
O

n

DYPL

Monday, January 16, 12

Course information

• 14 Lectures

• 3 Assignments (3x1.5 credit)

• 3 credit exam

• Course information on web page

• Discussion in FC and in the weekly seminar

http://people.dsv.su.se/~beatrice/DYPL/

Monday, January 16, 12

http://people.dsv.su.se/~beatrice/DYPL/
http://people.dsv.su.se/~beatrice/DYPL/

Lectures

1. What do you mean “dynamic”?
2. Shortcomings of dynamic programming
languages

3. Duelling Banjos I: Ruby vs. Python
4. Duelling Banjos II: Ruby vs. Python

Monday, January 16, 12

Lectures, cont’d

5. More on Python
6. More on Ruby
7. Dynamic Languages III: Reflection and
Metaprogramming
8. Back to the future: Smalltalk
9. Dynamic Languages IV:Philosophy and all
that jazz

Monday, January 16, 12

Lectures, cont’d

• Lisp

• Javascript

• Smalltalk

• Erlang

• Combining static and dynamic typing

Monday, January 16, 12

Assignments

• Examines programming part

• 3 x 1.5 credit

• Python, Ruby + other new language

• Must work in pairs and rotate pairs

• Solutions presented and defended

Monday, January 16, 12

Weekly Seminars

• We prepare some discussion topic and/or
programming problem

• The time will be used for discussions
about some theoretical problem,
programming problem or other course
related topics

Monday, January 16, 12

Literature Seminars

• “Hackers and Painters” - Paul Graham

• “The Cathedral and the Bazaar” - Eric S.
Raymond

• “The Best Software Writing” - ed. Joel
Spolsky

Monday, January 16, 12

Exam
• “Take-home” exam

• Might be combination of theoretical and
practical problems

• Example questions will be distributed

• Bonus credits can be used to “buy”
answers

• The exam will be published 2012-03-14
08.00 on the course web page

• The exam should be handed in according
to the instructions in the exam document
on 2012-03-17

Monday, January 16, 12

Deadlines

• We have no hard deadlines during this
course

• But, that doesn’t mean that you shouldn’t
set up deadlines for yourself!

• We recommend you to finish
๏ Assignment 1 by February 6
๏ Assignment 2 by February 21
๏ Assignment 3 by March 7

Monday, January 16, 12

O

n

Questions?

Monday, January 16, 12

O

n

What do you mean
“dynamic”?

Monday, January 16, 12

Dynamic?

Monday, January 16, 12

• [Process or system] characterised by
constant change, activity, or progress

• [A person] positive in attitude and full of
energy and new ideas

• A force that stimulates change or progress
within a system or process

Oxford Dictionary

Monday, January 16, 12

• Energetic, spirited, active, lively, vital,
vigourous, forceful, powerful, positive

• High-powered, aggressive, bold, enterprising

• Informal go-getting, peppy, full of get-up-
and-go, full of vim and vigour.

Synonyms

Monday, January 16, 12

Scripting Language

• Script comes from performing arts

• One-off tasks

• Customising admin tasks

• Simple, repetitive tasks

Monday, January 16, 12

• A belittling term

• Script implies “a small program”

• We use dynamic [programming] language

“Scripting language”

Monday, January 16, 12

• LISP (~1956)

• Smalltalk (1972)

• Self (1986)

• Perl (1987)

• Python (1991)

• Ruby (1993)

A Few DYPLs

Monday, January 16, 12

What does dynamic
mean for PLs?

Monday, January 16, 12

Dynamic typing

Monday, January 16, 12

Static Typing
• Each variable must be declared with a

particular type and it must be used in
ways that are appropriate for the type

• Type checking at compiletime

• C, C++, Java, ML, Haskell, etc.

public int sumOfWages(BaseballPlayer[] bs)
{
 int sum = 0;
 for (int i=0; i < bs.length; ++i)
 {
 sum += bs[i].wage();
 }
 return sum;
}

Monday, January 16, 12

Dynamic Typing

• In a dynamically typed language, you can
send any message to any object, and the
language only cares that the object can
accept the message

def sumOfWages(aList):
! sum = 0
! for item in aList:
! ! sum += item.wage()
! return sum

Monday, January 16, 12

Dynamic Type
Checking?

Monday, January 16, 12

Dynamic Type?

Monday, January 16, 12

Typing?

• Two forms of typing
๏ Strong
๏ Weak

• Strong typing and static typing are
orthogonal concepts

Monday, January 16, 12

Weak or Strong Typing?
• Decides how a type is enforced, or

interpreted

• In a weakly typed language, variables can
be coerced easily -- interpreted as
something else

Python
Ruby

Smalltalk

Java
Pascal

PHP

C++

Weaker typing

More
dynamic

Monday, January 16, 12

>> 1+"2"
TypeError: String can't be coerced into Fixnum
 from (irb):1:in `+'
 from (irb):1
>> "1"+2
TypeError: can't convert Fixnum into String
 from (irb):2:in `+'
 from (irb):2

>>> "1"+2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects
>>> 1+"2"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Monday, January 16, 12

High-level

Monday, January 16, 12

Systems Languages

None

Dynamic Languages

Assembly

Strong
Degree of Typing

1000

100

10

1

Instruction
/

Statement

Tcl/Perl

Visual Basic

C

C++
Java

Slightly modified illustration from [1]

Monday, January 16, 12

Productive

Monday, January 16, 12

Briefly: LOC

• LOC/hour is invariant of PL [11, 2 via 1]

• 1 LOC C ≈ 3–7 assembly instr. [1]

• 1 LOC Python ≈ 3 LOC C [11]

• 1 LOC TCL ≈ 3–47 LOC C [1]

Monday, January 16, 12

PLs Comparison

• “An Empirical Comparison of Seven
Programming Languages”, Lutz Prechelt
[11]

• Designing and writing the program in Perl,
Python, Rexx, or Tcl takes no more than
half as much time as writing it in C, C++,
or Java — and the resulting program is
only half as long.

Monday, January 16, 12

`cat wordlist`.split("\n").collect do |w|
 w.strip if w =~ /^#{match}/
end.compact

Monday, January 16, 12

Interpreted (rather
than compiled)

Monday, January 16, 12

Interpreted Languages

• Interpreting is the process of mapping
encoded instructions to some actual
operations associated with them

• This way interpretation and execution are
basically the same thing -- the only
difference is the level at which the
interpretation is done

• Most interpreted languages combine both
compilation and interpretation

Monday, January 16, 12

Interpreted Languages

• Platform independence

• Reflective usage of the evaluator

• Dynamic typing

• Ease of debugging

Monday, January 16, 12

Flexible at
run-time

Monday, January 16, 12

What is
run-time?

Monday, January 16, 12

Extensible through
metaprogramming

Monday, January 16, 12

2.weeks + 4.days + 3.minutes + 8.seconds
3.weeks.from_today.on_sunday

Monday, January 16, 12

Augment the built-in classes
(As numeric is already defined --
it is standard--
these methods are added to the
Numeric class)

class Numeric
 def minutes; self * 60; end
 def hours; self * 60.minutes; end
 def days; self * 24.hours; end
 ! # etc.
end

A time interval
3.years + 13.days + 2.hours

Four months from now, on a Monday
4.months.from_now.next_week.monday

Monday, January 16, 12

Fun

Monday, January 16, 12

REPL?

Monday, January 16, 12

Garbage collected

Monday, January 16, 12

Suitable for non-
programmers also

Monday, January 16, 12

Pragmatic

Monday, January 16, 12

Why are DYPLs
not as successful
as system PLs?

Monday, January 16, 12

• Dynamically typed languages:• Statically typed languages:

Origin of Languages

Monday, January 16, 12

System PLs

• Optimisation

• Fine-grained resource control

• Static checking

• Typing is documentation

• Conservative is safe

Monday, January 16, 12

John K. Ousterhout

• Scripting languages are designed for
“gluing” applications; they use type- less
approaches to achieve a higher level of
programming and more rapid application
development than system programming
languages. [1]

Monday, January 16, 12

[DYPLs are] old in
years but young
in maturity [1]

Monday, January 16, 12

Use DYPLs when [1]

• mainly connecting components

• manipulating many different things

• needing a GUI

• rapid evolution is expected

• extensibility is important

Monday, January 16, 12

Don’t use DYPLs [1]

• when complex data structures and
algorithms are needed

• when manipulating large datasets

• under heavy time-constraints

• when all functions are well-defined and
slow evolution is expected

Monday, January 16, 12

David Ascher [2]

• Technical “purity” — not pushing X

• Optimising person time, not machine time

• Open source rooted

• Evolution by meritocracy and natural
selection

• Platform neutrality

Dynamic languages:

Monday, January 16, 12

Use DYPLs for [2]

• Scripting tasks

• Prototyping

• When needing loose coupling (distributed
programs)

• Business logic

Monday, January 16, 12

Don’t use DYPLs [2]

• when you only have a little memory

• for (some) high-performance tasks

Monday, January 16, 12

Myths about DYPLs [2]

• Cannot be used for real applications

• They are brittle

• Cannot be used for large systems

Monday, January 16, 12

Myths about DYPLs [2]

• They are not well-supported

• There are no good tools

• Not fitting for JVM, CLR, etc.

Monday, January 16, 12

Sam Wilmott

• Dynamic programming languages are
especially useful for trying out new ideas
[3]

Monday, January 16, 12

Static types ok

Semantics ok

Syntax ok

Program text

Monday, January 16, 12

David Ungar

• […] the system gets out of the way, and
the true creative abilities of your users are
let loose to make magic. That's why I
believe in dynamic languages. [4]

Monday, January 16, 12

Bruce Tate [12]

• The change from Java to the “next
language” is imminent

• Ruby is a likely candidate

• DYPLs rarely need things like AOP

• Java was once like kayaking

Monday, January 16, 12

Will DYPLs ever
be mainstream?

Monday, January 16, 12

Some that made it

• (LISP)

• (Smalltalk)

• JavaScript

• Perl

• PHP

Monday, January 16, 12

Growing Support

Monday, January 16, 12

Bye to system PLs?

• Who needs C/C++ anymore?

• JVM is the new OS

Monday, January 16, 12

Programmers were
reluctant to move to
macro assembler

Monday, January 16, 12

O

n

Questions?

Monday, January 16, 12

Monday, January 16, 12

O

n

The End

Monday, January 16, 12

References
[1] John K. Ousterhout, Scripting: Higher Level Programming for
the 21st Century

[2] David Ascher, Dynamic Languages, Ready for the Next
Challenges, by Design

[3] Sam Wilmott, When Is A Dynamic Programming Language Not
Dynamic

[4] David Ungar, Why I believe in dynamic languages

[11] Lutz Prechelt, An empirical comparison of C, C++, Java, Perl,
Python, Rexx, and Tcl for a search/string-processing program

[12] Bruce Tate, Beyond Java

(Reference numbers corresponds to number in Article Index on
the course’s web page)

Monday, January 16, 12

