all occurrences of n with (λgo.o)

• substitute all occurrences of g with f

• substitute all occurrences of o with x

Successor, cont’d

45

1

Thursday, December 8, 11

• :

use the number 3 as “starting point” when “creating” number 2 by using

our successor function

Addition

46

“how to create 2” successor where to start (3)

Thursday, December 8, 11

47

Added to presentation
after the lecture, only
used as preparation
notes.

Thursday, December 8, 11

Booleans

• A Boolean value expresses a choice between two options:

• We can then define logical operations

48

Thursday, December 8, 11

And

• And true false:

49

Thursday, December 8, 11

Or

• Or true false:

50

Thursday, December 8, 11

The End

Thursday, December 8, 11

References

52

• Sebesta, R., “Concepts of Programming Languages”

• Biancuzzi, F. and Warden, S.,“Masterminds of Programming –

Conversations with the Creators of Major Programming Languages”, 2009

And, e.g. the below and other material:

• http://www.mactech.com/articles/mactech/Vol.07/07.06/ChurchNumerals/

index.html

• http://www.utdallas.edu/~gupta/courses/apl/lambda.pdf

• http://cs.anu.edu.au/student/comp2600/lectures/Lambda-Church-2x2.pdf

• http://www.lambda-bound.com/book/lambdacalc/node1.html

Thursday, December 8, 11

