
Agile Software
Construction

Beatrice Åkerblom

beatrice@dsv.su.se

This Course

Course Contents

 Software Engineering

 Agile Methods

3

Course information

 Daisy:

~ Schedule

~ Goals

~ Requirements

~ Important dates

~ Grading criteria

http://dsv.su.se/~beatrice/AGILE

4

Lectures

 Lectures can contain many other things
than traditional teacher lecturing, e.g.

~ Group assignments

~ Paper reading

~ Group discussions

5

Literature

6

1. “Software Engineering” Ian Sommerville

2. “Agile Software Development” - Alistair
Cockburn

3. “The Pragmatic Programmer: From
Journeyman to Master” - Hunt & Thomas

The books should preferably be read in
this order and in different ways

Exam

 Take-home exam

~ Take-home exam distributed on
Monday 2/3 8.00

~ Hand-in of the take-home-exam
Thursday 5/3 24.00

7

Project

 The project will be a Scrum project

 The goals are twofold

~ Design a project that will make you
learn the contents of the course

~ Run the project as a Scrum project to
get practical experience

 Groups will be created using Daisy

~ Subscribe to a group (avaliable from
19/1)

~ Those who haven!t subscribed to a
group on the 23/1 will be randomly
assigned to a group

8

Requirements

9

Having successfully completed the
course, the student should be able to:

 describe what is the difference between
plan-driven and agile processes and
motivate the description

 account for what is significant for a
software engineering approach to
software development and the principles
behind it

 account for what is significant for a plan-
driven approach to software development
and the principles behind it

 account for what is significant for an agile
approach to software development and
the principles behind it

Requirements, cont!d

 describe several techniques (both
classical software engineering ones and
agile ones) for:

~ requirements elicitation and
requirement management

~ resource planning

~ risk analysis and risk management

~ test planning

~ version management

~ time and cost estimations

~ project automation

 make judgements about applicability of a
these techniques in some known project,
possibly combining plan-driven techniques
with agile ones

10

Requirements, cont!d

 decide and motivate why some technique
is suitable for use in a plan driven
software project

 decide and motivate why some technique
is suitable for use in an agile software
project

 find suitable software engineering
methods for his or her work in future
projects

 easily adapt to work processes using
software engineering techniques

11

“Course board”

 The course board will meet with the
course co-ordinator regularly during the
course.

 The role of the course board is to bring
forward to the course co-ordinator any
opinions about the course, contents or
how things are done, from their fellow
students.

 If you as a student want to let the course
co-ordinator know his or her opinion
about anything on the course and don't
want to contact her on your own, you
can contact one of the members of the
course board.

12

Introduction to
Software Engineering
and Agile Methods

The story of the
$0.00 bill

A well-known story tells of a man who once
received a $0.00 bill. He laughed at it and
threw it away. When he received the reminder
bill, he reacted the same way.

When he received the next bill claiming that
legal actions would be taken if he did not
immediately pay $0.00 he got worried and
decided to mail a check for $0.00. This had
the desired effect and a few days later he
received the receipt for $0.00.

A few days later the man got a phone-call
from his bank asking if he had paid someone
with a $0.00 check. The man agreed and told
the whole story. When he had finished, the
bankwoman didn't laugh, but quietly asked
“Have you any idea what your check for $0.00
did to our computer system?”.

14

60 years of Software
Engineering

 1940s: First computer users wrote
machine code by hand.

 1950s: Early tools; macro assemblers and
interpreters First generation optimising
compilers.

16

60 years of Software
Engineering (cont!d)

 1960s: Second generation tools --
optimising compilers and inspections. First
really big projects. Commercial mainframes
and software for big business.

 1970s: Collaborative software tools; Unix,
code repositories, make, etc. Minicomputers
and small business software.

17

60 years of Software
Engineering (cont!d)

 1980s: Personal computers and
workstations. Emphasis on processes.
The rise of consumer software.

 1990s: Object-oriented programming
and agile processes. WWW and
software everywhere.

18

Scope of Software
Engineering

 Historical Aspects

~ 1968 NATO Conference, Garmisch

~ Aim: to solve the “Software Crisis”

~ Software is delivered

 Late

 Over budget

 With residual faults

19

Background

 Software Engineering emerged as an
effort to solve the “software crisis”.

 In 2000, the Standish Group analysed
software development projects

~ 28% successfully completed

~ 23% cancelled before completion

~ 49 % over budget, late or with fewer
functions than initially specified.

20

What is Software
Engineering?

21

Computer

Science
Customer

Computer

Functions
Theories Problem

Software

Engineering

Tools and

Techniques to

Solve Problem

What is Software
Engineering? -- One

Possible Answer

 Software engineering is an engineering
discipline which is concerned with all
aspects of software production

 Software engineers should adopt a
systematic and organised approach to
their work and use appropriate tools and
techniques depending on the problem to
be solved, the development constraints
and the resources available

22

Software Engineering

 Software engineering deals with the
problems that arise when programs are:

~ large

~ involve many programmers

~ exist over a long period of time

23

The nature of
Software Engineering

Software Engineering resembles many
different fields in many different ways:

 Mathematics

 Science

 Engineering

 Manufacturing

 Project management

 Art

 Performance

24

What are software
engineering
methods?

 Structured approaches to software
development which include system
models, notations, rules, design advice
and process guidance.

 Model descriptions"

~ Descriptions of graphical models which
should be produced;

 Rules

~ Constraints applied to system models;

 Recommendations

~ Advice on good design practice;

 Process guidance

~ What activities to follow.

25

Scope of Software
Engineering

(cont!d)

 Why cannot bridge-building techniques
be used to build operating systems?

~ Attitude to collapse

~ Imperfect engineering

~ Complexity

~ Maintenance

26

The Mythical Man-
month

27

Number of people

Time
in

months
10 20 30 40 50 60

2 4 6 8 10 12

4

6

8

10

4

6

8

10
Build a bridge

Develop a program

Cost to Correct Errors
Found

28

Phase Relative Time to Fix
BugsRequirements 1

Specification 2

Design 4

Implementation 10

Integration 30

Maintenance 200

Manufacturing
Process

29

Define
process

Execute
process

Enhance
process

Review
product

Quality
sufficient

Quality
insufficient

Standardisera
process

30

Which Factors Have
Impact on Software

Quality?
 Technology used in development

 Skills (and other things) of the people in
the project

 The quality of the software process

Technology

PeopleProcess

Improving the
Process

 Make sure everyone does things the
same way

 Define routines describing how different
work tasks should be done

 Define standards describing what the
products of the work should look like

 Collect metrics and experience

 Identify strengths and weaknesses

 Use available data and experience to
improve

31

But

 All “classical” software processes
assume that software development is
analogous to a defined industrial
process that can be designed and run
repeatedly with predictable results

~ based on physical engineering
processes

~ predictive

~ assume that people can be treated as
resources

32

33

Agile manifesto

 Individuals and interactions over
processes and tools

 Working software over comprehensive
documentation

 Customer collaboration over contract
negotiation

 Responding to change over following a
plan

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value

That is, while there is value in the items on the

right, we value the items on the left more.

 K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R.

Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J.
Sutherland, D. Thomas

Agile Misconceptions

 When we speak of Agile development,
listeners hear "agile" and interpret it as
something fast-moving, something
rapidly shifting gears and changing often

 Certainly, many Agile software projects
do change rapidly and move quickly, but
not all of them and this is not their only
characteristic

34

Agile Misconceptions,
cont!d

 People tend to distort the intended
meaning of Agile, and that even includes
some of the experts or people who have
been involved in the Agile movement for
some time.

 Many have come to the conclusion that
Agility is like art: "I know it when I see it,"
and "It's a very personal definition."

 Practices can be applied to support the
four values, but they are not, in
themselves, Agile.

35

Agile Misconceptions,
cont!d

 Many people look a the Agile values and
question the dichotomies embodied in
them. For instance, is "comprehensive
documentation" at the opposite pole
from "working software"? The values
seem to imply that these two aspects are
opposed to each other, but in fact there's
no logical justification for that

 You cannot consider being Agile unless
you agree to the pairing and choose to
value the first value over the second in
each pair

36

Agile Misconceptions,
cont!d

 Is a silver bullet

 Will solve my resource issues

 Has no planning/ documentation/
architecture etc.

 Is a license to hack

 Creates quality issues

 Is undisciplined

 Doesn!t build on my previous
experience/expertise

 Is not proven

 Is not being used by industry leaders

37 38

Agile principles
 Our highest priority is to satisfy the

customer through early and continuous
delivery of valuable software.

 Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

 Deliver working software frequently, from
a couple of weeks to a couple of months,
with a preference to the shorter
timescale.

 Business people and developers must
work together daily throughout the
project.

 Build projects around motivated
individuals.

 Give them the environment and support
they need and trust them to get the job
done.

Agile Risk
Management

 Schedule slips -> Short release cycles

 Project cancelled -> Smallest release
that makes sense

 System goes sour -> Maintain a suite of
tests

 Defect rate -> Testing by programmers
and customers

 Business misunderstood -> Make the
customer part of the team

 Business changes -> Short release
cycles

 False feature rich -> Address only the
highest priority tasks

39

Agile principles seem
simple enough...

40

... then why does it seem so
difficult to implement them in

practice?

41

Agile principles, forts.
 Working software is the primary measure

of progress.

 Agile processes promote sustainable
development.

 The sponsors, developers, and users
should be able to maintain a constant
pace indefinitely.

 Continuous attention to technical
excellence and good design enhances
agility.

 Simplicity -- the art of maximising the
amount of work not done -- is essential.

 The best architectures, requirements,
and designs emerge from self-organising
teams.

 At regular intervals, the team reflects on
how to become more effective, then
tunes and adjusts its behaviour
accordingly.

42

What!s the
Difference?

 Approach built on adaptation rather than
prediction

 Focus on change rather than trying to
prevent it from happening

 This doesn!t mean that the work lacks
neither structure or discipline

~ Well-defined processes are followed,
which makes a big difference between
agile development ant “wild-west-
hacking”

43

Examples of Agile
Methods

 eXtreme Programming (XP) -- Kent
Beck, Ward Cunningham, Ron Jeffries

 Scrum -- Jeff Sutherland and Ken
Schwaber

 Crystal Methods -- Alistair Cockburn

 Feature Driven Development -- Jeff
DeLuca

 among others

AGILE Software
Construction?

 Agile methods is an addition to the tool-
box of software constructors

 Agile methods give us new strategies for
software construction

 Using agile methods, you still need to
practice classical software engineering
tasks like planning, requirements
analysis, design, coding, testing, and
documentation

 Agile methods aim at further decreasing
the risks involved in software
development

 Using agile methods does not mean that
the work will be undisciplined

44

End of Today’s
Lecture

Thanks for your attention!

