Stockholm Stockholm
University University

Course council!

IOOR

Lecture 4

Inheritance vs. delegation, Actor-based languages,

Methods vs messages,

Wednesday, November 10, 2010 Wednesday, November 10, 2010

o Prototype-based et
Stockholm Stockholm
University University

Prototype-based PLs

* Invented after class-based languages in the 70'ies

* Replaces class instantiation with copying existing objects

Object

* Replaces inheritance with more flexible delegation

* Cloned objects can can change invariantly of each other

* Also called:
— Instance-based, Prototype-Oriented, Class-less

Object

* Examples of languages:
— Self, Cecil, JavaScript, lo

Wednesday, November 10, 2010 Wednesday, November 10, 2010

Oversity
JavaScript
e JavaScript is THE scripting language of the Web
e JavaScript is used in millions of Web pages to add functionality,
validate forms, detect browsers, and much more
* But:
— JavaScript has no direct relationship to Java
— JavaScript can be used for other things than scripting browsers
5

Wednesday, November 10, 2010

Sfé_ckho,lm

JavaScript Syntax

Stockholm

University

// single line comment

Comments: /* multi line
comment */

P ifi First character must be a letter, _, or $;
dentifiers: subsequent characters can be digits: i, v17, $str, _ proto_

‘a string’, “another string”, “that’s also a string”
Basic literals: 17, 6.02e-32

true, false, null, undefined

var point = { x:1, y:2 }
Object literals: empty: {}

nested: var rect = {

upperLeft: { x:1, y:2 },
lowerRight: { x:4, y:5 } }

var square =
Function literals: function(x) { return x*x; }

[1,2,3]
Array literals: 11

assignement: =
Operators: equal:== 1 !

strict equal: ===

6

Wednesday, November 10, 2010

Sfb_cicho,lm

University
Object Properties
var book = { title:’JavaScript’ };
Reading book.title; //=>’JavaScript’
properties
Adding new book.author = ‘J. Doe’;
properties ‘author’ in book; //=>true

(at runtime)

Inspecting

objects

Deleting

properties

var result = ‘’;

for (var name in book) {
result += name + ‘=';
result += book[name] + ‘ ’;

}i

//=>title=JavaScript author=J. Doe

delete book.title;
‘title’ in book; //=>false

Wednesday, November 10, 2010

University

Slots in PBLs
e Slots are simply storage locations located in objects
¢ Slots can be divided into two types:

— Data slots, holding data items

— Method slots, holding methods
* Methods are stored in exactly the same way as data items

8

Wednesday, November 10, 2010

Stockholm
University

Methods

* At runtime the keyword this is bound to the object of the method

var obj = { counter:1 };

obj.increment = function(amount) {
this.counter += amount;

Yi

obj.increment(16);

obj.counter; //=> 17

* Accessing (vs. executing) methods

var £ = obj.increment; typeof f; //=>
‘function’

Wednesday, November 10, 2010

Std_ckhqlm
University

Delegation, cont’'d

var oldRect = { width:10, height:3 };
var newRect = {};

newRect._ proto__ = oldRect;

“width” in newRect; //=>true
newRect.hasOwnProperty (“width”); //=>false

newRect.width; //=>10
newRect.foo; //=>undefined

11

iy

Si&_&khqlm

Wednesday, November 10, 2010

University
Delegation
* When an object receives a message it looks for a matching slot, if not
found, the look-up continues its search in other known objects
* Typically, the search is done in the object’s “parent”, in its “parent’s”
“parent” and so on
* In JavaScript, an object delegates to its prototype object (the Mozilla
interpreter allows one to access the prototype through the property
__proto_)
10
Wednesday, November 10, 2010
& & 5
Prototype-based S
Std_ckhqlm
University

oldRect

wlo |
N EN

newRect

Object

Delegation

Object

12

Wednesday, November 10, 2010

Delegation

* Asopposed to inheritance, delegation can be manipulated
dynamically

* The method of the delegate will be executed in the scope of the
original receiver

* Depending on the language, the number of possible delegates may
differ

aCell &~—m | contents 0
get (code for get) |®
set (code for set)
parent link
aReCell @—~—= | contents 0
backup 0
set (new code for set) M
restore | (code for restore)

(Single-parent) Delegation

Stockholm
University

13

Stockholm
University

Delegation, cont’d

newRect.width = 100;
oldRect.area = function() {

return this.width * this.height;
bi

newRect.area(); //=>300

14

Wednesday, November 10, 2010

Prototype-based

oldRect

newRect

Object

Delegation w

Object

LN

SRS

S

Sté_ckhqlm
University

15

Wednesday, November 10, 2010

o,

LN

SRS

Stockholm
University

Use of delegation

* Delegation — executing a method of some other object but in the
context of self

* Alot more powerful than mere forwarding
* Delegation can be used to implement inheritance but not vice versa

* Very powerful — delegates are not known statically as in inheritance

and can change whenever

16

Wednesday, November 10, 2010

Wednesday, November 10, 2010

Constructor Functions

* Constructors are functions that are used with the new operator to
create objects

function Rectangle(w, h) {
this.width = w;
this.height = h;
this.area = function() {
return this.width * this.height;
bi
Yi

rect = new Rectangle(3,4);
rect.area(); //=>12

* The operator new creates an object and binds it to this in the
constructor. By default the return value is the new object.

Stockholm
University

17

Stockholm
University

Constructor.prototype

* Each constructor has a prototype property (which is automatically
initialised when defining the function)

* All objects created with a constructor share the same prototype

function Rectangle(w, h) {
this.width = w;
this.height = h;

}i

Rectangle.prototype.area = function() {

return this.width * this.height;
}i

18

Wednesday, November 10, 2010

Constructor.prototype

function ColoredRectangle(w, h, c) {
this.width = w;
this.height = h;
this.color = c;

bi
ColoredRectangle.prototype = new Rectangle(0,0);
coloredRect = new ColoredRectangle(3,4, 'red');

coloredRect.area();

Colored Legend
Rectangle | | l — .. Prolotype
I Rectangle >(proto
prototype prototype area()
Rectangle. a colored
prototype |¢- —--{ arect(0,0) ‘<- - Recl(3.4) l

Stb_ckhqlm
University

19

Wednesday, November 10, 2010

Sfé_éi(hqlm
University
Predefined Objects
* Global functions: Array, Boolean, Date, Error, Function, Number,
Object, String,... eval, parselnt, ...
* Global objects: Math
20

Wednesday, November 10, 2010

Wednesday, November 10, 2010

Svt‘d_cimqlm Svt‘d_cimqlm

University University
Extending Predefined Objects The arguments object
. . function concat(separator

* Extending all objects: var result bt)

Object.prototype.inspect = function() { for (var i =1; 1 < arggments.length; i+

. result += arguments[i] + separator;
alert(this);
return result;
Yi
bi
'a string'.inspect(); wow o ow P P .
true.inspect(); concat(";", "red", "orange", "blue");

(new Date()).inspect(); // =>"red;orange;blue;”

* The last object in the prototype chain of every object is

Object.prototype
21 22
Wednesday, November 10, 2010 Wednesday, November 10, 2010

Sfé_éi(hqlm Sfé_éi(hqlm
University University

Other Prototype-based Languages Benefits of prototypes

* Basic mechanisms * Simple model, simpler than the class-based

— Object creation:ex nihilo, cloning, extension .

No use for special “inheritance” relations in the language
— Object representation(slots in JavaScript, Self, o vs. attributes

and methods in Agora, Kevo) * Very flexible and expressive

* Delegation * Changing prototypes to reflect state is a powerful concept
— Double delegation in Io/NewtonScript * Delegation is very powerful
— Multiple prototypes(aka.parents) in Self * Handles special cases very well

— Can prototype link be changed at runtime?

* Organization of programs (prototypical instance, traits, ...)

23 24

Wednesday, November 10, 2010 Wednesday, November 10, 2010

Performance

* Sharing data and copy-on-write Method caches
* Inheritance (at least in static cases) costs memory in many slots

* Locality of reference if the methods are actually in the object

Sté_ckhqlm
University

25

Wednesday, November 10, 2010

Concurrent Programming

Stockholm
University

27

Sté_ckhqlm
University

Prototypes vs. Classes

* (Classes are static—requirements are not

* Unless you can predict all future requirements up front, class

hierarchies will evolve
* Evolution of base classes is tricky and might break subclasses
* Eventually, refactoring or redesign is needed

* It is not uncommon to design a class that is only to be instantiated
once. [Liebermann80]

26

Wednesday, November 10, 2010

Wednesday, November 10, 2010

Sfé_éi(hqlm

University

Threads
* Threads are a seemingly straightforward adaptation of the dominant

sequential model of computation to concurrent systems.
* Languages require little or no syntactic changes to support threads,

and operating systems and architectures have evolved to efficiently

support them.

28

Wednesday, November 10, 2010

Sltd_c‘i(hqlm

University
Lost Update Problem
Process 1 Process 2
a = acc.get()
= a + 100 b = acc.get()

b=Db+ 50

acc.set(b)
acc.set(a)

29

Wednesday, November 10, 2010

Stockholm
The Problem With Threads

* Although threads seem to be a small step from sequential computation, in fact,
they represent a huge step

* They discard essential and appealing properties of sequential computation:
— understandability
— predictability
— determinism

31

Wednesday, November 10, 2010

Deadlock Problem

Process 1 Process 2
lock(A) lock(B)
lock(B) lock(A)

. Deadlock! ...

Std_ckhqlm
University

30

Wednesday, November 10, 2010

Actor-based Languages

Stockholm
University

32

Wednesday, November 10, 2010

Svt‘d_gkhqlm Svt‘d_gkhqlm
University

University
Actors Actors -- Fundamental Concepts
* Hewitt et al in the early 1970’s * Every object is an Actor -- has a mail address and a behaviour
* Actor methodology was developed as an attempt to understand * Messages can be exchanged between actors, which will be buffered in
complex systems -- Al systems, parallel or distributed systems the mailbox
* Languages: * When receiving a message an Actor can:
— io, Erlang, Scala, ... — send messages to other actors (an actor may send messages to
itself)
— create new actors
— designate the behaviour to be used for the next message received
33 34

Wednesday, November 10, 2010 Wednesday, November 10, 2010

ey ey
Actors -- Fundamental Concepts, Actors in io
cont’d
e Communication with other Actors occur asynchronously * Any object can be sent an asynchronous message by placing a (@
— sender does not wait for a message to be received upon sending before the message name

it
‘ ‘ . _ * This returns a future object which will become the return value
— no guarantees in which order messages will be received by the “when it is ready”
recipient when it is ready
. . . .
« All communication is handled through messages, no shared state If a future is accessed before the result is ready, the accessor will be

put to wait until the result is ready

* When an object receives an asynchronous message it puts the
message in its queue and starts to process the queue

35 36

Wednesday, November 10, 2010 Wednesday, November 10, 2010

Stb_ckhqlm
University

Actors in io, cont’'d

An object processing a message queue is called an “actor”.

Queued messages are processed sequentially in a first-in-first-out
order

Control can be yielded to other actors by calling yield - It's also
possible to pause and resume an actor

Blocking operations such as reading on a socket will automatically
unschedule the caller until the data is ready or a timeout or error has
occurred.

37

Wednesday, November 10, 2010

Example Using Erlang

N oNU A WN

Stockholm
University
-module(counter).

-export([run/0, counter/1l]).

run() ->
S = spawn(counter, counter, [0]),
send_msgs(S, 100000),
S.

counter(Sum) ->
receive
value -> io:fwrite("Value is ~w~n", [Sum]);
{inc, Amount} -> counter (Sum+Amount)
end.

.send msgs(_, 0) -> true;
.send_msgs(S, Count) ->
s ! {inc, 1},
send_msgs(S, Count-1).

% Usage:
% 1> c(counter).
% 2> S = counter:run().
.- % ... Wait a bit until all children have run ...
% 3> s ! value.
%

Value is 100000 39

Stockholm
University

Example Using io

ol := Object clone

ol name := "One
ol test := method(for(n, 1, 3, write(name, " ", n, " \n") yield))
02 := ol clone

02 name = "Two"

// @ means send an asynchronous message
ol @test; o2 @test
// wait for the messages to get processed

while(Scheduler waitForCorosToComplete, yield)

38

Wednesday, November 10, 2010

Wednesday, November 10, 2010

Oneraty
Why is the Actor Model Important

Now?

* The importance of concurrency is growing with the growing number

of multi-processor machines

* The Actor model faces issues including the following:

— scalability - the challenge of scaling up concurrency both locally
and non-locally

— transparency -- bridging the gap between local and non-local
concurrency

— inconsistency -- inconsistency is the norm because all very large
knowledge systems about human information system interactions
are inconsistent

40

Wednesday, November 10, 2010

Stockholm

Stockholm
University

Cowboy Circle

c draw

42

University
message # method # function
41
Wednesday, November 10, 2010

Messages

* Objects send and receive messages

* The response to a message is executing a method

e Which method to use is determined by the receiver at run-time.

Stockholm
University

43

References

Wednesday, November 10, 2010

Stockholm
University

lain Craig, “The Interpretation of Object-Oriented Programming
Languages”, 2nd edition, Springer Verlag, 2002.

Gul Agha, “An Overview of Actor Languages”

Edward A. Lee , “The Problem with Threads”, 2006.

Martin Abadi and Luca Cardelli, “A Theory of Objects”, Springer Verlag,
1996.

io: http://www.iolanguage.com

Anton Eiléns, Principles of Object-Oriented Software Development, 2nd
edition. Addison-Wesley, 2000.

Kim Bruce, Foundations of Object-Oriented Languages: types and
semantics, MIT Press, 2002.

44

Wednesday, November 10, 2010

Wednesday, November 10, 2010

Stockholm
University

References

* Timothy Budd,An Introduction to Object- Oriented Programming”,
2nd edition. Addison-Wesley, 2000.

* Ian Joyner, “Objects Unencapsulated”, Prentice-Hall, 1999.

* Henry Lieberman, “Using Prototypical Objects to Implement Shared
Behavior in Object Oriented Systems”, 1986.

e James Noble and Brian Foote, “Attack of the Clones”, Proceedings of
the 2002 conference on Pattern languages of programs.

* D.L. Parnas, “On the Criteria To Be Used in Decomposing Systems
into Modules”, Communications of the ACM, Vol. 15, No. 12, 1972.

45

Wednesday, November 10, 2010

