
Duelling banjos part II - Ruby

January 26, 2012

Control Structures, iteration, ranges again

The Ruby if-statement begins with "if" and a conditional (no do)

and ends with "end"

>> if nil

>> print "nil is true"

>> end

=> nil

>> if false

>> print "false is true"

>> end

=> nil

"nil" and "false" evaluates to false in Ruby, everything else

(including 0) eveluates to true

>> if 0

>> print "0 is true"

>> end

0 is true=> nil # Only nil and false are false

Logical operators ("and" and "or") can be used to combine

conditionals

>> if 0 and [] and {} and ’’

>> puts "0 and [] and {} and ’’ are true"

>> end

(irb):15: warning: string literal in condition

0 and [] and {} and ’’ are true

=> nil

If-statements can be combined using "elsif". The "else" clause

will be run if none of the conditionals above evaluated to

true.

1

>> name = "Yukihiro"

=> "Yukihiro"

>> if name == "Yukihiro"

>> puts "Ruby"

>> elsif name == "Guido"

>> puts "Python"

>> else

?> puts "None of the above"

>> end

Ruby

=> nil

"or" and "and" will be evaluated as boolean true/false but

will also always return one of the objects in the expression

>> names = { "Yukihiro" => "Ruby",

?> "Guido" => "Python",

?> }

=> {"Yukihiro"=>"Ruby", "Guido"=>"Python"}

>> puts names[name] or "None of the above"

Ruby

=> "None of the above"

>> puts (names[name] or "None of the above")

Ruby

=> nil

>> result = (false or ’Beatrice’ or false)

=> "Beatrice"

>> if result

>> puts result

>> end

Beatrice

=> nil

>> result = (’Beatrice’ and [] and ’Isak’)

=> "Isak"

>> if result

>> puts result

>> end

Erik

=> nil

Negation of boolean values is done using "not".

>> not false

=> true

>> (not true) == false

2

=> true

The true and false values are represented by objects, and there

is only one true object and one false object

>> (not true) === false

=> true

>> (not true).object_id == false.object_id

=> true

The Ruby while-loop starts with "while" and a conditional and

ends with end

>> i = 0

=> 0

>> while i < 10

>> puts i

>> i += 1

>> end

0

1

.

.

8

9

=> nil

Several other ways of looping exists, e.g. the "each" iterator

in the Range class.

>> lst = 1..10

=> 1..10

>> lst.each {|i| puts i}

1

2

.

.

8

9

10

=> 1..10

Below we see an example of operations that we could do with

lists. Using the "zip" method from the Array class we create a

new list containing lists of the elements from the original

lists that were found on the same index.

>> cs = [’a’,’b’,’c’]

=> ["a", "b", "c"]

>> ns = [1,2,3]

3

=> [1, 2, 3]

>> zip = cs.zip(ns)

=> [["a", 1], ["b", 2], ["c", 3]]

The list of lists is looped over using the "each" operator and

the elements of the lists inside the list are printed out.

>> zip.each do |ch, no|

?> puts "#{ch} #{no}"

>> end

a 1

b 2

c 3

=> [["a", 1], ["b", 2], ["c", 3]]

The "collect" iterator will loop over the list collecting all

elements from the original list for which the conditional in the

code block evaluates to true. In this case, the code block

contains no conditional and all elements will be collected.

>> chars = zip.collect {|c, n| c}

=> ["A", "b", "c"]

>> nums = zip.collect {|c, n| n}

=> [1, 2, 3]

A first simple program

Let’s say we have a file named "words.txt" with the following

words stored in it:

Conan

is

awesome

says

Jonathan

and

Andreas

The following code returns a list of words starting with a

(lowercase) vowel.

>> matches = []

=> []

>> vowels = "aoueiy".chars.to_a

=> ["a", "o", "u", "e", "i", "y"]

4

>> f = open(’words.txt’)

=> #<File:words.txt>

>> f.each do |line|

?> matches << line.strip if vowels.include? line.strip.chars.first

>> end

=> #<File:words.txt>

>> matches

=> ["is", "awesome", "and"]

Putting it into a function

Ruby methods start with "def", a method name and an optional

list of arguments. The result of evaluating the last line of

the method will be the return value of the method.

>> def filter_words(file_name, filter_as_str)

>> matches = []

>> filter = filter_as_str.chars.to_a

>> f = open(file_name)

>> f.each_line do |line|

?> matches << line.strip if filter.include? line.strip.chars.first

>> end

>> f.close

>> matches

>> end

=> nil

>> puts filter_words(’words.txt’, ’aeiouy’)

is

awesome

=> nil

Classes & Inheritance

A Ruby class-definition starts with "class" and a class name. If

no superclass is specified, the superclass will be Object. Below

we create an empty class named Person as a subclass to Object.

Objects of the Person class are created by sending the "new"

message to the object that represents the Person class at runtime.

>> class Person

>> end

=> nil

5

>> Person.new

=> #<Person:0x1012124e0>

Below, we open the Person class again and add functionality to

it. The method called "initialize" will be run automatically

upon object creation (when calling "new").

>> class Person

>> def initialize(name)

>> @name = name

>> end

>> def say_hi

>> puts "Hi! My name is #{@name}"

>> end

>> end

=> nil

Since the "initialize" method takes one argument, we can no

longer create objects without providing an argument.

>> p = Person.new

ArgumentError: wrong number of arguments (0 for 1)

from (irb):157:in ‘initialize’

from (irb):157:in ‘new’

from (irb):157

from :0

p = Person.new("Yukihiro")

=> #<Person:0x1011eed38 @name="Yukihiro">

The object representing the Person class (and other classes) can

be treated as any object. We can assign it to a variable and we

can send messages to it.

>> my_class = Person

=> Person

>> my_class

=> Person

>> my_class.new("Guido")

=> #<Person:0x1011e29e8 @name="Guido">

Methods are defined _only_ by their name. No overloading allowed.

>> class Person

>> def a_method

>> puts 1

>> end

>> def a_method(arg)

>> puts 2

>> end

6

>> end

=> nil

>> p.a_method

ArgumentError: wrong number of arguments (0 for 1)

from (irb):172:in ‘a_method’

from (irb):172

from :0

A method that contains "yield" will expect a code block to

be executed.

>> class Person

>> def give_me_something_to_do

>> puts "Start of method"

>> yield

>> puts "End of method"

>> end

>> end

=> nil

The call to the method defined above will look similar to the

calls we’ve already made to various iterators.

>> p.give_me_something_to_do {p "Something"}

Start of method

"Something"

End of method

=> nil

The code block can use locally defined variables.

>> a_string = "Yukihiro"

=> "Yukihiro"

>> p.give_me_something_to_do {p a_string}

Start of method

"Yukihiro"

End of method

=> nil

A subclass can be defined by including "<" and the name of the

superclass in the class definition.

>> class SubPerson < Person

>> def a_method(arg) # Overriding

>> puts "In SubPerson: #{arg}"

>> end

>> end

=> nil

>> sp = SubPerson.new("Yukihiro")

=> #<SubPerson:0x100618fb8 @name="Yukihiro">

7

>> sp.a_method("Ruby")

In SubPerson: Ruby

=> nil

Back to example program

wordlist.rb

class WordList

def initialize(file_name, filter_str)

@file_name, @filter_str = file_name, filter_str

@matches = Array.new

end

def filter(file_name = nil, filter_str = nil)

filter = (filter_str or @filter_str).chars.to_a

file = (file_name or @file_name)

open(file) do |file| # opens file and closes after reading it

file.each_line do |line|

matches << line.strip if filter.include? line.strip.chars.first

end

end

end

def matches

@matches

end

end

require ’wordlist’

=> true

>> wl = WordList.new(’words.txt’,’aoueiy’)

=> #<WordList:0x1005c43f0 @matches=[], @filter_str="aoueiy", @file_name="words.txt">

>> wl.filter

=> #<File:words.txt (closed)>

>> wl.matches

=> ["is", "awesome"]

8

