¢

shortcomings of
dynamic

programming
languages
2

“PHP and Ruby are perfectly fine systems
but they are scripting languages and get
their power through specialisation: they just
generate web pages. But none of them
attempt any serious breadth in the
application domain and they both have
really serious scaling and performance
problems.”

—James Gosling [13]

- No (static) safety [23]
- Bad readability

— No real support for information
hiding [7]

Flexibility doesnt come for free

Slow execution speed*

- High flux

*) See e.g., http://shootout.alioth.debian.org/ for anecdotal “evidence”

Type checking
cannot replace
testing

Meijer & Drayton [6]

e [..there is] a huge technical and
cultural gap between the [static and
dynamic typing language
communities]

Meijer & Drayton [6]

® DYPLs should do type inference
where possible

® Static typing provides a false sense
of security

“Static Python”

® Guido van Rossum suggested adding
optional static typing to Python

®© Huge outcry

© Why are people so reluctant?

See [9] for this discussion

Array Covariance

weak
Object[] objects = new Button[10];
objects[0] = new Object(); // Error at
// run-time .
tic
strong

dynamic

See Osterhout [1] for a similar diagram on typing issues

Thursday, January 19, 12 Thursday, January 19, 12

weak
Dynamic Typing is a
Misnomer (23

strong\L—"""
dynamic

See Osterhout [1] for a similar diagram on typing issues See Pierce [23] for the big picture. Or go to LtU for pie throwing.

Thursday, January 19, 12 Thursday, January 19, 12

Testing “Statically typed
Cannot Replace programs dont go
Type Checking wrong~

In the general case, testing cannot prove absence of errors

Java=Static Typing What Can Types Do?

e C++/Java static typing is not state .
® Memory-safe (no dangling pointers
of the art 4 (sing p)
. : . ® Prove absence of race-conditions

© Gains are not so big, relative

® Guarantee Unigueness
© Cannot prove much

What Types Bring

® Detecting errors ® Efficiency
® Abstraction ® Security
® Documentation ® Formal verification

® |anguage safety ® Tool support

Points 1-6 taken from Pierce [23]

Typed is Superior

® At least technically
© Typed subsumes untyped*
® For the human side, we don’t know

® Maybe Ruby and Python are just
waiting for the right formalisms to
come along?

*) We could view DT as a convenient way of expressing a very lax typed system
where every expression is typed with a “universal type”

Encapsulation &

Information
Hiding

2

What is What is Information
encapsulation? Hiding, Then?

See Berard’s essay [25] for a good basic coverage

Encapsulation Python
® Dynamic languages provide weaker _
mechanisms for information hiding ® Only name mangling
than statically typed ones [7] ® Not really reliable
® Fither no support at all, or it can © Problem with renaming methods

be circumvented

“Private” in Python

>>> class Example:
def method(self):
print "Deeo"

>>> ex = Example()
>>> ex. method()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: Example instance has no
attribute ' method’
>>> dir(ex)
['_Example method',
>>> ex. Example method()

__doc , ' __module ']

Deeo
[] []
Private in Ruby
> class Example
> private
> def method; print "Deeo"; end
> end

> ex = Example.new

> ex.method

NoMethodError: private method “method' \
called for #<Example:0x2223d0>

Thursday, January 19, 12

Ruby

® Name-based information hiding
® |nvolves expensive dynamic checking

® |nformation hiding can be
circumvented

© Removed by subclass

® lgnored by reflection

Thursday, January 19, 12

>

Not-so-very-private

ex.send("method")

Deeo

>
>

def ex.back door; method; end
ex.back door

Deeo

>
>
>

class Sub < Example
def method; super; end
end

Thursday, January 19, 12

Smalltalk lo

® Private could be simulated by
explicitly checking sender in every

® All methods are public private method

® All member variables are private ® Expensive

@ Not visible from the outside

Conclusion?
® Encapsulation with information hiding (
is perhaps
© not compatible with being highly F].eXIbl].lty
dynamic
® too expensive in a dynamic setting LSL_

® not (so) important in the domains
where dynamic languages are used?

eval(...) Is Eval Necessary?

> eval(“def method(*args)
> for arg in args
> puts arg.to_s ® Dynamic loading in Java
> end . .
> end”) ® |s run-time code generation
necessary?
> method("Hello", "World")
Hello
World
Why is eval bad? Unclear Semantics

® The backside of flexibility

® |t's not safe
® Order of module inclusion has

® No stabile program, we never know semantics in Ruby
when classes are “finished”

module A; def m; puts "A"; end; end
module B; def m; puts "B"; end; end

class Example 1; include A, B; end

Example l.new.m
Prints "A"

class Example 2; include B, A; end

Example 2.new.m
Prints "B"

Thursday, January 19, 12

Unclear Semantics

® The backside of flexibility

® ..

e Changing an object’s class in
Python

® Modifying standard classes

Thursday, January 19, 12

module A; def m; puts
module B; def m; puts

class Example 1; include A;

Example l.new.m
Prints "B"

class Example 2; include B;

Example 2.new.m
Prints "A"

"A" ;
"Bll ;

end; end
end; end

include B; end

include A; end

Thursday, January 19, 12

Duck Soup?

® |s there a program that cannot be

typed statically?
¢ Gain:
® Flexibility

® | ose:

o Safety, Reliability, Speed

Thursday, January 19, 12

Object Size in C++

® Size of object can be calculated at
compile-time

o E.g., n bytes per pointer, ...
® Object sizes are constant

® QOverhead is small or even none

Object Size in Ruby Function Call in C

® Minimal overhead is 20 bytes

® An object with just one variable ® Bound at compile-time

uses ~120 bytes ® Allocate stack space

® Object sizes vary—move in memory ® Push return address

might be required e Jump to function

® Expensive operation

Method Inv. in Ruby

® Does the method exist?

® |s it public?

® Are the number of arguments OK?
® Push it into local method cache

® Now, start calling

However, please look at Self [24, +related] for a discussion on fast DYPLs

High State of Flux

[DYPLS al’e] Ol.d in ® Multiple inheritance in Python
years bUt you ng in ® Reclining perlisisms in Ruby
. ® Ad Hoc OO-support in Perl
maturlty [1] ® Lisp dialects abound

No long-lived hacks

® |nvesting in a DYPL might be shaky
© Will upgrades break old programs?
o Will feature bloat kill the language?

© Are we choosing the right dialect?

® ..

¢
The End

2

- No (static) safety [23]
- Bad readability

— No real support for information
hiding (7]

- Flexibility doesn't come for free

- Slow execution speed*

- High flux

*) See e.g., http://shootout.alioth.debian.org/ for anecdotal “evidence”

References

Numbers correspond to those on the
article index on the course web site

® [1] John K. Osterhout, Scripting: Higher
Level Programming for the 21st Century

® [6] Erik Meijer and Peter Drayton, Static
Typing Where Possible, Dynamic Typing
When Needed

e [7] Nathanael Schérli et al, Object-
oriented Encapsulation for Dynamically
Typed Languages

References, cont'd References, cont'd

® [9] Guido van Rossum, Adding Optional

.) e [25] Berard E. V., Abstraction,
Static Typing to Python

encapsulation, and information hiding

® [13] Interview with James Gosling e [26] Gilad Bracha, Martin Odersky, David

e [23] Benjamin Pierce, Types and Stoutamire and Phil Wadler, Making the
Programming Languages future safe for the past: Adding
® [24] David Ungar and Randall B. Smith, Genericity to the Java Programming

Self: The Power of Simplicity Language

