
Assignment Three

DYPL/ID2005, Dynamiska programmeringsspr̊ak

Spring Term 2010

Beatrice Åkerblom
beatrice@dsv.su.se

6th May 2010

Introduction

The purpose of this assignment is to revisit some results of Lutz Prechelt’s
[1]. Prechelt has made empirical comparisons of different languages, in-
cluding C, C++, Java, Perl, Python, Rexx, and Tcl. Interesting results
from Prechelt’s experiment include different productivity ratings in terms of
LOC/hour (LOC = Lines Of Code) in different languages, program lengths,
etc.

In the third assignment, you are to implement a simplified version of the
test program used in Prechelt’s experiment twice in two different languages:
once in a systems programming language that you are familiar with and
once in a dynamic programming language. If you do not know any systems
programming language, talk to Beatrice and we’ll figure something out.

I suggest that you start with the language that you are most familiar with,
e.g., starting with Java and moving on to Erlang.

Be sure not to miss the last section that details what simplifications you
may make.

Language Selection

You are allowed to use any of the following languages (others may be OK
too):

Systems PLs: C, C++, C#, Java, Object Pascal, Pascal, Objective-C

Dynamic PLs: Io, Perl, PHP, Python, Ruby, Smalltalk, Tcl, Erlang, Lisp,
Scheme

If you do not know any of the systems programming languages listed, talk
to Beatrice and we’ll figure something out.

1

What To Hand In

In addition to the two solutions, we want a short paper (about 1.000 words)
describing what you feel the differences are in programming in the differ-
ent languages. Are there strenghts in the systems languages that you felt
were missing in the dynamic ones, and vice versa? What language felt best
suited for the task? Do you feel that there were any differences in how you
approached the problem in different languages?

We also want you to clock the time it takes you to complete the programs
(please be careful about this, and don’t lie – it does not affect grading and
we won’t make it public). We suggest that you start with the language that
you are most familiar with to even the odds a little. A possible result would
be: Java 8 hours, Python 8 hours.

Task Description

Attention: Please follow these instructions super accurately.

First read through the whole of it in order to get an overview. Concentrate
on the details only upon second reading.

The following mapping from letters to digits is given:

E | JNQ | RWX | DSY | FT | AM | CIV | BKU | LOP | GHZ

e | jnq | rwx | dsy | ft | am | civ | bku | lop | ghz

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We want to use this mapping for encoding telephone numbers by words, so
that it becomes easier to remember the numbers.

Functional Requirements

Your task is writing a program that finds, for a given phone number, all pos-
sible encodings by words, and prints them. A phone number is an arbitrary
string of dashes and digits. The words are taken from a dictionary which is
given as an alphabetically sorted ASCII file (one word per line).

All encodings that are possible from this dictionary and that matches the
phone number exactly shall be printed. Thus, possibly nothing is printed
at all (e.g., if the dictionary is empty). The words in the dictionary contain
letters (capital or small, but the difference is ignored in the sorting). For the

2

encoding only the letters are used, but the words must be printed in exactly
the form given in the dictionary.

Encodings of phone numbers can consist of a single word or of multiple
words separated by spaces. The encodings are built word by word from left
to right. If and only if at a particular point no word at all from the dictionary
can be inserted, a single digit from the phone number can be copied to the
encoding instead. Two subsequent digits are never allowed, though. To put
it differently: In a partial encoding that currently covers k digits, digit k+1 is
encoded by itself if and only if, first, digit k was not encoded by a digit and,
second, there is no word in the dictionary that can be used in the encoding
starting at digit k+1.

Your program must work on a series of phone numbers; for each encoding
that it finds, it must print the phone number followed by a colon, a single
space, and the encoding on one line; trailing spaces are not allowed. All
remaining ambiguities in this specification will be resolved by the following
example. (Still remaining ambiguities are intended degrees of freedom.)

Sample dictionary:

an

blau

Bo

Boot

bos

da

Fee

fern

Fest

fort

je

jemand

mir

Mix

Mixer

Name

neu

od

Ort

so

Tor

Torf

Wasser

Sample phone number list:

3

112

562482

4824

07216084067

107835

10789135

381482

04824

Corresponding correct program output (on screen):

562482: mir Tor

562482: Mix Tor

4824: Torf

4824: fort

4824: Tor 4

107835: neu od 5

107835: je bos 5

107835: je Bo da

381482: so 1 Tor

04824: 0 Torf

04824: 0 fort

04824: 0 Tor 4

Any other output would be wrong (except for different ordering of the lines).

Wrong outputs for the above example would be e.g.

1. 4824: 4 Ort, because in place of the first digit the words Torf, fort,
Tor could be used,

2. 10789135: je Bo 9 1 da , since there are two subsequent digits in the
encoding, 3. 04824: 0 Tor , because the encoding does not cover the
whole phone number, and

3. 562482: mir Torf , because the encoding is longer than the phone
number.

Quantitative Requirements

1. Length of the individual words in the dictionary: 50 characters max-
imum

2. Number of words in the dictionary: 200.000 maximum

4

3. Length of the phone numbers: 50 characters maximum

4. Number of entries in the phone number file: unlimited

Qualitative Requirements:

• Your implementation must be fairly efficient in terms of memory use/data
structures/time complexity of searches. For example, making one huge
flat list and search for matches in that is (most likely) a bad imple-
mentation that will be failed (unless it can be sufficiently motivated).

In short, write good programs that does not just give the correct answer,
but does it in a good way, without consuming too much computer power.
If your test programs takes more than a couple of minutes for a small data
sample (i.e., the small one given below), that’s a dead give-away that your
program is not good enough.

A More Interesting Word List

You may use any other English wordlist instead. Here you find one listing
the top 1000 words on the internet:

http://www.andreas.com/faq-thousandwords.html

Permitted Simplifications

1. You may assume that words in the dictionary are all lowercase and
match the regexp /[a-z]+/ (this is assumed by the test program de-
scribed below).

2. You need only search for completions that create complete matches of
one or more words, without digits (in the examples above, only 562482:
mir Tor, 562482: Mix Tor, 4824: Torf, 4824: fort and 107835: je Bo da
would be required.)

NOTE: both your implementations must make the exact same simplifica-
tions. State which ones you make use of!

5

Test Program

http://people.dsv.su.se/~tobias/attach/validate.rb Here you find
a very silly test program that simply checks that the data generated by your
solution was correct. Note that it gives an error if it sees the same number
appear twice in an instream, which actually might happen.

Run the program like this:

./validate.rb outfile

or simply pipe the result of your program to the validate program, e.g.,

./mysolution dict nums | ./validate.rb

Not that the validator does not check that your program covered all cases –
it just checks that the cases you did cover were valid.

Bibliography

[1] Lutz Prechelt, “An empirical comparison of C, C++, Java, Perl, Python,
Rexx, and Tcl”, http://projects.mi.fu-berlin.de/w/bin/view/Main/

LutzPrechelt

6

