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Prototype-based PLs

* Invented after class-based languages in the 70'ies

* Replaces class instantiation with copying existing objects

Object

* Replaces inheritance with more flexible delegation

* Cloned objects can can change invariantly of each other

*  Also called:
— Instance-based, Prototype-Oriented, Class-less

Object

* Examples of languages:
— Self, Cecil, JavaScript, lo
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JavaScript
e JavaScript is THE scripting language of the Web
e JavaScript is used in millions of Web pages to add functionality,
validate forms, detect browsers, and much more
* But:
— JavaScript has no direct relationship to Java
— JavaScript can be used for other things than scripting browsers
5
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// single line comment

Comments: /* multi line
comment */

P ifi First character must be a letter, _, or $;
dentifiers: subsequent characters can be digits: i, v17, $str, _ proto_

‘a string’, “another string”, “that’s also a string”
Basic literals: 17, 6.02e-32

true, false, null, undefined

var point = { x:1, y:2 }
Object literals: empty: {}

nested: var rect = {

upperLeft: { x:1, y:2 },
lowerRight: { x:4, y:5 } }

var square =
Function literals: function(x) { return x*x; }

[1,2,3]
Array literals: 11

assignement: =
Operators: equal:== 1 !

strict equal: ===

6
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Object Properties
var book = { title:’JavaScript’ };
Reading book.title; //=>’JavaScript’
properties
Adding new book.author = ‘J. Doe’;
properties ‘author’ in book; //=>true

(at runtime)

Inspecting

objects

Deleting

properties

var result = ‘’;

for (var name in book) {
result += name + ‘=';
result += book[name] + ‘ ’;

}i

//=>title=JavaScript author=J. Doe

delete book.title;
‘title’ in book; //=>false
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Slots in PBLs
e Slots are simply storage locations located in objects
¢ Slots can be divided into two types:

— Data slots, holding data items

— Method slots, holding methods
* Methods are stored in exactly the same way as data items

8
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Methods

* At runtime the keyword this is bound to the object of the method

var obj = { counter:1 };

obj.increment = function(amount) {
this.counter += amount;

Yi

obj.increment(16);

obj.counter; //=> 17

*  Accessing (vs. executing) methods

var £ = obj.increment; typeof f; //=>
‘function’
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Delegation, cont’'d

var oldRect = { width:10, height:3 };
var newRect = {};

newRect._ proto__ = oldRect;

“width” in newRect; //=>true
newRect.hasOwnProperty (“width”); //=>false

newRect.width; //=>10
newRect.foo; //=>undefined

11
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Delegation
* When an object receives a message it looks for a matching slot, if not
found, the look-up continues its search in other known objects
* Typically, the search is done in the object’s “parent”, in its “parent’s”
“parent” and so on
* In JavaScript, an object delegates to its prototype object (the Mozilla
interpreter allows one to access the prototype through the property
__proto_ )
10
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Delegation

* Asopposed to inheritance, delegation can be manipulated
dynamically

* The method of the delegate will be executed in the scope of the
original receiver

* Depending on the language, the number of possible delegates may
differ

aCell &~—m | contents 0
get (code for get) |®
set (code for set)
parent link
aReCell @—~—= | contents 0
backup 0
set (new code for set) M
restore | (code for restore)

(Single-parent) Delegation
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Delegation, cont’d

newRect.width = 100;
oldRect.area = function() {

return this.width * this.height;
bi

newRect.area(); //=>300
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Use of delegation

* Delegation — executing a method of some other object but in the
context of self

* Alot more powerful than mere forwarding
* Delegation can be used to implement inheritance but not vice versa

* Very powerful — delegates are not known statically as in inheritance

and can change whenever

16
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Constructor Functions

* Constructors are functions that are used with the new operator to
create objects

function Rectangle(w, h) {
this.width = w;
this.height = h;
this.area = function() {
return this.width * this.height;
bi
Yi

rect = new Rectangle(3,4);
rect.area(); //=>12

* The operator new creates an object and binds it to this in the
constructor. By default the return value is the new object.
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Constructor.prototype

* Each constructor has a prototype property (which is automatically
initialised when defining the function)

* All objects created with a constructor share the same prototype

function Rectangle(w, h) {
this.width = w;
this.height = h;

}i

Rectangle.prototype.area = function() {

return this.width * this.height;
}i

18
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Constructor.prototype

function ColoredRectangle(w, h, c) {
this.width = w;
this.height = h;
this.color = c;

bi
ColoredRectangle.prototype = new Rectangle(0,0);
coloredRect = new ColoredRectangle(3,4, 'red');

coloredRect.area();

Colored Legend
Rectangle | | l — .. Prolotype
I Rectangle >( proto
prototype prototype area()
Rectangle. a colored
prototype |¢- —--{ arect(0,0) ‘<- - Recl(3.4) l
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Predefined Objects
* Global functions: Array, Boolean, Date, Error, Function, Number,
Object, String,... eval, parselnt, ...
*  Global objects: Math
20
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Extending Predefined Objects The arguments object
. . function concat(separator

* Extending all objects: var result bt )

Object.prototype.inspect = function() { for (var i =1; 1 < arggments.length; i+

. result += arguments[i] + separator;
alert(this);
return result;
Yi
bi
'a string'.inspect(); wow o ow P P .
true.inspect(); concat(";", "red", "orange", "blue");

(new Date()).inspect(); // =>"red;orange;blue;”

* The last object in the prototype chain of every object is

Object.prototype
21 22
Wednesday, November 10, 2010 Wednesday, November 10, 2010

Sfé_éi(hqlm Sfé_éi(hqlm
University University

Other Prototype-based Languages Benefits of prototypes

* Basic mechanisms * Simple model, simpler than the class-based

— Object creation:ex nihilo, cloning, extension .

No use for special “inheritance” relations in the language
— Object representation(slots in JavaScript, Self, o vs. attributes

and methods in Agora, Kevo) * Very flexible and expressive

* Delegation * Changing prototypes to reflect state is a powerful concept
— Double delegation in Io/NewtonScript * Delegation is very powerful
— Multiple prototypes(aka.parents) in Self * Handles special cases very well

— Can prototype link be changed at runtime?

* Organization of programs (prototypical instance, traits, ...)

23 24

Wednesday, November 10, 2010 Wednesday, November 10, 2010



Performance

* Sharing data and copy-on-write Method caches
* Inheritance (at least in static cases) costs memory in many slots

* Locality of reference if the methods are actually in the object
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Prototypes vs. Classes

* (Classes are static—requirements are not

* Unless you can predict all future requirements up front, class

hierarchies will evolve
* Evolution of base classes is tricky and might break subclasses
* Eventually, refactoring or redesign is needed

* It is not uncommon to design a class that is only to be instantiated
once. [Liebermann80]
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Threads
* Threads are a seemingly straightforward adaptation of the dominant

sequential model of computation to concurrent systems.
* Languages require little or no syntactic changes to support threads,

and operating systems and architectures have evolved to efficiently

support them.

28
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Lost Update Problem
Process 1 Process 2
a = acc.get()
= a + 100 b = acc.get()

b=Db+ 50

acc.set(b)
acc.set(a)

29
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The Problem With Threads

* Although threads seem to be a small step from sequential computation, in fact,
they represent a huge step

* They discard essential and appealing properties of sequential computation:
— understandability
— predictability
— determinism

31
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Deadlock Problem

Process 1 Process 2
lock(A) lock(B)
lock(B) lock(A)

. Deadlock! ...
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Actors Actors -- Fundamental Concepts
* Hewitt et al in the early 1970’s * Every object is an Actor -- has a mail address and a behaviour
* Actor methodology was developed as an attempt to understand * Messages can be exchanged between actors, which will be buffered in
complex systems -- Al systems, parallel or distributed systems the mailbox
* Languages: * When receiving a message an Actor can:
— io, Erlang, Scala, ... — send messages to other actors (an actor may send messages to
itself)
— create new actors
— designate the behaviour to be used for the next message received
33 34
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Actors -- Fundamental Concepts, Actors in io
cont’d
e Communication with other Actors occur asynchronously * Any object can be sent an asynchronous message by placing a (@
— sender does not wait for a message to be received upon sending before the message name

it . . . .
‘ ‘ . _ * This returns a future object which will become the return value
— no guarantees in which order messages will be received by the “when it is ready”
recipient when it is ready
. . . .
«  All communication is handled through messages, no shared state If a future is accessed before the result is ready, the accessor will be

put to wait until the result is ready

* When an object receives an asynchronous message it puts the
message in its queue and starts to process the queue

35 36
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Actors in io, cont’'d

An object processing a message queue is called an “actor”.

Queued messages are processed sequentially in a first-in-first-out
order

Control can be yielded to other actors by calling yield - It's also
possible to pause and resume an actor

Blocking operations such as reading on a socket will automatically
unschedule the caller until the data is ready or a timeout or error has
occurred.

37
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-module(counter).

-export([run/0, counter/1l]).

run() ->
S = spawn(counter, counter, [0]),
send_msgs(S, 100000),
S.

counter(Sum) ->
receive
value -> io:fwrite("Value is ~w~n", [Sum]);
{inc, Amount} -> counter (Sum+Amount)
end.

.send msgs(_, 0) -> true;
.send_msgs(S, Count) ->
s ! {inc, 1},
send_msgs(S, Count-1).

% Usage:
% 1> c(counter).
% 2> S = counter:run().
.- % ... Wait a bit until all children have run ...
% 3> s ! value.
%

Value is 100000 39
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Example Using io

ol := Object clone

ol name := "One
ol test := method(for(n, 1, 3, write( name, " ", n, " \n") yield))
02 := ol clone

02 name = "Two"

// @ means send an asynchronous message
ol @test; o2 @test
// wait for the messages to get processed

while(Scheduler waitForCorosToComplete, yield)

38
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Why is the Actor Model Important

Now?

* The importance of concurrency is growing with the growing number

of multi-processor machines

* The Actor model faces issues including the following:

— scalability - the challenge of scaling up concurrency both locally
and non-locally

— transparency -- bridging the gap between local and non-local
concurrency

— inconsistency -- inconsistency is the norm because all very large
knowledge systems about human information system interactions
are inconsistent

40
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Cowboy Circle

c draw
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message # method # function
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Messages

* Objects send and receive messages

* The response to a message is executing a method

e Which method to use is determined by the receiver at run-time.
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