Assignment Two — Ruby
DYPL, Dynamiska programmeringssprak
Spring Term 2012

2nd February 2012

Introduction

The exercise is split into two parts: code generation and library extension.
They should be implemented as separate modules that can be loaded with
require and used independently. The modules should be named
code_generation.rb and array_extension.rb.

Code Generation

The code generation module reads data descriptions from file and creates
appropriate classes that know how to parse descriptions of themselves from
YAML files. The library extension extends the standard Array class with
SQL-like functions to search for (multiple) occurences of objects with certain
properties in arrays.

A program using your libraries might look something like this:

Load your array extension 1lib, which augments Array
require ’array_extension’

Load your code generation 1lib, which defined the module
Model that performs the code generation

require ’code_generation’

Create a class Person from person.txt
person_class = Model.generate(’person.txt’)

Load an array of Person objects from entries.yml

persons = person_class.load_from_file(’entries.yml’)

p = persons.select_first_where_name_is(’David’)
<Person name=’David’ ... >
puts p.name # Prints ’David’

ps = persons.select_all_where_age_is_in(18, 65)
[<Person age=’63" ... >, <Person age=’20’ ...> ...]

1 Extending the Array Class

The Array class should be extended with SQL-like features. Extending should
be done through the open classes feature—not through subclassing. The new
features should be added to the existing Array class.

The Standard Form

The instance methods supported should have the following signature:

Array#select_first(:attribute => value)
Array#select_first(:attribute => [...])
Array#select_first(:name => :attribute,

:interval => { :min => value,

:max => value2 })
Array#select_first(:name => :attribute,

:interval => { :max => value2 })

The first method returns the first object in the array that responds to the
message attribute by returning value. For example, the following piece of
code should return ”Deeo”:

["a", "aa", "Deeo", "odeo"].select_first(:size => 4)

(size is a method in strings that return their length. This piece of code
returns the first string in the array that returns 4 as a result of a size
message.)

The second method returns the first object in the array that responds to
the message attribute by returning a value contained in the argument array.
Thus, the following piece of code would return ”aa”:

["a", "aa", "Deeo", "odeo"].select_first(:size => [4, 2])

The third and fourth are similar, but works on intervals.

Each method should also exist in a select_all version that does not stop
and return the first found object, but a list of all objects that correspond to
the selection criteria (or an empty list if no such objects are found).

2 Increasing the Usability

Code using the methods above can be made more readable if we allow a
different form of invocation. Instead of using

select_first(:name => ’Tobias’)

it should be possible to simply write
select_first_where_name_is(’Tobias’)

which should be equivalent. The more general form is thus:

Array#select_first_where_<attribute>_is(value)
Array#select_first_where_<attribute>_is([])
Array#select_first_where_<attribute>_is_in(value, value2)

Returning to our second example above, it should thus be equivalent to this
piece of code:

["a", "aa", "Deeo", "odeo"].select_first_where_size_is([4, 2])

which should return ”aa”.

And for select_all:

Array#select_all_where_<attribute>_is(value)
Array#select_all_where_<attribute>_is([])
Array#tselect_all_where_<attribute>_is_in(value, value2)

Note that the array cannot possibly know what kinds of values it will hold,
so it will not actually have any of the methods just shown. Rather, you will
have to trap calls to non-existing methods and in a clever (by looking at
their names) way figure out what the intention is, and transforming them
into a call on the standard form using the select_first, etc. versions. To
optimise your code for multiple calls of the same on-existing method, the
non-existing method trap should add the missing method to the object.
Thus, the first call to

["a", "aa", "Deeo", "odeo"].select_first_where_size_is([4, 2])

would not only figure out that the caller means select_first(:size =>
[4, 2]), but also add the method to the array.

Run-Time Code Generation

The run-time code generation part of the assignment will dynamically add
classes to a running program given a simple description provided in a text
file. The module Model should be implemented for this purpose with the
method generate that accepts a file path to a specification file and returns
a class object for the generated class.

Syntax of Specification File
Below is a simple description of the syntax of a specification file:

title :Title
attribute :name_1, Type

attribute :name_n, Type
constraint :name_1, "boolean expression_1"
constraint :name_1, ’boolean expression_2’

constraint :name_n, "boolean expression_m"

Where :Title should be the class name of the defined class, the attributes
should be attributes of the generated class. The accessors and mutators
should make sure that the values held by an attribute has the correct type,
(expressed here as a class), or nil. If the object has the wrong class, an error
should be raised. All ways of creating strings in Ruby should be supported
for the boolean expressions.

Last, the constraints specify a set of additional constraints on the objects of
the attributes that must be upheld at all times, just as the type. Note that
an attribute can have several constraints.

Example:

title :Person
attribute :name, String
attribute :age, Fixnum

constraint :name, ’name != nil’
constraint :name, ’name.size > 0’
constraint :name, ’name ="~ /" [A-Z]/’

constraint :age, ’age >= 0’

This code should generate a class Person with the attributes name, a string,
and age, a fixed numeral. Whenever name is read or updated, the class

should make sure that name is not nil, that the name is longer than 0
characters, and that it starts with an uppercase letter. Similarly, age must
never be negative. Attempts at wrongfully updating an attribute should
raise a RuntimeError.

When called, the generate method should parse a file such as the above, and
create a person class with an implementation that satisfies all the specified
constraints. Importantly, the person class should know how to parse a YAML
file containing person entries and return an array with such objects parsed
from a file (see the load from file call in the first example). This should
be handled by a class method that accepts as argument the path to a YAML
file with the data to be parsed. Entries that do not satisfy the constraints or
don’t contain all the specified attributes should be ignored. Attributes that
are not mentioned in the specification should be ignored.

The loading should be order-preserving, meaning that if A is before B
in the YAML-file, then A should be before B in the array returned by
load_from_file provided A is a valid object in the file. This is YAMLs
standard behaviour, so only be careful not to mess that up.

Recap, What Should You Do

1. Create a loadable module called array_extension that augments the
class Array with the method on the ”standard form”. The new array
should also trap calls to non-existing methods and, if the calls follow
the more readable form, be transformed into calls on the standard
form, and added to the Array class.

2. Create a lodable module called code_generation that defines the mod-
ule Model with the method generate that reads a file in the specific-
ation file format and returns a proper Ruby class object that corres-
ponds to the description. Generated classes should all implement the
method load from file, that loads instance of the class in point from
a YAML file into an array that gets returned.

Hints

Note how the syntax of the specification file is actually valid Ruby syntax.
The idea is to use some form of eval to avoid having to parse the file—
just load it and eval it in the context that understands messages like title,
attribute and constraint.

YAML stands for Yet Another Markup Language and there are good Ruby
modules for parsing it around. Don’t implement your own YAML parser.

Develop the modules one at a time—they should be independent of each
other.

There is a Ruby Code & Style article at Artima that is relevant: http:
//www.artima.com/rubycs/articles/ruby_as_dsl.html here

Testing Before Handing In

Tobias has made a test file that does most of the quantitative checking in
the grading process. This file might be of great help to you and is available
at http://people.dsv.su.se/~beatrice/DYPL/unittest.rb here.

This file also helps in churning out bugs due to subtleness in the specification.
A high percentage of those who get their program back did not use the
unittests.

A Sample YAML File:

persons:

- name : Alice

age : 20

length : 175

weight : 65
- name : Bob

length : 192

weight : 89
- name : Caligula

age : 400

length : 165

misc : Really old guy
- name : Daniel

age : 63

length : 172

weight : 70

misc : Quite old too
- name : Elisabeth

age : 32

length : 168

weight : 68

