
O

n

Shortcomings of
dynamic

programming
languages

Thursday, January 19, 12

“PHP and Ruby are perfectly fine systems
but they are scripting languages and get

their power through specialisation: they just
generate web pages. But none of them
attempt any serious breadth in the

application domain and they both have
really serious scaling and performance

problems.”

—James Gosling [13]

Thursday, January 19, 12

- No (static) safety [23]

- Bad readability

- No real support for information
hiding [7]

- Flexibility doesn’t come for free

- Slow execution speed*

- High flux
*) See e.g., http://shootout.alioth.debian.org/ for anecdotal “evidence”

Thursday, January 19, 12

O

n

Safety

Thursday, January 19, 12

Type checking
cannot replace

testing

Thursday, January 19, 12

Meijer & Drayton [6]

• […there is] a huge technical and
cultural gap between the [static and
dynamic typing language
communities]

Thursday, January 19, 12

Meijer & Drayton [6]

• DYPLs should do type inference
where possible

• Static typing provides a false sense
of security

Thursday, January 19, 12

“Static Python”

• Guido van Rossum suggested adding
optional static typing to Python

๏ Huge outcry

๏ Why are people so reluctant?

See [9] for this discussion

Thursday, January 19, 12

Array Covariance

Object[] objects = new Button[10];
objects[0] = new Object(); // Error at
 // run-time

Thursday, January 19, 12

weak

strong
dynamic

static

See Osterhout [1] for a similar diagram on typing issues

Thursday, January 19, 12

weak

strong
dynamic

static

C

Ruby

C++

Java

Perl

See Osterhout [1] for a similar diagram on typing issues

Thursday, January 19, 12

Dynamic Typing is a
Misnomer [23]

See Pierce [23] for the big picture. Or go to LtU for pie throwing.

Thursday, January 19, 12

Testing
Cannot Replace
Type Checking

In the general case, testing cannot prove absence of errors.

Thursday, January 19, 12

“Statically typed
programs don’t go

wrong”

Thursday, January 19, 12

Java≠Static Typing

• C++/Java static typing is not state
of the art

๏ Gains are not so big, relative

๏ Cannot prove much

Thursday, January 19, 12

What Can Types Do?

• Memory-safe (no dangling pointers)

• Prove absence of race-conditions

• Guarantee Uniqueness

Thursday, January 19, 12

• Detecting errors

• Abstraction

• Documentation

• Language safety

• Efficiency

• Security

• Formal verification

• Tool support

What Types Bring

Points 1-6 taken from Pierce [23]

Thursday, January 19, 12

Typed is Superior
• At least technically

๏ Typed subsumes untyped*

• For the human side, we don’t know

• Maybe Ruby and Python are just
waiting for the right formalisms to
come along?

*) We could view DT as a convenient way of expressing a very lax typed system
where every expression is typed with a “universal type”

Thursday, January 19, 12

Static PLs are Safe

(whatever that means)
Thursday, January 19, 12

O

n

Encapsulation &
Information

Hiding

Thursday, January 19, 12

What is
encapsulation?

See Berard’s essay [25] for a good basic coverage

Thursday, January 19, 12

What is Information
Hiding, Then?

Thursday, January 19, 12

Encapsulation

• Dynamic languages provide weaker
mechanisms for information hiding
than statically typed ones [7]

• Either no support at all, or it can
be circumvented

Thursday, January 19, 12

Python

• Only name mangling

๏ Not really reliable

๏ Problem with renaming methods

Thursday, January 19, 12

“Private” in Python
>>> class Example:
 def __method(self):
 print "Deeo"

>>> ex = Example()
>>> ex.__method()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: Example instance has no
attribute '__method'
>>> dir(ex)
['_Example__method', '__doc__', '__module__']
>>> ex._Example__method()
Deeo

Thursday, January 19, 12

Ruby
• Name-based information hiding

• Involves expensive dynamic checking

• Information hiding can be
circumvented

๏ Removed by subclass

๏ Ignored by reflection

Thursday, January 19, 12

Private in Ruby
> class Example
> private
> def method; print "Deeo"; end
> end

> ex = Example.new
> ex.method
NoMethodError: private method `method' \
 called for #<Example:0x2223d0>

Thursday, January 19, 12

Not-so-very-private
> ex.send("method")
Deeo

> def ex.back_door; method; end
> ex.back_door
Deeo

> class Sub < Example
> def method; super; end
> end

Thursday, January 19, 12

Smalltalk

• All methods are public

• All member variables are private

Thursday, January 19, 12

Io

• Private could be simulated by
explicitly checking sender in every
private method

๏ Expensive

๏ Not visible from the outside

Thursday, January 19, 12

Conclusion?
• Encapsulation with information hiding

is perhaps

๏ not compatible with being highly
dynamic

๏ too expensive in a dynamic setting

๏ not (so) important in the domains
where dynamic languages are used?

Thursday, January 19, 12

O

n

Flexibility

Thursday, January 19, 12

eval(…)

> eval(“def method(*args)
> for arg in args
> puts arg.to_s
> end
> end”)

> method("Hello", "World")
Hello
World

Thursday, January 19, 12

Is Eval Necessary?

• Dynamic loading in Java

• Is run-time code generation
necessary?

Thursday, January 19, 12

Why is eval bad?

• It’s not safe

• No stabile program, we never know
when classes are “finished”

Thursday, January 19, 12

Unclear Semantics

• The backside of flexibility

๏ Order of module inclusion has
semantics in Ruby

๏ ...

Thursday, January 19, 12

module A; def m; puts "A"; end; end

module B; def m; puts "B"; end; end

class Example_1; include A, B; end

Example_1.new.m

Prints "A"

class Example_2; include B, A; end

Example_2.new.m

Prints "B"

Thursday, January 19, 12

module A; def m; puts "A"; end; end

module B; def m; puts "B"; end; end

class Example_1; include A; include B; end

Example_1.new.m

Prints "B"

class Example_2; include B; include A; end

Example_2.new.m

Prints "A"

Thursday, January 19, 12

Unclear Semantics

• The backside of flexibility

๏ ...

๏ Changing an object’s class in
Python

๏ Modifying standard classes

Thursday, January 19, 12

Duck Soup?
• Is there a program that cannot be

typed statically?

• Gain:

๏ Flexibility

• Lose:

๏ Safety, Reliability, Speed

Thursday, January 19, 12

O

n

Speed

Thursday, January 19, 12

Object Size in C++

• Size of object can be calculated at
compile-time

๏ E.g., n bytes per pointer, …

• Object sizes are constant

• Overhead is small or even none

Thursday, January 19, 12

Object Size in Ruby
• Minimal overhead is 20 bytes

• An object with just one variable
uses ~120 bytes

• Object sizes vary—move in memory
might be required

๏ Expensive operation

Thursday, January 19, 12

Function Call in C

• Bound at compile-time

๏ Allocate stack space

๏ Push return address

๏ Jump to function

Thursday, January 19, 12

Method Inv. in Ruby

• Does the method exist?

• Is it public?

• Are the number of arguments OK?

• Push it into local method cache

• Now, start calling

However, please look at Self [24, +related] for a discussion on fast DYPLs

Thursday, January 19, 12

O

n

Flux

Thursday, January 19, 12

[DYPLs are] old in
years but young in

maturity [1]

Thursday, January 19, 12

High State of Flux

• Multiple inheritance in Python

• Reclining perlisisms in Ruby

• Ad Hoc OO-support in Perl

• Lisp dialects abound

Thursday, January 19, 12

No long-lived hacks

• Investing in a DYPL might be shaky

๏ Will upgrades break old programs?

๏ Will feature bloat kill the language?

๏ Are we choosing the right dialect?

๏ …

Thursday, January 19, 12

- No (static) safety [23]

- Bad readability

- No real support for information
hiding [7]

- Flexibility doesn’t come for free

- Slow execution speed*

- High flux
*) See e.g., http://shootout.alioth.debian.org/ for anecdotal “evidence”

Thursday, January 19, 12

O

n

The End

Thursday, January 19, 12

References

• [1] John K. Osterhout, Scripting: Higher
Level Programming for the 21st Century

• [6] Erik Meijer and Peter Drayton, Static
Typing Where Possible, Dynamic Typing
When Needed

• [7] Nathanael Schärli et al., Object-
oriented Encapsulation for Dynamically
Typed Languages

Numbers correspond to those on the
article index on the course web site

Thursday, January 19, 12

References, cont’d
• [9] Guido van Rossum, Adding Optional

Static Typing to Python

• [13] Interview with James Gosling

• [23] Benjamin Pierce, Types and
Programming Languages

• [24] David Ungar and Randall B. Smith,
Self: The Power of Simplicity

Thursday, January 19, 12

References, cont’d

• [25] Berard E. V., Abstraction,
encapsulation, and information hiding

• [26] Gilad Bracha, Martin Odersky, David
Stoutamire and Phil Wadler, Making the
future safe for the past: Adding
Genericity to the Java Programming
Language

Thursday, January 19, 12

