

Python – MetaMeta + Patterns
Isak Karlsson

isak-kar@dsv.su.se

Implementing a descriptor
def trace(f):
 def log_wrapper(*args, **kv):
 call = "%s(%s)" % (f.func_name,
 ", ".join(map(lambda a: a.__class__.__name__, args)))

 print "TRACE:\t Start call: '%s'" % (call)

 start = time.time()
 ret = f(*args, **kv)
 elapsed = time.time() - start
 print "TRACE:\t End call : '%s' \n\t Took %s sek" % (call, elapsed)

 log_wrapper.__name__= f.__name__
 log_wrapper.__doc__ = f.__doc__
 return log_wrapper

Using the descriptor
@trace
def test(s):
 """ Documentation"""
 print s

class Test(object):
 def class_test(self, x):
 print x
 class_test = trace(class_test)

>> test("Test")
TRACE: Start call: 'test(str)'
isak
TRACE: End call : 'test(str)' Took 6.91413879395e-06 sek
>> Test().class_test("test")
TRACE: Start call: 'class_test(Isak, str)'
isak
TRACE: End call : 'class_test(Isak, str)' Took 5.00679016113e-06 sek

>> help(test)
Help on function test in module __main__:

test(*args, **kv)
 Documentation

Code objects and Compilation

def test():
 pass

def code_test():
 print "This is a test"

>> test.__code__ = code_test.__code__
>> c = test.__code__
>> c()
This is a test
>> exec c
This is a test
>> c = compile("print 1+1", "<test>", "exec")
>> test.__code__ = c
>> test()
2

Table of contents
● What is a pattern?

● Why should I care
● Implementing changing builder

● Stupid (simple) example
● Implementing changing behavior

● Stupid (simple) example
● Implementing an (simplistic) interpreter
● Leveraging Python for the parser

● Transform Python code (in Python)

What is a design pattern?

● “A design pattern is a general reusable solution
to a commonly occurring problem within a given
context in software design. A design pattern is
not a finished design that can be transformed
directly into code. It is a description or template
for how to solve a problem that can be used in
many different situations.” (Wikipedia, 2011)

Why should I care?

● “Designing object-oriented software is hard, and designing
reusable object-oriented software is even harder. You must find
pertinent objects, factor them into classes at the right granularity,
define class interfaces and inheritance hierarchies, and establish
key relationships among them. Your design should be specific to
the problem at hand but also general enough to address future
problems and requirements. You also want to avoid redesign, or
at least minimize it.” (Gamma et.al, 2011)

Case study:

● You want to design a game, capable of constructing Mazes
● Mazes consist of rooms, rooms of walls and doors
● Doors connect rooms
● It should be extendable

● It should be easy to extend with new and fancy walls or doors
● Doors, rooms and walls must fit

● The maze creation algorithm must not be rewritten for any
change of, door, room or wall-type

First try
class Maze(object):
 def __init__(self):
 self.rooms = []
 def add_room(self, room):
 self.rooms.append(room)
 def get_room(self, no):
 return self.rooms[no]

class Part(object): def enter(self): pass

class Room(Part):
 def __init__(self):
 self.walls = {}
 def set_side(self, side, part):
 self[side] = part

class Wall(Part): Pass

class Door(Part):
 def __init__(self, r1=None, r2=None):
 self.room1 = r1
 self.room2 = r2
 self.is_open = False

def create_maze():
 m = Maze()
 r1 = Room()
 r2 = Room()

 d = Door(r1, r2)

 m.add_room(r1)
 m.add_room(r2)

 r1.set_side("north", Wall())
 r1.set_side("south", Wall())
 r1.set_side("east", d)
 r1.set_side("west", Wall())

 r2.set_side("north", Wall())
 r2.set_side("south", Wall())
 r2.set_side("east", Wall())
 r2.set_side("west", d)

 return m

First try
mace = create_mace()

Is it sufficient?

● We can construct mazes
● They consist of rooms, walls, and doors
● Doors connect rooms
● But?

● It should be extendable
● It should be easy to extend with new and fancy walls or
doors

● Doors, rooms and walls must fit
● The maze creation algorithm must not be rewritten for any
change of, door, room or wall-type

Second try; Abstract factory to the rescue
class MazeFactory(object):
 def make_maze(self):
 return Maze()
 def make_room(self):
 return Room()
 def make_door(self, r1, r2):
 return Door(r1, r2)
 def make_wall(self):
 return Wall()

The intent is to “provide an interface for creating families of related or
dependent objects without specifying their concrete classes.” (Gamma et.al)

What have we accomplished?

● Nothing.... yet!

Second try, factory

def make_maze(factory):
 m = factory.make_maze()
 r1 = factory.make_room()
 r2 = factory.make_room()

 d = factory.make_door(r1, r2)

 m.add_room(r1)
 m.add_room(r2)

 r1.set_side("north", factory.make_wall())
 r1.set_side("south", factory.make_wall())
 r1.set_side("east", d)
 r1.set_side("west", factory.make_wall())

 r2.set_side("north", factory.make_wall())
 r2.set_side("south", factory.make_wall())
 r2.set_side("east", factory.make_wall())
 r2.set_side("west", d)

Second try, try
mace = create_mace(MaceFactory())

Is it sufficient?

● We can construct mazes
● They consist of rooms, walls, and doors
● Doors connect rooms
● But?

● It should be extendable
● It should be easy to extend with new and fancy walls or
doors

● Doors, rooms and walls must fit
● The maze creation algorithm must not be rewritten for any
change of, door, room or wall-type

Example; extend
class TransparentWall(Part):
 pass

class TransparentFactory(MazeFactory):
 def make_wall(self):
 return TransparentWall()

Second try, try, try
mace = create_mace(TransparentFactory())

Introducing the Visitor pattern

● “Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.”
(Gamma et.al, 2011)

Stupid case study:

● We have an Animal, that can eat
● Eating affects the animal in different ways

● Apple increase hp
● Mushroom makes it fly
● Spike decrease hp

● It should be possible to add new editable items without
changing the animal

Static try:
class Apple(object):
 pass

class Spike(object):
 pass

class Mushroom(object):
 pass

Static try:
class Animal(object):
 def __init__(self):
 self.hp = 5
 self.fly = False

 def eat(self, food):
 if type(food) == Apple:
 self.hp += 1
 elif type(food) == Spike:
 self.hp -= 1
 elif type(food) == Mushroom:
 self.fly = True
 else:
 raise TypeError("Can't handle %s" % (type(food)))

Dynamic try:
class Animal(object):
 def __init__(self):
 self.hp = 5
 self.fly = False

 def eat_apple(self):
 self.hp += 1

 def eat_pear(self):
 self.hp -= 1

 def eat_mushroom(self):
 self.fly = True

 def eat(self, food):
 function = food.__class__.__name__.lower()
 eval("s.eat_%s()" % (function), {"s": self})

Stupid case study:

● We have an Animal, that can eat
● Eating affects the animal in different ways

● Apple increase hp
● Mushroom makes it fly
● Spike decrease hp

● It should be possible to add new editable items without
changing the animal

Visitor to the rescue!
class Apple(object):
 def eaten(self, eater):
 eater.hp += 1

class Spike(object):
 def eaten(self, eater):
 eater.hp += 1

class Mushroom(object):
 def eaten(self, eater):
 eater.fly = True

Visitor to the rescue!

class Animal(object):
 def __init__(self):
 self.hp = 5
 self.fly = False

 def eat(self, food):
 return food.eaten(self)

Stupid case study:

● We have an Animal, that can eat
● Eating affects the animal in different ways

● Apple increase hp
● Mushroom makes it fly
● Spike decrease hp

● It should be possible to add new editable items without
changing the animal

Visitor to the rescue!

class Milk(object):
def eaten(self, eater):

eater.hp += 10
eater.white = True

We can eat milk, and there are no
requirements to edit the animal!
a = Animal()
a.eat(Milk())
print a.hp, a.white

Case study, more interesting:

● You want to implement a programming language...
● … and from an abstract syntax tree interpret the semantics
● But, you want each of the node in the tree to know nothing of
how they are used, and:

● It shall be possible to use them in different ways without sub
classing them

● Add new nodes to the tree without changing existing Nodes

Case study, more interesting:

<num> ::= 0...9+
<expr> ::= <term> [+|-] <expr> | <term>
<term> ::= <factor> [*|/] <term> | <factor>
<factor> ::= <num>

Implementing an interpreter

 Live programming ahead – code available separately

Using Python to parse!

 Live programming ahead – code available separately

