
1 Output

evaluate expression and prints result.

irb> 4 + 5

=> 9

irb>

7 * 3

=> 21

irb> ’Hello, world!’

=> "Hello, world!"

print text on standard output

irb> puts ’Hello, world!’

Hello, world!

=> nil

2 Dynamically typed variables

irb> v = nil # Creates a new variable v on the stack holding

=> nil # a reference to an instance of NilClass.

irb> v = 42 # Updates the v variable with a reference to an

=> 42 # a Fixnum object, with value 42.

irb> s = ’Hello’ # Creates a new variable s on the stack holding a

=> "Hello" # reference to a String object with value ’Hello’.

irb> v + s # Invokes the +-method on the ’Hello’ String

object referenced by the s variable. This will

raise a TypeError as the String object does not

know how to add a Fixnum to a String.

irb> v + s # + is invoked on the Fixnum, resulting in a

TypeError as String cannot automaticly be

converted to Fixnum.

irb> v.to_s # The to_s-method returns a printable string

=> "42" # representation of the object. In this case

"42".

irb> s + v.to_s # Returns the concatenated string "Hello42"

=> "Hello42"

irb> s.methods # Returns an array of the methods defined for the

=> ["upcase!",...] # object referenced by s.

1

irb> s, v = v, s # Multiple assignment: Swaps the values of v and s.

=> [42, "Hello"]

3 Lists

irb> l = [v, s] # Creates a list(Array) containing ’Hello’ and 42.

=> ["Hello", 42]

irb> l << 3.0 # All kinds of types may be mixed in a list.

=> ["Hello", 42, 3.0]

irb> l.pop # Removes and returns the last element in list.

=> 3.0 # Can pop multiple values, i.e. l.pop(2) returns

a list of the last two elements.

irb> r = 1..4 # Creates a new instance of the Range class

=> 1..4 # Useful when looping. x..y is inclusive the

last element, x...y is exclusive.

irb> l = r.to_a # Creates a new instance of the Range class

=> 1..4 # Useful when looping. x..y is inclusive the

last element, x...y is exclusive.

irb> l = r.to_a # Convert the Range to a list

=> [1, 2, 3, 4]

irb> l = l + [5, 6] # Concatenation of lists

=> [1, 2, 3, 4, 5, 6]

Loop over each element in the list l and summarise in sum.

irb> l.each do |element|

irb* the_sum += element

irb> end

Above loop will crash as the_sum is unassigned, and therefore

considered nil. NameError is raised as nil has no + method.

irb> the_sum = 0

irb> l.each do |element|

irb* the_sum += element

irb> end

=> [1,2,3,4,5,6] # iteration returns the iterated object

irb> puts the_sum

21

=> nil

2

Alternate loop syntax

irb> l.each { |element| the_sum += element }

4 List access and slicing

irb> lst = [’a’, ’b’, ’c’, ’d’]

=> ["a", "b", "c", "d"]

The index method [] takes one or two arguments.

The first is which index to retrieve, negative index means

count backwards from the end of the list. Second argument

is how many consecutive elements to returns as a new list.

irb> lst[1] # Returns ’b’ as 1 is the second position in list.

=> "b"

irb> lst[-1] # Returns the last element of the list.

=> "d"

irb> lst[7] # Indexing outside of the list returns nil.

=> nil

irb> lst[1,1] # Returns a new list containing "b".

=> ["b"]

irb> lst[0,3] # Returns 3 elements from index 0.

=> ["a","b","c"]

irb> lst.dup # Returns a copy of the list.

=> ["a", "b", "c", "d"]

irb> lst.reverse # Returns a copy of the list reversed.

["d", "c", "b", "a"]

5 Associative arrays (Hashes/Dictionaries/Maps?)

Create a new Hash, with unordered mappings.

irb> h = { ’one’=>1, ’two’=>2, ’three’=>3, ’four’=>4 }

=> {"three"=>3, "two"=>2, "one"=>1, "four"=>4}

irb> h["one"]

1

Update hash, key "three" refers the same value as

key "four".

irb> h["three"] = h["four"]

=> 4

Print string representation of the contents of the Hash.

irb> puts h.inspect

3

{"three"=>4, "two"=>2, "one"=>1, "four"=>4}

irb> h.keys

=> ["three", "two", "one", "four"]

irb> h.has_key? "four"

=> true

irb> h.has_value? 4 # Is this one of the values?

=> true

Iterate over the key/value-pairs and print each.

irb> h.each { |key, value| puts "#{key} => #{value}" }

three => 4

two => 2

one => 1

four => 4

=> {"three"=>4, "two"=>2, "one"=>1, "four"=>4}

4

