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Shortcomings of 
dynamic 
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languages
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“PHP and Ruby are perfectly fine systems 
but they are scripting languages and get 

their power through specialisation: they just 
generate web pages. But none of them 
attempt any serious breadth in the 

application domain and they both have 
really serious scaling and performance 

problems.”

—James Gosling [13]
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- No (static) safety [23]

- Bad readability

- No real support for information 
hiding [7]

- Flexibility doesn’t come for free

- Slow execution speed*

- High flux
*) See e.g., http://shootout.alioth.debian.org/ for anecdotal “evidence”
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Type checking 
cannot replace 

testing
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Meijer & Drayton [6]

• […there is] a huge technical and 
cultural gap between the [static and 
dynamic typing language 
communities]
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Meijer & Drayton [6]

• DYPLs should do type inference 
where possible

• Static typing provides a false sense 
of security
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“Static Python”

• Guido van Rossum suggested adding 
optional static typing to Python

๏ Huge outcry

๏ Why are people so reluctant?

See [9] for this discussion
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Array Covariance

Object[] objects = new Button[10];
objects[0] = new Object(); // Error at   
                           // run-time
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weak

strong
dynamic

static

See Osterhout [1] for a similar diagram on typing issues
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See Osterhout [1] for a similar diagram on typing issues
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Dynamic Typing is a
Misnomer [23]

See Pierce [23] for the big picture. Or go to LtU for pie throwing.
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Testing 
Cannot Replace 
Type Checking

In the general case, testing cannot prove absence of errors.
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“Statically typed 
programs don’t go 

wrong”
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Java≠Static Typing

• C++/Java static typing is not state 
of the art

๏ Gains are not so big, relative

๏ Cannot prove much 
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What Can Types Do?

• Memory-safe (no dangling pointers)

• Prove absence of race-conditions

• Guarantee Uniqueness
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• Detecting errors

• Abstraction

• Documentation

• Language safety

• Efficiency

• Security

• Formal verification

• Tool support

What Types Bring

Points 1-6 taken from Pierce [23]
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Typed is Superior
• At least technically

๏ Typed subsumes untyped*

• For the human side, we don’t know

• Maybe Ruby and Python are just 
waiting for the right formalisms to 
come along?

*) We could view DT as a convenient way of expressing a very lax typed system
where every expression is typed with a “universal type”
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Static PLs are Safe

(whatever that means)
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What is 
encapsulation?

See Berard’s essay [25] for a good basic coverage
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What is Information 
Hiding, Then?
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Encapsulation

• Dynamic languages provide weaker 
mechanisms for information hiding 
than statically typed ones [7]

• Either no support at all, or it can 
be circumvented
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Python

• Only name mangling

๏ Not really reliable

๏ Problem with renaming methods
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“Private” in Python
>>> class Example:
      def __method(self):
        print "Deeo"

>>> ex = Example()
>>> ex.__method()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module> 
AttributeError: Example instance has no 
attribute '__method'
>>> dir(ex)
['_Example__method', '__doc__', '__module__']
>>> ex._Example__method()
Deeo
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Ruby
• Name-based information hiding

• Involves expensive dynamic checking

• Information hiding can be 
circumvented

๏ Removed by subclass

๏ Ignored by reflection
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Private in Ruby
> class Example
>   private 
>   def method; print "Deeo"; end
> end

> ex = Example.new
> ex.method
NoMethodError: private method `method' \
           called for #<Example:0x2223d0>
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Not-so-very-private
> ex.send("method")
Deeo

> def ex.back_door; method; end
> ex.back_door
Deeo

> class Sub < Example 
>   def method; super; end
> end
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Smalltalk

• All methods are public

• All member variables are private
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Io

• Private could be simulated by 
explicitly checking sender in every 
private method

๏ Expensive

๏ Not visible from the outside
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Conclusion?
• Encapsulation with information hiding 

is perhaps

๏ not compatible with being highly 
dynamic

๏ too expensive in a dynamic setting

๏ not (so) important in the domains 
where dynamic languages are used?
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eval(…)

> eval(“def method(*args)
>          for arg in args
>            puts arg.to_s
>          end
>        end”)

> method("Hello", "World")
Hello
World
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Is Eval Necessary?

• Dynamic loading in Java

• Is run-time code generation 
necessary?
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Why is eval bad?

• It’s not safe

• No stabile program, we never know 
when classes are “finished” 
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Unclear Semantics

• The backside of flexibility

๏ Order of module inclusion has 
semantics in Ruby

๏ ...
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module A; def m; puts "A"; end; end 

module B; def m; puts "B"; end; end 

class Example_1; include A, B; end 

Example_1.new.m 

# Prints "A" 

class Example_2; include B, A; end 

Example_2.new.m 

# Prints "B" 
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module A; def m; puts "A"; end; end 

module B; def m; puts "B"; end; end 

class Example_1; include A; include B; end 

Example_1.new.m 

# Prints "B" 

class Example_2; include B; include A; end 

Example_2.new.m 

# Prints "A" 
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Unclear Semantics

• The backside of flexibility

๏ ...

๏ Changing an object’s class in 
Python

๏ Modifying standard classes
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Duck Soup?
• Is there a program that cannot be 

typed statically?

• Gain:

๏ Flexibility

• Lose:

๏ Safety, Reliability, Speed
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Object Size in C++

• Size of object can be calculated at 
compile-time

๏ E.g., n bytes per pointer, …

• Object sizes are constant

• Overhead is small or even none

Thursday, January 19, 12

Object Size in Ruby
• Minimal overhead is 20 bytes

• An object with just one variable 
uses ~120 bytes 

• Object sizes vary—move in memory 
might be required

๏ Expensive operation
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Function Call in C

• Bound at compile-time

๏ Allocate stack space

๏ Push return address

๏ Jump to function
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Method Inv. in Ruby

• Does the method exist?

• Is it public?

• Are the number of arguments OK?

• Push it into local method cache

• Now, start calling

However, please look at Self [24, +related] for a discussion on fast DYPLs
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[DYPLs are] old in 
years but young in 

maturity [1]

Thursday, January 19, 12

High State of Flux

• Multiple inheritance in Python

• Reclining perlisisms in Ruby

• Ad Hoc OO-support in Perl

• Lisp dialects abound
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No long-lived hacks

• Investing in a DYPL might be shaky

๏ Will upgrades break old programs?

๏ Will feature bloat kill the language?

๏ Are we choosing the right dialect?

๏ …
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- No (static) safety [23]

- Bad readability

- No real support for information 
hiding [7]

- Flexibility doesn’t come for free

- Slow execution speed*

- High flux
*) See e.g., http://shootout.alioth.debian.org/ for anecdotal “evidence”
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The End
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