DYPL

Course information

® 14 Lectures

e 3 Assignments (3x1.5 credit)

e 3 credit exam

® Course information on web page

® Discussion in FC and in the weekly seminar

http://people.dsv.su.se/~beatrice/DYPL/

Monday, January 16, 12

http://people.dsv.su.se/~beatrice/DYPL/
http://people.dsv.su.se/~beatrice/DYPL/

L ectures

1. What do you mean “dynamic’?

2. Shortcomings of dynamic programming
languages

3. Duelling Banjos |: Ruby vs. Python
4. Duelling Banjos ll: Ruby vs. Python

Monday, January 16, 12

Lectures, cont'd

5. More on Python
6. More on Ruby

/. Dynamic Languages lll: Reflection and
Metaprogramming

3. Back to the future: Smalltalk

9. Dynamic Languages IV:Philosophy and all
that jazz

Monday, January 16, 12

Lectures, cont'd

® [isp

® Javascript
e Smalltalk
® trlang

® Combining static and dynamic typing

Monday, January 16, 12

Assignments

® [xamines programming part

e 3 x 1.5 credit

® Python, Ruby + other new language
® Must work in pairs and rotate pairs

® Solutions presented and defended

Monday, January 16, 12

® \We prepare some discussion topic and/or

® The time will be used for disc

Weekly Seminars

programming problem

about some theoretical proble

ISSIONS
T,

programming problem or othe
related topics

- Course

Monday, January 16, 12

Literature Seminars

e “Hackers and Painters” - Paul Graham

e “The Cathedral and the Bazaar” - Eric S.
Raymond

® “The Best Software Writing” - ed. Joel
Spolsky

Monday, January 16, 12

“Take-
Might

Exam

nome. exam

e combination of theoretical and

practical problems

Example questions will be distributed

Bonus

credits can be used to “buy”

dNSWETrS

The exam will be published 2012-03-14
08.00 on the course web page

The exam should be handed in according

to the

instructions in the exam document

on 2012-03-17

Monday, January 16, 12

Deadlines

e We have no hard deadlines during this
course

® But, that doesnt mean that you shouldn't
set up deadlines for yourself!

® We recommend you to finish
@ Assignment 1 by February 6
@ Assignment 2 by February 21
® Assignment 3 by March 7/

Monday, January 16, 12

(
Questions?

« 0

(
What do you mean

“dynamic”?
2

Dynamic?

Oxford Dictionary

® |Process or system| characterised by
constant change, activity, or progress

e [A person] positive in attitude and full of
energy and new ideas

e A force that stimulates change or progress
within a system or process

Monday, January 16, 12

Synonyms

® [nergetic, spirited, active, lively, vital,
vigourous, forceful, powerful, positive

* High-powered, aggressive, bold, enterprising

¢ |[nformal go-getting, peppy, full of get-up-
and-go, full of vim and vigour.

Monday, January 16, 12

Scripting Language

Script comes from performing arts

One-off tasks
Customising admin tasks

Simple, repetitive tasks

Monday, January 16, 12

Cripnae

0lo

® A belittling term

2

® Script implies “a small program

e We use dynamic [programming] language

Monday, January 16, 12

A Few DYPLs

® ISP (~1956)

e Smalltalk (1972)
e Self (1986)

® Perl (1987)

e Python (1991)
e Ruby (1993)

What does dynamic
mean for PLs?

Dynamic typing

Static Typing

® Fach variable must be

declared with a

particular type and it must be used in
ways that are appropriate for the type

® [ype checking at com
o (C, C++, Java, ML, Has

diletime

cell, etc.

public int sumOfWages(BaseballPlayer[] bs)

{

int sum = 0;

for (int i=0; i < bs.length; ++1i)

{

sum += bs[1].wage();

}

return sum;

Monday, January 16, 12

Dynamic Typing

® |[n a dynamically typed language, you can
send any message to any object, and the
language only cares that the object can

accept the Message

def sumOfWages(aList):
sum = 0
for item in alList:
sum += item.wage()
return sum

Monday, January 16, 12

Dynamic lype
Checking?

Dynamic Type?

Typing?

® [wo forms of typing
® Strong
© Weak

® Strong typing and static typing are
orthogonal concepts

Monday, January 16, 12

Weak or Strong Typing?

® Decides how a type is enforced, or
Interpreted

® |[n a weakly typed language, variables can
be coerced easily -- interpreted as
something else

A

More
dynamic

Weaker typing

Monday, January 16, 12

>> 1+"2"

TypeError: String can't be coerced into Fixnum
from (irb):1l:in "+
from (irb):1

>> "1"+2

TypeError: can't convert Fixnum into String
from (irb):2:in "+
from (irb) :2

>>> "1"+2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects
>>> 1+"2"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Monday, January 16, 12

High-level

1000

100

Instruction

/
Statement 10

Tcl/Perl

Q Assembly

Visual Basic

Systems Languages

Dynamic Languages

Java

00 -

'None

Strong

Degree of Typing

Slightly modified illustration from [1]

Monday, January 16, 12

Productive

Briefly: LOC

LOC/hour is invariant of PL [11, 2 via 1]
1 LOC C = 3-7 assembly instr. [1]

1 LOC Python = 3 LOC C [11]

1 LOC TCL = 3-47 LOC C [1]

PLs Comparison

“An Er

Progra
[11]

pirical Comparison of Seven

iming Languages’, Lutz Prechelt

Designing and writing the program in Perl,
Python, Rexx, or Tcl takes no more than
half as much time as writing it in C, C++,
or Java — and the resulting program is
only half as long.

Monday, January 16, 12

"cat wordlist .split("\n").collect do |w]|
w.strip if w =~ /“#{match}/
end.compact

Monday, January 16, 12

Interpreted (rather
than compiled)

Interpreted Languages

® |r
e

terpret
ncodec

O

heratio

ing is the process of mapping

iInstructions to some actual

ns associated with them

® [his way interpretation and execution are
basically the same thing -- the only
difference is the level at which the
Interpretation is done

® Most interpreted languages combine both
compilation and interpretation

Monday, January 16, 12

Interpreted Languages

e Platform independence
® Reflective usage of the evaluator

® Dynamic typing

® fase of debugging

Monday, January 16, 12

Flexible at
run-time

What iIs
run-time?

Extensible through
metaprogramming

2.weeks + 4.days + 3.minutes + 8.seconds
3.weeks.from today.on sunday

Monday, January 16, 12

Augment the built-in classes

(As numeric is already defined --
it is standard--

these methods are added to the
Numeric class)

H= H= FH= FH=

class Numeric
def minutes; self * 60; end
def hours; self * 60.minutes; end
def days; self * 24.hours; end
etc.
end

A time interval
3.years + 13.days + 2.hours

Four months from now, on a Monday
4 .months.from now.next week.monday

Monday, January 16, 12

LN

Monday, January 16, 12

REPL?

Monday, January 16, 12

Garbage collected

Suitable for non-
programmers also

Pragmatic

Why are DYPLs

not as successful
as system PLs?

Origin of Languages

e Statically typed languages: e Dynamically typed languages:

aventyrs

phil shaw

B.WAHLSTROMS .

Monday, January 16, 12

System PLs

e (Optimisation

® [ine-grained resource control
® Static checking

® [yping is documentation

® (Conservative is safe

Monday, January 16, 12

John K. Ousterhout

o Scrlatlng languages are designed for
“gluing” applications; they use type- less
approaches to achieve a higher level of
programming and more rapid application
development than system programming
languages. [1]

Monday, January 16, 12

IDYPLs are] old in

years but young
In maturity ol

Use DYPLs when [1]

® mainly connecting components

® manipulating many different things
® needing a GUI

® rapid evolution is expected

® extensibility is important

Monday, January 16, 12

Don’t use DYPLs [1]

when complex data structures and
algorithms are needed

when manipulating large datasets
under heavy time-constraints

when all functions are well-defined and
slow evolution is expected

Monday, January 16, 12

David Ascher [2]

Dynamic languages:

Technical “purity” — not pushing X
Optimising person time, not machine time
Open source rooted

Evolution by meritocracy and natural
selection

Platform neutrality

Monday, January 16, 12

Use DYPLs for [2]

Scripting tasks
Prototyping

When needing loose coupling (distributed
programs)

Business logic

Monday, January 16, 12

Don’t use DYPLs [2]

® when you only have a little memory

e for (some) high-performance tasks

Myths about DYPLs [2]

¢ Cannot be used for real applications
® [hey are brittle

e Cannot be used for large systems

Myths about DYPLs [2]

® [hey are not well-supported

® [here are no good tools
e Not fitting for JVM, CLR, etc.

Sam Wilmott

® Dynamic programming languages are
[es]pecially useful for trying out new ideas
3

Monday, January 16, 12

Static types ok
Semantics ok
Syntax ok

Program text

Monday, January 16, 12

David Ungar

e [.] the system gets out of the way, and
the true creative abilities of your users are
let loose to make magic. That's why |
believe in dynamic languages. [4]

Monday, January 16, 12

Bruce Tate [12]

Java to the “next
inent

The change fro
language” is im

—

db

Ruby is a likely candidate
DYPLs rarely need things like AOP

Java was once like kayaking

Monday, January 16, 12

Will DYPLs ever
be mainstream?

Some that made it

(LISP)
(Smalltalk)
JavaScript
Perl

PHP

Growing Support

Bye to system PLs?

¢ \Who needs C/C++ anymore?
e JVM is the new OS

Programmers were
reluctant to move to
macro assembler

(
Questions?

« 0

Monday, January 16, 12

The End

References

[1] John K. Ousterhout, Scripting: Higher Level Programming for
the 21st Century

[2] David Ascher, Dynamic Languages, Ready for the Next
Challenges, by Design

[3] Sam Wilmott, When Is A Dynamic Programming Language Not
Dynamic

4] David Ungar, Why | believe in dynamic languages

11] Lutz Prechelt, An empirical comparison of C, C++, Java, Perl,
Python, Rexx, and Tcl for a search/string-processing program

[12] Bruce Tate, Beyond Java

(Reference numbers corresponds to number in Article Index on
the course’s web page)

Monday, January 16, 12

