
IOOR

Lecture 4

Inheritance vs. delegation, Actor-based languages,

Methods vs messages,

Wednesday, November 10, 2010

Course council!

2

Wednesday, November 10, 2010

Prototype-based PLs

• Invented after class-based languages in the 70‘ies

• Replaces class instantiation with copying existing objects

• Replaces inheritance with more flexible delegation

• Cloned objects can can change invariantly of each other

• Also called:

– Instance-based, Prototype-Oriented, Class-less

• Examples of languages:
– Self, Cecil, JavaScript, Io

3

Wednesday, November 10, 2010

Prototype-based

4

Object
Similarity

Object
Object

Object

Wednesday, November 10, 2010

JavaScript

• JavaScript is THE scripting language of the Web

• JavaScript is used in millions of Web pages to add functionality,

validate forms, detect browsers, and much more

• But:
– JavaScript has no direct relationship to Java
– JavaScript can be used for other things than scripting browsers

5

Wednesday, November 10, 2010

JavaScript Syntax

Comments:
// single line comment
/* multi line
 comment */

Identifiers:
First character must be a letter, _, or $;
subsequent characters can be digits: i, v17, $str, __proto__

Basic literals:
‘a string’, “another string”, “that’s also a string”
17, 6.02e-32
true, false, null, undefined

Object literals:
var point = { x:1, y:2 }
empty: {}
nested: var rect = {
 upperLeft: { x:1, y:2 },
 lowerRight: { x:4, y:5 } }

Function literals:!
var square =
 function(x) { return x*x; }

Array literals:
[1,2,3]
[]

Operators:
assignement: =
equal: == !!!
strict equal: ===

6

Wednesday, November 10, 2010

Object Properties

Reading

properties

var book = { title:’JavaScript’ };
book.title; //=>’JavaScript’

Adding new
properties
(at runtime)

book.author = ‘J. Doe’;
‘author’ in book; //=>true

Inspecting

objects

var result = ‘’;
for (var name in book) {
 result += name + ‘=’;
 result += book[name] + ‘ ’;
};

//=>title=JavaScript author=J. Doe

Deleting

properties

delete book.title;
‘title’ in book; //=>false

7

Wednesday, November 10, 2010

Slots in PBLs

• Slots are simply storage locations located in objects

• Slots can be divided into two types:

– Data slots, holding data items
– Method slots, holding methods

• Methods are stored in exactly the same way as data items

8

Wednesday, November 10, 2010

Methods

• At runtime the keyword this is bound to the object of the method

• Accessing (vs. executing) methods

9

var obj = { counter:1 };
obj.increment = function(amount) {
 this.counter += amount;
};
obj.increment(16);
obj.counter; //=> 17

var f = obj.increment; typeof f; //=>
‘function’

Wednesday, November 10, 2010

Delegation

• When an object receives a message it looks for a matching slot, if not

found, the look-up continues its search in other known objects

• Typically, the search is done in the object’s “parent”, in its “parent’s”

“parent” and so on

• In JavaScript, an object delegates to its prototype object (the Mozilla

interpreter allows one to access the prototype through the property

__proto__)

10

Wednesday, November 10, 2010

Delegation, cont’d

var oldRect = { width:10, height:3 };
var newRect = {};
newRect.__proto__ = oldRect;

“width” in newRect; //=>true
newRect.hasOwnProperty(“width”); //=>false

newRect.width; //=>10
newRect.foo; //=>undefined

11

Wednesday, November 10, 2010

Prototype-based

12

Similarity

Object

Object

oldRect

w

h

newRect

3

10

Delegation

Wednesday, November 10, 2010

Delegation

• As opposed to inheritance, delegation can be manipulated

dynamically

• The method of the delegate will be executed in the scope of the

original receiver

• Depending on the language, the number of possible delegates may

differ

13

Wednesday, November 10, 2010

Delegation, cont’d

newRect.width = 100;

oldRect.area = function() {
 return this.width * this.height;
};

newRect.area(); //=>300

14

Wednesday, November 10, 2010

Prototype-based

15

Similarity

Object

Object

oldRect

w

h

newRect

w

3

10

100

area()

Delegation

Wednesday, November 10, 2010

Use of delegation

• Delegation — executing a method of some other object but in the

context of self

• A lot more powerful than mere forwarding

• Delegation can be used to implement inheritance but not vice versa

• Very powerful — delegates are not known statically as in inheritance

and can change whenever

16

Wednesday, November 10, 2010

Constructor Functions

• Constructors are functions that are used with the new operator to

create objects

• The operator new creates an object and binds it to this in the

constructor. By default the return value is the new object.

17

function Rectangle(w, h) {
 this.width = w;
 this.height = h;
 this.area = function() {
 return this.width * this.height;
 };
};

rect = new Rectangle(3,4);
rect.area(); //=>12

Wednesday, November 10, 2010

Constructor.prototype

• Each constructor has a prototype property (which is automatically

initialised when defining the function)

• All objects created with a constructor share the same prototype

18

function Rectangle(w, h) {
 this.width = w;
 this.height = h;
};

Rectangle.prototype.area = function() {
 return this.width * this.height;
};

Wednesday, November 10, 2010

Constructor.prototype

...

function ColoredRectangle(w, h, c) {
 this.width = w;
 this.height = h;
 this.color = c;
};

ColoredRectangle.prototype = new Rectangle(0,0);

coloredRect = new ColoredRectangle(3,4,'red');

coloredRect.area();

19

Wednesday, November 10, 2010

Predefined Objects

• Global functions: Array, Boolean, Date, Error, Function, Number,

Object, String,... eval, parseInt, ...

• Global objects: Math

20

Wednesday, November 10, 2010

Extending Predefined Objects

• Extending all objects:

• The last object in the prototype chain of every object is

Object.prototype

21

Object.prototype.inspect = function() {
 alert(this);
};

'a string'.inspect();
true.inspect();
(new Date()).inspect();

Wednesday, November 10, 2010

The arguments object

function concat(separator) {
 var result = “”;
 for (var i = 1; i < arguments.length; i++)
 result += arguments[i] + separator;
 return result;
};

concat(";", "red", "orange", "blue");
// =>"red;orange;blue;”

22

Wednesday, November 10, 2010

Other Prototype-based Languages

• Basic mechanisms

– Object creation:ex nihilo, cloning, extension
– Object representation(slots in JavaScript, Self, Io vs. attributes

and methods in Agora, Kevo)

• Delegation

– Double delegation in Io/NewtonScript
– Multiple prototypes(aka.parents) in Self
– Can prototype link be changed at runtime?

• Organization of programs (prototypical instance, traits, ...)

23

Wednesday, November 10, 2010

Benefits of prototypes

• Simple model, simpler than the class-based

• No use for special “inheritance” relations in the language

• Very flexible and expressive

• Changing prototypes to reflect state is a powerful concept

• Delegation is very powerful

• Handles special cases very well

24

Wednesday, November 10, 2010

Performance

• Sharing data and copy-on-write Method caches

• Inheritance (at least in static cases) costs memory in many slots

• Locality of reference if the methods are actually in the object

25

Wednesday, November 10, 2010

Prototypes vs. Classes

• Classes are static—requirements are not

• Unless you can predict all future requirements up front, class

hierarchies will evolve

• Evolution of base classes is tricky and might break subclasses

• Eventually, refactoring or redesign is needed

• It is not uncommon to design a class that is only to be instantiated

once. [Liebermann86]

26

Wednesday, November 10, 2010

Concurrent Programming

27

Wednesday, November 10, 2010

Threads

• Threads are a seemingly straightforward adaptation of the dominant

sequential model of computation to concurrent systems.

• Languages require little or no syntactic changes to support threads,

and operating systems and architectures have evolved to efficiently

support them.

28

Wednesday, November 10, 2010

Lost Update Problem

Process 1 Process 2

a = acc.get()
a = a + 100 b = acc.get()
 b = b + 50
 acc.set(b)
acc.set(a)

29

Wednesday, November 10, 2010

Deadlock Problem

Process 1 Process 2
lock(A) lock(B)
lock(B) lock(A)

 ... Deadlock! ...

30

Wednesday, November 10, 2010

The Problem With Threads
• Although threads seem to be a small step from sequential computation, in fact,

they represent a huge step

• They discard essential and appealing properties of sequential computation:

– understandability
– predictability
– determinism

31

Wednesday, November 10, 2010

Actor-based Languages

32

Wednesday, November 10, 2010

Actors

• Hewitt et al in the early 1970’s

• Actor methodology was developed as an attempt to understand

complex systems -- AI systems, parallel or distributed systems

• Languages:
– io, Erlang, Scala, ...

33

Wednesday, November 10, 2010

Actors -- Fundamental Concepts

• Every object is an Actor -- has a mail address and a behaviour

• Messages can be exchanged between actors, which will be buffered in

the mailbox

• When receiving a message an Actor can:
– send messages to other actors (an actor may send messages to

itself)
– create new actors
– designate the behaviour to be used for the next message received

34

Wednesday, November 10, 2010

Actors -- Fundamental Concepts,
cont’d
• Communication with other Actors occur asynchronously

– sender does not wait for a message to be received upon sending
it

– no guarantees in which order messages will be received by the
recipient

• All communication is handled through messages, no shared state

35

Wednesday, November 10, 2010

Actors in io

• Any object can be sent an asynchronous message by placing a @

before the message name

• This returns a future object which will become the return value

“when it is ready”

• If a future is accessed before the result is ready, the accessor will be

put to wait until the result is ready

• When an object receives an asynchronous message it puts the

message in its queue and starts to process the queue

36

Wednesday, November 10, 2010

Actors in io, cont’d

• An object processing a message queue is called an “actor”.

• Queued messages are processed sequentially in a first-in-first-out

order

• Control can be yielded to other actors by calling yield -- It's also

possible to pause and resume an actor

• Blocking operations such as reading on a socket will automatically

unschedule the caller until the data is ready or a timeout or error has

occurred.

37

Wednesday, November 10, 2010

Example Using io

o1 := Object clone

o1 name := "One"

o1 test := method(for(n, 1, 3, write(name, " ", n, " \n") yield))

o2 := o1 clone

o2 name = "Two"

// @ means send an asynchronous message

o1 @test; o2 @test

// wait for the messages to get processed

while(Scheduler waitForCorosToComplete, yield)

38

Wednesday, November 10, 2010

1. -module(counter).
2. -export([run/0, counter/1]).
3.
4. run() ->
5. S = spawn(counter, counter, [0]),
6. send_msgs(S, 100000),
7. S.
8.
9. counter(Sum) ->
10. receive
11. value -> io:fwrite("Value is ~w~n", [Sum]);
12. {inc, Amount} -> counter(Sum+Amount)
13. end.
14.
15.send_msgs(_, 0) -> true;
16.send_msgs(S, Count) ->
17. S ! {inc, 1},
18. send_msgs(S, Count-1).
19.
20.% Usage:
21.% 1> c(counter).
22.% 2> S = counter:run().
23.% ... Wait a bit until all children have run ...
24.% 3> S ! value.
25.% Value is 100000 39

Example Using Erlang

Wednesday, November 10, 2010

Why is the Actor Model Important
Now?
• The importance of concurrency is growing with the growing number

of multi-processor machines

• The Actor model faces issues including the following:

– scalability -- the challenge of scaling up concurrency both locally
and non-locally

– transparency -- bridging the gap between local and non-local
concurrency

– inconsistency -- inconsistency is the norm because all very large
knowledge systems about human information system interactions
are inconsistent

40

Wednesday, November 10, 2010

message = method = function

41

Wednesday, November 10, 2010

42

Cowboy

draw

Circle

draw

c draw

Wednesday, November 10, 2010

Messages

• Objects send and receive messages

• The response to a message is executing a method

• Which method to use is determined by the receiver at run-time.

43

Wednesday, November 10, 2010

References

• Iain Craig, “The Interpretation of Object-Oriented Programming

Languages”, 2nd edition, Springer Verlag, 2002.

• Gul Agha, “An Overview of Actor Languages”

• Edward A. Lee , “The Problem with Threads”, 2006.

• Martín Abadi and Luca Cardelli, “A Theory of Objects”, Springer Verlag,

1996.

• io: http://www.iolanguage.com

• Anton Eilëns, Principles of Object-Oriented Software Development, 2nd

edition. Addison-Wesley, 2000.

• Kim Bruce, Foundations of Object-Oriented Languages: types and

semantics, MIT Press, 2002.

44

Wednesday, November 10, 2010

References

• Timothy Budd,“An Introduction to Object- Oriented Programming”,

2nd edition. Addison-Wesley, 2000.

• Ian Joyner, “Objects Unencapsulated”, Prentice-Hall, 1999.

• Henry Lieberman, “Using Prototypical Objects to Implement Shared

Behavior in Object Oriented Systems”, 1986.

• James Noble and Brian Foote, “Attack of the Clones”, Proceedings of

the 2002 conference on Pattern languages of programs.

• D.L. Parnas, “On the Criteria To Be Used in Decomposing Systems

into Modules”, Communications of the ACM, Vol. 15, No. 12, 1972.

45

Wednesday, November 10, 2010

