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Abstract

Recent advancements in Natural Language Processing (NLP) have unlocked transformative
potential for medical applications. The discharge summaries contained in Electronic Health
Records (EHRs) could serve as an ideal source for medical research and the development
of such applications. However, this progress is constrained by the private nature of these
records, which strongly limits the availability of high-quality training data. To address
this, we propose a novel framework employing LLaMA-3.1-8B for generating synthetic
English and Swedish medical notes. Instruction-tuning with ICD-10 descriptions aims
at producing data that balances privacy and utility while overcoming challenges such as
diversity reduction and medical incoherence observed in prior approaches. Comprehensive
evaluation reveals that the synthetic data exhibits a broad vocabulary, strong privacy
protections, and high utility for tasks like Named Entity Recognition (NER) and medical
coding for both English and Swedish. The synthetic notes demonstrate on-par performance
with real data in NER tasks and show potential for state-of-the-art results in medical coding
with increased dataset size. Differences in utility were found to be most likely attributable
to some widespread noise contained in the synthetic dataset. While some artifacts remain,
user studies involving medical professionals found no significant differences in readability or
medical coherence compared to real data. Privacy evaluations confirmed low proximity to
real data, mitigating risks of sensitive information leakage. This study establishes a robust
foundation for synthetic medical note generation, addressing privacy and data sparsity
challenges in clinical NLP. The results highlight synthetic data as a promising alternative
for training high-performance medical systems, paving the way for privacy-preserving,
scalable, and effective solutions in healthcare.
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1 Introduction

Recent advancements in Deep Learning (DL) and Natural Language Processing (NLP)
have unlocked significant potential for developing medical assistant tools, such as automatic
diagnosis coding for discharge summaries. However, as in any DL domain, the availability
and quality of training data are critical determinants of system performance. Electronic
Health Records (EHR) provide a comprehensive digital repository of patients’ healthcare
information, including demographics, medical history, diagnoses, and medications. These
records, which encompass both structured tabular data and unstructured free-text notes,
could serve as an ideal source for medical research and tool development. In particular, free-
text notes, with their detailed and nuanced descriptions of a patient’s health, hold great
potential for advancing biomedical research and creating powerful medical applications
with the help of NLP methods (Wu et al., 2022; Yogarajan et al., 2020).

Despite this potential, the sensitive nature of EHR data imposes strict limitations on
its accessibility, resulting in a shortage of high-quality training data for robust medical
artificial intelligence (AI) systems (Murtaza et al., 2023). Synthetic data generation offers
a promising solution to this challenge, provided the generated data preserves the task-
critical properties of real data while safeguarding patient privacy by avoiding the leakage
of Protected Health Information (PHI). Recent years have seen an increasing interest in
generating synthetic free-text medical notes, especially with the advent of large language
models (LLMs). However, many existing approaches struggle with a trade-off between
privacy and utility: while synthetic notes may enhance privacy protection, they often
lose substantial utility for training downstream models (Baumel et al., 2024; Melamud &
Shivade, 2019). Additionally, LLM-generated synthetic data frequently suffer from reduced
diversity, shown in a small vocabulary, and may exhibit medical incoherence (Falis et al.,
2024; Hullmann & Hansson, 2024; Libbi et al., 2021; Mawaldi & Mladenov, 2024).

This work aims to address these challenges by leveraging LLaMA-3.1-8B (Dubey et al.,
2024), a state-of-the-art (SOTA) LLM, for generating synthetic English and Swedish medi-
cal notes that strike a balance between privacy and utility. Our proposed approach involves
instruction-tuning LLaMA using textual descriptions of ICD-10 diagnosis and procedure
codes, enabling content control and fostering greater diversity in the generated data. To
evaluate our approach, we employ a comprehensive set of evaluation methodologies focused
on fidelity, privacy, utility, and medical coherence. The utility evaluation encompasses
critical tasks such as medical coding and Named Entity Recognition (NER), assessing the
generalizability of the synthetic data across diverse applications. Further, a user study in-
volving medical professionals provides insights into the medical coherence and readability
of the synthetic documents.

Through this diverse assessment, we explore whether instruction-tuned LLaMA-3.1-8B can
generate synthetic data that serves as a viable substitute for real-world data in terms of
utility while preserving privacy. Our results demonstrate that the proposed framework
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1 Introduction

successfully narrows the gap between privacy and utility. By utilizing pseudonymized data
during generation, the risk of data leakage is minimized. Our synthetic data achieves
on-par performance with real data on certain tasks and demonstrates competitive, albeit
slightly lower, utility compared to real data on others. Additionally, it overcomes diversity
reduction by exhibiting a broad vocabulary and great variety that even surpasses the real
data. Insights from the user study reveal no significant differences in readability or medical
coherence between real and synthetic documents.

Overall, our results highlight the efficacy of this approach in generating high-quality English
and Swedish medical notes, addressing privacy and data sparsity concerns in clinical NLP.
This framework lays a solid foundation for future research and offers a path toward creating
robust medical NLP tools suitable for real-world applications without compromising patient
privacy.

2



2 Background and Related Research

This chapter introduces the foundational concepts necessary for the present work and
provides a comprehensive overview of the current state of research on the generation of
synthetic medical notes.

2.1 Electronic Health Records

An EHR is a digital version of a patient’s health data, essentially replacing the tradi-
tional patient’s paper chart. The International Organization for Standardization (ISO)
defines EHRs generically as “a digital repository of a patient’s medical information that
documents their entire healthcare journey in real time” (International Organization for
Standardization, 2004). The primary purpose of EHRs is to securely store and exchange
health information across multiple healthcare providers and institutions, enabling contin-
uous and efficient healthcare delivery and supporting clinical decision-making (Häyrinen
et al., 2008). EHRs typically include structured data such as demographic information,
vital signs, laboratory test results, medication prescriptions, and diagnosis and procedure
codes. In addition to this structured information, the patient record usually contains a
discharge summary, i.e. a free-text medical note written by healthcare staff, such as doc-
tors or nurses, detailing the patient’s health status upon release from the hospital. For this
study, discharge summaries, along with diagnosis and procedure codes, are the key focus
and are described in more detail below. Other structured data contained in EHRs is not
relevant to this study and is therefore not examined in detail.

2.1.1 Discharge Summaries

A discharge summary provides comprehensive documentation of a patient’s hospital stay,
from admission to discharge. It facilitates communication between hospitals and primary
care providers by detailing symptoms, treatments, diagnoses, and other relevant informa-
tion. Additionally, discharge summaries offer patients and their families clear explanations
of diseases and follow-up plans (Wimsett et al., 2014). However, the specific components
included in discharge summaries can vary, and many studies have found that important
information is often missing (Wimsett et al., 2014). In the U.S., the Joint Commission
has established standards for discharge summaries, which should include the following
components (The Joint Commission, 2024):

(i) Reason for hospitalization

(ii) Significant findings

3



2 Background and Related Research

(iii) Procedures and treatment provided

(iv) Patient’s discharge diagnosis

(v) Patient and family instructions (as appropriate)

(vi) Attending physician’s signature

However, Kind and Smith (2008) note that there are no clear definitions for the contents
of these components, and it remains unclear how consistently these standards are followed
in hospitals. Thus, discharge summaries are relatively free in their form and can vary
substantially in structure and content depending on their author. They capture important
health information in the form of free text enabling a more detailed storage of information
than within the structured components of EHRs. For the purposes of this work, we use
the terms “discharge summaries” and “medical notes” interchangeably, as making precise
distinctions between different types of clinical free-text reports is not relevant to the scope
of this study.

2.1.2 ICD-10 Codes

ICD-10 stands for the 10th version of the International Classification of Diseases (World
Health Organization, 2016) and is a system that standardizes diagnosis and procedure
codes to ensure that patients receive the correct level of care and that healthcare providers
are accurately compensated for their services (Edin et al., 2023). ICD was first introduced
by the World Health Organization (WHO) in 1948 and has since been periodically revised.
ICD-10 was officially implemented in 2015 after several decades of development (Hirsch
et al., 2016). A newer version, ICD-11, came into force in 2022 but is currently in a
five-year transition phase before full implementation (Bundesinstitut für Arzneimittel und
Medizinprodukte (BfArM), 2024). To date, ICD-10 remains the most widely used medical
coding system, encompassing approximately 155,000 codes and being employed in over
100 countries (Hirsch et al., 2016). The codes, which correspond to either diagnoses or
procedures, consist of four to seven characters. The first character is always a letter,
followed by a digit, and up to five additional characters that can be either alphabetical or
numerical. The coding scheme follows a hierarchical classification structure, as illustrated
in an example in Figure 2.1.

4



2.2 Clinical NLP

Figure 2.1: Example of ICD-10 structure: Chronic gout due to renal impairment, left shoulder,
without tophus

2.2 Clinical NLP

Healthcare is a top priority in every country, yet it is a complex system constantly facing
new challenges. One significant issue is the shortage of healthcare professionals, such as
doctors and nurses, which many countries struggle with (Kempe, 2024; Murray, 2002).
This shortage can have far-reaching consequences, including an overload of existing health
workers. AI applications have the potential to support healthcare professionals and address
other critical issues, such as medical errors and disparities in access to care (Goldberg et
al., 2024). To build such tools, large-scale medical datasets are essential for computational
processing. A substantial portion of medical information is stored in free-text form, such as
in scientific publications and discharge summaries. Free-text notes, accounting for approx-
imately 80% of the data within EHRs, are often more comprehensive than their structured
counterparts and contain valuable detailed information (Wu et al., 2022; Xiao et al., 2018).
As a result, NLP methods have increasingly influenced biomedical research. In particular,
the advancements in NLP and LLMs offer great potential for future research and the de-
velopment of powerful medical tools that can revolutionize healthcare (Demner-Fushman
et al., 2009; Garner, 2004; Yogarajan et al., 2020).

A wide range of NLP methods has been utilized in prior research to develop various clinical
applications. These include information retrieval, relation extraction, and text classifica-
tion among others, which are commonly used to build clinical decision support systems,
allocate medical resources, or create personal health assistants (Zhou et al., 2022). For a
comprehensive listing of all prevalent NLP methods and applications in clinical NLP, we
refer to Névéol et al. (2018), Wu et al. (2022), and Zhou et al. (2022). Aligned with this
work, we focus on the two key applications of de-identification and medical coding and
explore how NER is typically employed in areas of clinical NLP.
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2 Background and Related Research

2.2.1 De-Identification

EHRs contain sensitive and private information about a patient in the form of personally
identifiable information such as full name, birth date, or social security number and con-
fidential information such as health status, sexual orientation, or ethnicity (Fang & Li,
2024). This information, which can be used to identify or potentially identify a patient, is
referred to as PHI. In addition to patient-specific data, EHRs may also contain sensitive in-
formation related to the healthcare organization, such as details about critical technologies
or financial transactions (Fang & Li, 2024). The unregulated and unfiltered distribution
of such data poses a serious privacy risk and is a primary reason for the lack of publicly
available health data that can be used for effective research.

De-identification is a process used to remove or obscure PHI from a dataset, ensuring that
patient records can be used for research or as training data for medical models without
compromising patient privacy (Vakili et al., 2022). Various methods of de-identification
are employed, including substituting PHI with suitable surrogates (e.g., replacing “John”
with “Peter”), masking the PHI (e.g., replacing "John" with underscores ), using class
labels (e.g., replacing “John” with “<First Name>”), or removing all sentences containing
PHI (Berg et al., 2020). Research has shown that the way PHI is handled can significantly
impact the utility of the data, with substitution using surrogates generally preserving the
data’s utility most effectively (Berg et al., 2020).

Manually de-identifying EHR data is a time-consuming and costly process. However, ad-
vancements in NLP have made it possible to automate this task, thus being fast and
cost-effective (Johnson et al., 2023). Various approaches have been proposed in the litera-
ture to automate the de-identification process, ranging from simple rule-based systems to
more sophisticated neural methods (Kovačević et al., 2024). One commonly used and effec-
tive approach involves leveraging pretrained language models, such as BERT (or domain-
specific variants fine-tuned for the clinical context), and adapting them to perform NER
on PHI tags (Vakili et al., 2022). The identified entities can then be processed as needed,
such as by substituting them with surrogates to protect patient privacy.

While some studies demonstrate how de-identification can reduce privacy risks in medi-
cal data while maintaining its usability for downstream tasks (Vakili et al., 2022), other
research highlights potential risks associated with the process. Yogarajan et al. (2020)
categorize these risks into two main areas: re-identification and the loss of utility, medical
accuracy, and consistency across the data. Several studies have shown that re-identification
poses a real risk, particularly due to quasi-identifiers, i.e., identifiers that are not explicitly
identifiable but may allow for re-identification of individuals when combined with external
data (Emam et al., 2011; Yogarajan et al., 2020). Additionally, research suggests that
de-identification can compromise medical accuracy, potentially leading to a decrease in
downstream task performance (Pantazos et al., 2017; Yogarajan et al., 2020), with varying
impact based on the de-identification method used (Berg et al., 2020). Moreover, de-
identification requires access to the original, real corpus, which limits the ability to create
synthetic data beyond this source. As a result, de-identification alone has to date not
enabled the widespread public sharing of clinical data.

In this work, we address these concerns by using de-identified real data as input to train
an LLM for synthetic data generation. The generated synthetic data can then be uti-
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2.2 Clinical NLP

lized for further tasks, such as developing clinical downstream applications. By employing
pseudonymized data in the synthetic data generation process, we add an additional layer
of safety, ensuring a high level of privacy protection.

2.2.2 Medical Coding

Figure 2.2: Illustrated process of automatic medical coding

Diagnoses and procedures are typically recorded using ICD-10 codes (see Chapter 2.1.2).
This standardized system serves administrative, financial, and statistical purposes, mak-
ing it a crucial component of EHRs. With around 155,000 codes, manual assignment by
healthcare professionals is not only time-consuming but also error-prone (Burns et al.,
2012; Stausberg et al., 2008; Tseng et al., 2018). Automated medical coding, which in-
volves the automatic identification of ICD-10 codes in the discharge summary of an EHR,
offers a promising solution to streamline this process and is a popular application in clinical
NLP. Figure 2.2 illustrates this process with the help of an exemplary medical note. Med-
ical coding automation can significantly reduce the administrative burden on healthcare
professionals, saving time and potentially minimizing errors during manual coding. Given
that properly coded health records are critical for clinical decision-making, public health
surveillance, research, and reimbursement, automated clinical coding has the potential to
enhance healthcare efficiency greatly and is an extensively researched area (S. Ji et al.,
2024).

The task is typically posed as a multi-label multi-class classification task, where each dis-
charge summary |d| with tokens d = {t1, t2, . . . , t|d|}, has the goal of predicting y ⊆ Y ,
where y is a subset of all possible ICD-10 codes Y (Dong et al., 2022; Huang et al., 2022).
The large number of ICD-10 codes makes this task, even with SOTA NLP methods, ex-
tremely challenging. Further obstacles arise from the scarcity of clinical training data, the
need to handle long documents, and the strong imbalance of codes within the dataset (Dong
et al., 2022; Edin et al., 2023). While earlier attempts at this task relied on rule-based and
symbolic approaches, the expansion of DL methods and the introduction of various (large)
language models has resulted in a vast amount of new methodologies studied to build high-
performing medical coding systems (Dong et al., 2022; S. Ji et al., 2024). S. Ji et al. (2024)
provide a comprehensive review of current DL approaches for automatic medical coding,
which can generally be classified into four categories: recurrent neural networks, convolu-
tional neural networks, neural attention mechanisms, and graph neural networks. Since
ICD codes are arranged in hierarchical order, a lot of research focuses on the development
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of hierarchical decoders (e.g., Dong et al., 2021; Xie et al., 2019). Additionally, the use
of LLMs with few-shot prompting has demonstrated promising results (Yang et al., 2022,
2023). While research on English datasets predominates in this area, systems have also
been developed for other languages, including Spanish (Miranda-Escalada et al., 2020),
French (Tchouka et al., 2023), and Swedish (Lamproudis et al., 2024), among others.

Rather than discussing all mentioned methodologies, we will focus on the one most relevant
to this work: PLM-ICD, introduced by Huang et al. (2022).

Figure 2.3: Illustration of PLM-ICD framework, Figure from Huang et al. (2022)

Figure 2.3 provides an overview of the PLM-ICD framework, reproduced from the original
paper by Huang et al. (2022). This framework leverages a language model pretrained on
clinical data. The authors propose a bidirectional encoder architecture, based on BERT
(Devlin et al., 2019), that is further pretrained on medical texts, such as PubMedBERT (Gu
et al., 2021) and RoBERTa-PM (Lewis et al., 2020). To address the issue of input length
limitations, PLM-ICD employs segment pooling. This technique splits the document into
chunks that are shorter than the model’s maximum input length, encodes them, and then
aggregates these chunk representations to form a representation of the entire document.
This enables PLM-ICD to handle documents that exceed the model’s maximum input
length.

The framework also incorporates the label-aware attention mechanism, initially proposed by
Vu et al. (2021). This mechanism enhances the pretrained model by learning label-specific
representations that focus on key text fragments relevant to each label. After obtaining
token-level hidden representations (H), the attention mechanism computes label-specific
attention weights (A) via linear transformations. A weighted sum of H is then calculated
to generate label-specific document representations (D), which are used to predict label
probabilities through a sigmoid function. The model is trained by minimizing binary cross-
entropy loss.

Huang et al. (2022) demonstrate that PLM-ICD achieves SOTA performance compared
to previous approaches, with an ablation study validating the effectiveness of its three
key components: domain-specific pretraining, segment pooling, and label-aware attention.
This framework has since been adopted and further developed by subsequent research,
including work by Edin et al. (2023). In their study, Edin et al. (2023) introduced a
reproducibility framework, proposing replicable splits and preprocessing methods for the
MIMIC-III and MIMIC-IV datasets and comparing the performance of several existing
medical coding systems. Their results show that PLM-ICD outperforms the other systems,
achieving a Micro F1 score of 58.5% on MIMIC-IV. We use medical coding as primary
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2.2 Clinical NLP

downstream utility evaluation and follow the PLM-ICD implementation and dataset splits
of MIMIC-IV from Edin et al. (2023) in this work and use their reported results as a
reference for comparisons.

2.2.3 NER

The patient is a 45-year-old age male gender with a history of hy-
pertensiondiagnosis and diabetes diagnosis. He is currently taking
lisinopril medication and metformin medication. He was admitted to
Karolinska emergency department location for chest pain symptom

and shortness of breath symptom.

Figure 2.4: Example of NER with biomedical NER in purple and PHI NER in turquoise.

NER is the task of identifying, extracting, and classifying key entities mentioned in a text
into predefined categories. This process helps to convert unstructured text into structured
information, making it easier to analyze. NER is widely used across various applications
and is one of the most common methodologies in clinical NLP (Wu et al., 2022). A popular
approach for tackling this task is to use a pretrained language model, such as BERT, which
can optionally be further pretrained on clinical domain-specific data. The model is then
fine-tuned in a supervised manner for NER, typically framed as a multiclass classification
task, where each token is assigned a label corresponding to one of the target entities or a
zero label (Bose et al., 2021).

In clinical NLP, NER is applied in two main areas: (i) identifying PHI tags, such as
names, dates, or locations, for de-identification (e.g., Kovačević et al., 2024; Libbi et al.,
2021; Vakili et al., 2022), and (ii) identifying clinical and biomedical terms, such as dis-
eases, symptoms, medications, or treatments (e.g., Durango et al., 2023; Hiebel et al.,
2023). Figure 2.4 illustrates examples of NER tags for both applications. Given that vast
amounts of unstructured text are difficult to process and the recognition of clinical concepts
is crucial for clinical decision-making, the ability to automatically extract clinical concepts
can significantly assist health professionals (Bose et al., 2021). Moreover, de-identification
is a critical requirement for sharing clinical data, which is highly relevant for clinical re-
search, as outlined in Chapter 2.2.1. This highlights the importance and widespread use
of NER in clinical NLP.

The versatility and importance of NER also contribute to its popularity as a downstream
task used to evaluate the utility of synthetically generated medical notes (e.g., Hiebel et
al., 2023; Libbi et al., 2021). An additional advantage of NER for this evaluation is that
the annotations required for training NER models can be synthetically generated along
with the notes themselves, saving time and cost associated with manual annotation (Libbi
et al., 2021). However, research has shown that synthetic data can be useful for training a
model on a downstream NER task without being necessarily linguistically coherent (Libbi
et al., 2021). This suggests that synthetic data, while effective for NER tasks, may not be
suitable for other downstream tasks, particularly if it lacks medical coherence. Additional
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evaluation methods might be needed to determine whether synthetically generated data
can serve as a comprehensive substitute for real data or if distinct synthetic datasets must
be generated for different downstream tasks.

We choose NER alongside medical coding as a downstream utility task to evaluate our
generated synthetic data. This combination allows for robust utility assessments and fa-
cilitates direct comparison with prior work.

2.3 Synthetic Data Generation

All data generated by computational models is considered synthetic data. The rise of
generative models has enabled the creation of vast amounts of high-quality synthetic data,
such as synthetic text produced by LLMs. Synthetic data serves many purposes, with one
popular research application being its use as training data for other models. This approach
is largely motivated by three factors (Jordon et al., 2022):

(i) Data sparsity: High-performing deep learning models typically require large
amounts of diverse data. Often, high-quality, task-specific data is limited, for ex-
ample when dealing with low-resource languages (Feng et al., 2021). Additionally,
labeled data, which is essential for supervised model training, can be costly and
time-consuming to annotate. Synthetic (annotated) data has shown to be an ef-
fective substitute or supplement, improving model performance on real-world data
(Puri et al., 2020).

(ii) Data privacy: Research and model training require data distribution, but privacy
concerns in certain domains can restrict data sharing and processing, as seen in
healthcare and finance (Assefa et al., 2021; Murtaza et al., 2023). Synthetic data
allows model training while preserving privacy (Assefa et al., 2021; Libbi et al., 2021;
Tang et al., 2023).

(iii) De-biasing: Machine learning models are known to inherit historical biases from
their training data, such as biases related to gender or race, resulting in unfair or
inaccurate performance across different populations (Gallegos et al., 2024). Synthetic
data can help address these biases, promoting the development of fairer models (Ti-
wald et al., 2021).

In the healthcare sector, synthetic data is used primarily due to a combination of data
privacy and data sparsity concerns. The sensitive nature of healthcare data limits its
availability for research, and the data that is accessible is often insufficient for training
high-performing models, particularly for specialized tasks (Hiebel et al., 2023; Tang et al.,
2023).

The evaluation of synthetic data typically falls into three categories, each crucial for de-
termining the success of the generation process (Budu et al., 2024):
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(i) Fidelity: Fidelity refers to how closely the synthetic data resembles the real data,
capturing the variable dependencies and statistical properties of the original dataset
(Budu et al., 2024). It is commonly measured by comparing data statistics, variable
distributions, pairwise correlations, or using distance metrics.

(ii) Utiliy: Utility assesses whether the synthetic data can be used in place of real data
for similar tasks (Budu et al., 2024). A standard approach for measuring utility
involves predictive modeling, i.e., training ML models on both real and synthetic
data for downstream tasks and comparing their performance results when tested on
real-world data.

(iii) Privacy: Privacy examines the risk of information leakage from real to synthetic
data, determining whether the synthetic dataset reveals any sensitive information
from the original data used for its creation (Budu et al., 2024). Privacy is typically
evaluated using distance or disclosure metrics.

Since EHRs contain extensive tabular data, including explicit identifiers (such as names
and IDs), demographic information, and medical events recorded over time (e.g., lab re-
sults, prescription data, or diagnosis codes), a significant amount of research has focused
on synthetic data generation for structured EHR data. These variables represent diverse
data types, including categorical, ordinal, numerical, and date formats (Hernandez et al.,
2022). Modeling such mixed-type time-series data within synthetic datasets poses a consid-
erable challenge, with approaches ranging from classical statistical or regression methods
to DL approaches like Autoencoders (AE) and Generative Adversarial Networks (GAN)
(Choi et al., 2017; Dash et al., 2020; Rankin et al., 2020). Hernandez et al. (2022) of-
fer a comprehensive systematic review of these methods, noting the growing popularity
of DL approaches, particularly GAN-based models, which have demonstrated promising
performance in recent years. Nevertheless, as this work focuses on generating synthetic
unstructured free text rather than tabular data, and the methodologies for achieving these
goals differ significantly, we will not explore tabular EHR synthesis further and instead
focus on the current state of research for generating synthetic free-text medical notes.

To provide an overview of the current research landscape on synthetic medical note gen-
eration, a bibliographic search was conducted. Google Scholar was utilized to identify
relevant publications from the past ten years (01.01.2014 to 21.10.2024), using the key-
words synthetic medical notes, synthetic clinical notes, and synthetic discharge summaries.
Additional studies were retrieved from the reference sections of included articles. To qualify
for inclusion in this overview, publications had to meet the following criteria:

(i) Present an approach for generating synthetic free-text medical notes.

(ii) Evaluate the synthetic data, with a minimum assessment for utility.

(iii) Be written in English.

Recent publications that are not (yet) peer-reviewed were deliberately included due to
their high relevance to this work.
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2.3 Synthetic Data Generation

Table 2.1 presents the results of the bibliographic search, which identified 19 relevant
articles published between 2018 and 2024. This overview does not aim to exhaustively
cover all existing literature, nor does it serve as a systematic review. Instead, its purpose
is to provide an overview of the current research landscape, focusing on the methodologies
employed for generating and evaluating synthetic medical notes. Given recent advances in
language modeling and the resulting methodological diversity, this overview is particularly
timely and relevant. We propose that this table could serve as a starting point for a future
systematic review. Key findings and conclusions from this search will be discussed, with a
more detailed examination of selected publications.

The generation of synthetic free-text EHRs remains in its early stages, though it became
increasingly popular with advances in language modeling (Rankin et al., 2020). This trend
is evident from the publication dates in Table 2.1, where over half of the included studies
were published in the current year, with several appearing only after the experimental
phase of this work concluded. While the majority of research focuses on English data, a
subset also investigates synthetic generation of discharge summaries in languages such as
French (Hiebel et al., 2023), Dutch (Libbi et al., 2021), Swedish (Hullmann & Hansson,
2024), Indian (Singh et al., 2024), and Russian (Kumichev et al., 2024).

A wide range of models and methodologies have been tested for the generation process.
Early research focused on training various model architectures from scratch, but there is
a clear trend toward leveraging pretrained LLMs through transfer learning. The method-
ologies employed include fine-tuning, prompting, and in-context learning (ICL), reflecting
the evolving nature of the field.

One of the earliest works was conducted by Guan et al. (2018), who trained a GAN frame-
work using the REINFORCE algorithm (Williams, 1992) with disease features as input
to generate corresponding notes. Their results showed that the synthetic data performed
similarly to real data in a simple disease classification downstream task. Several other
studies have utilized Long Short-Term Memory (LSTM) networks (Hochreiter & Schmid-
huber, 1997), a popular architecture for language processing due to its ability to capture
long-range dependencies. For instance, Melamud and Shivade (2019) trained a 2-layer
LSTM on English discharge summaries for text generation. Although qualitative observa-
tions revealed clear differences from real data, their findings indicated that the generated
notes retained genuine properties of the real data. Amin-Nejad et al. (2020) implemented a
Vanilla Transformer architecture (Vaswani et al., 2017) for generating clinical notes. Their
results demonstrated its potential for data augmentation. However, in low-resource sce-
narios, the synthetic data was of insufficient quality to enhance performance when used as
augmentation.

In addition to the Vanilla Transformer architecture, Amin-Nejad et al. (2020) also explored
the potential of pretrained LLMs. They fine-tuned GPT-2 (Radford et al., 2019) for the
task, which showed promising performance in low-resource scenarios. However, GPT-
2 encountered difficulties handling long sequence-to-sequence downstream tasks, where
its generated data demonstrated lower utility compared to the data generated by the
Vanilla Transformer. Similarly, Libbi et al. (2021) fine-tuned GPT-2 to generate Dutch
discharge summaries and compared the pretrained model to the LSTM architecture used
in Melamud and Shivade (2019). While GPT-2 generated more coherent text, the LSTM-
generated training data exhibited superior downstream performance on an NER task for

13
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de-identification. This suggests that models trained from scratch can generate synthetic
notes with higher utility than smaller pretrained LLMs. However, fine-tuning more recent
and powerful pre-trained models, such as GPT-3 (T. Brown et al., 2020) and LLaMA-
2-7B (Touvron et al., 2023), has shown promising results for various downstream tasks,
including medical coding (Kumichev et al., 2024) and NER (Baumel et al., 2024; Mawaldi
& Mladenov, 2024).

In addition to fine-tuning, ICL and prompting have been employed to guide LLMs in
generating the desired synthetic notes. These methods offer significant advantages in terms
of saving computational resources and time compared to fine-tuning or training models
from scratch. While ICL requires only a few examples in the prompt, which is particularly
beneficial in data-scarce scenarios, the prompt examples must be carefully selected to
ensure diversity and coverage. This approach carries a higher risk of generating a biased
dataset. Tang et al. (2023) and Litake et al. (2024) reported successful results when using
synthetic data generated through prompting with ChatGPT (OpenAI, 2024) and LLaMA-
2-70B (Touvron et al., 2023) as training data for clinical NER and clinical classification
models.

However, other studies have highlighted limitations of employing LLMs without prior fine-
tuning. Falis et al. (2024) employed GPT-3.5 in a zero-shot manner to generate English
discharge summaries and tested their usefulness for augmenting training data for medical
coding systems. The authors reported unnatural text with spurious information and a lack
of diversity. While synthetic data augmentation slightly hindered overall performance, it
reduced out-of-family (OOF) errors. Even though these results are rather unsatisfactory,
it is important to consider that medical coding is a complex multi-label classification task.
It is more challenging than NER or binary classification tasks, which may explain the
differences in utility observed across studies, as medical coding might require data of higher
quality and coherence than simpler tasks.

In contrast, Kumichev et al. (2024) addressed medical coding using synthetic Russian
medical notes to upsample rare and challenging classes. The authors fine-tuned LLaMA-
2-7B (Touvron et al., 2023) and used GPT-4 (Touvron et al., 2023) in a zero-shot manner
with a medical knowledge graph integrated into the framework to sample relevant medical
information in the prompts. They observed performance improvements in the medical
models when upsampling with synthetic data generated by both approaches. However,
their findings are not directly comparable to those of Falis et al. (2024), as their evaluation
focused on a limited subset of rare codes and involved a substantially smaller number of
overall codes in the Russian dataset. Notably, their results suggest that prompting GPT-
4 can achieve synthetic data quality comparable to fine-tuning the substantially smaller
LLaMA-2-7B model.

While there is a visible trend toward using pretrained autoregressive models like GPT or
LLaMA, some studies opt for masked language modeling (Belkadi et al., 2024; Ren et al.,
2024). This preference can likely be attributed to a study conducted by Micheletti et al.
(2024), where both causal and masked language models were used to generate synthetic
text. Their findings showed that masked language models consistently outperformed causal
language models in the evaluation of the generated texts. Additionally, Belkadi et al. (2024)
emphasize the privacy guarantees and controlled content advantages when using masked
language models. However, it is important to note that the comparison in Micheletti et al.
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(2024) only involved smaller causal models (with hundreds of millions of parameters), which
limits the generalizability of their findings. In contrast, SOTA causal language models
typically contain billions of parameters, making the comparison with smaller models less
meaningful.

When examining the Utility and Privacy evaluation columns of Table 2.1, one key ob-
servation becomes apparent: there is no consensus on evaluation practices. The majority
of studies focus on NER as a downstream utility task, but the implementation of NER
varies across studies, with no standardized benchmarks, base models, or training proce-
dures. Other studies focus on building downstream classification models, ranging from
simple binary classification tasks (e.g., Litake et al., 2024) to more complex multilabel
classification tasks (e.g., Falis et al., 2024). A significant portion of the reported studies
does not perform explicit privacy evaluations, either assuming privacy is ensured in their
frameworks or leaving privacy evaluation to future work. This may be due to the inher-
ent difficulty of operationalizing privacy measurements. For the studies that do include
privacy evaluation, some rely on disclosure metrics (e.g., Belkadi et al., 2024; Kasthuri-
rathne et al., 2021), while others use distance metrics (e.g., Hiebel et al., 2023; Libbi et al.,
2021). Since it is challenging to draw definitive conclusions from these metrics alone, some
complement these quantitative evaluations with manual assessments and user studies for
a more thorough privacy evaluation (e.g., Libbi et al., 2021).

While generation and evaluation approaches differ significantly, some key findings are re-
ported consistently across various studies. In particular, three main issues commonly arise
in the generation of synthetic medical notes:

(i) Privacy Utility Trade-Off: A widely reported challenge is the trade-off between
privacy and utility. Studies have found that utility tends to decrease as privacy
protection increases, which is consistent with the finding that downstream models
trained on synthetic data often perform less effectively than those trained on real
data (Baumel et al., 2024; Melamud & Shivade, 2019).

(ii) Diversity Reduction: Several papers report a decrease in variety within synthetic
medical notes (Hullmann & Hansson, 2024; Libbi et al., 2021; Mawaldi & Mladenov,
2024). This is typically evidenced by a reduced vocabulary, which may negatively
impact downstream performance.

(iii) Incoherence: Many studies identify issues with medical incoherence in synthetic
notes based on manual inspections, reflecting inconsistencies or inaccuracies in clinical
logic and sequence (Falis et al., 2024; Hiebel et al., 2023; Libbi et al., 2021).

The privacy utility trade-off is a central dilemma in synthetic data generation. The less syn-
thetic data resembles real data, the greater the privacy protection. However, this reduced
resemblance also causes synthetic data to lose key properties needed for training effective
models, thereby impairing model performance on real-world data. Integrating Differential
Privacy (DP) into the fine-tuning process can provide mathematically grounded privacy
protection by adding controlled random noise to mask individual data points (Baumel
et al., 2024). Yet, due to the inherent privacy utility trade-off, this increase in privacy
typically results in decreased data utility (e.g., Baumel et al., 2024), which has discour-
aged some authors from incorporating DP into their frameworks (Libbi et al., 2021). DP
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also introduces added computational complexity, and achieving reliable privacy guarantees
with DP can be challenging (H. Brown et al., 2022; Igamberdiev et al., 2024; Libbi et al.,
2021). For these reasons, DP’s use is controversial, not only due to its tendency to degrade
utility and increase computational demands but also because some researchers question
whether it can truly provide reliable assurance about privacy (H. Brown et al., 2022).

Diversity reduction presents a two-fold problem. First, a decrease in diversity can lead
to significant differences in resemblance between synthetic and real data, as the synthetic
data fails to represent the full distribution of real-world data. Second, diversity is crucial
for high model performance across many tasks. Consequently, diversity reduction can lead
to a significant decrease in synthetic data utility (Hullmann & Hansson, 2024; Libbi et al.,
2021).

Previous research suggests that training data can be effective even when it lacks grammat-
ical accuracy or topical coherence (Hiebel et al., 2023; Libbi et al., 2021). For example,
Libbi et al. (2021) found that their LSTM model achieved higher utility in a NER task
compared to their GPT-2 model, despite the latter demonstrating greater coherence. This
finding indicates that medical coherence may not be a strict requirement for training data
suitability in certain downstream tasks. Libbi et al. (2021) argue that syntactic accuracy
could be more crucial than semantic coherence for NER applications. However, while NER
tasks may not require coherent narratives, other applications, such as medical chatbots,
depend on accurate medical information to function effectively. For synthetic data to serve
as a viable substitute for real data across diverse applications, it must be medically coher-
ent to ensure general utility, especially for models intended for real-world use and decision
support.

The huge diversity in evaluation metrics found in this search for both utility and privacy
makes it extremely challenging to compare the effectiveness of different approaches used
for medical note generation and impedes future research from building upon existing work.
This overview provides a foundation for a systematic review of evaluation metrics, intend-
ing to establish robust baselines and benchmarks to enable meaningful and comparable
assessments of different generation methods.

We propose a novel generation framework leveraging a SOTA LLM through instruction-
tuning. This approach aims to induce variety in the synthetic data while maintaining
utility, ensuring medical coherence, and providing strong privacy protection. This aims at
addressing consistently reported issues in the generation of synthetic medical notes in a
unified manner. To evaluate this framework, we introduce a diverse set of methodologies
that assess fidelity, privacy, generalizable utility, and medical coherence. This comprehen-
sive evaluation is crucial to ensure that synthetic notes can reliably substitute real medical
records. We recommend that future research adopt this diversity in evaluation methods
and work towards establishing a broadly applicable evaluation benchmark. The proposed
framework is detailed in the following chapter.
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Figure 3.1: Overall approach employed in this work

The primary objective of this work is to generate synthetic medical notes in both English
and Swedish that maintain high utility while ensuring robust privacy protection. The
synthetic notes are intended to fully replace real data, rather than serve as augmentation,
to effectively address privacy concerns. To achieve this, we introduce a novel framework,
as depicted in Figure 3.1, designed for generating synthetic medical notes. This framework
leverages the corresponding ICD-10 codes of the notes for instruction-tuning the LLaMA-
3.1-8B model, enabling the generation of a versatile synthetic dataset in a simple and
adaptable manner. The evaluation is divided into four main components: assessing the
overall similarity between synthetic and real notes, evaluating the privacy preservation
within the notes, examining their utility in downstream tasks with a focus on medical
coding, and analyzing their readability and medical coherence through a user study. The
following sections will provide a detailed description of each step involved in the process.

3.1 Dataset Creation

This chapter introduces the English and Swedish datasets that form the foundation of
this study and outlines the process by which the relevant data was extracted and prepro-
cessed.

3.1.1 MIMIC-IV

The English dataset used in this study was extracted from the Medical Information Mart
for Intensive Care IV (MIMIC-IV) dataset (Johnson et al., 2023), which contains EHRs
sourced from the Beth Israel Deaconess Medical Center obtained between 2008 and 2019.
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While MIMIC-IV is publicly available, users must complete a training program provided by
the Collaborative Institutional Training Initiative (CITI) (CITI Program, 2024) through
the Massachusetts Institute of Technology (MIT) to obtain credentialed access. The
dataset includes 524,000 admission records from over 257,000 distinct patients, with EHRs
from patients admitted to either the Emergency Department (ED) or the Intensive Care
Unit (ICU), resulting in a rich and diverse clinical dataset that includes data from closely
monitored patients (Johnson et al., 2023).

The EHRs consist of both structured data, such as demographics, patient measurements,
and ICD codes, and unstructured data in the form of free-text clinical notes, including
discharge summaries and radiology reports. These clinical notes have been de-identified by
removing all PHI tags and replacing them with underscores. For this study, only discharge
summaries that include corresponding ICD-10 diagnosis and procedure codes are considered
relevant. The discharge summaries are organized into sections, including Chief Complaint,
History of Present Illness, Past Medical History, Brief Hospital Course, Physical Exams,
and Discharge Diagnoses. However, not every discharge summary contains all of these
sections, and the scope and detail of each component vary significantly across reports.

Following the methodology outlined by Edin et al. (2023), relevant discharge summaries
were filtered, and ICD-10 codes that occurred fewer than 10 times were excluded. This
resulted in a dataset of 122,279 documents, containing a total of 7,942 unique ICD-10
codes. Figure 3.2 displays the code distribution across all ICD-10 chapters within the
full MIMIC datasets. Leveraging the hierarchical structure of ICD-10, which categorizes
diseases into 22 distinct chapters (based on the first three characters of each code), these
chapters encompass a wide range of medical fields. The full descriptions of each chapter,
along with their corresponding character codes, are listed in Table A.1 in the Appendix. As
shown in Figure 3.2, MIMIC includes codes from 15 chapters representing over 2% of the
codes of the total dataset. The three most prominent chapters are XXI, IX, and IV, which
correspond to Factors influencing health status and contact with health services, Diseases
of the circulatory system and Endocrine, nutritional and metabolic diseases.

Figure 3.2: MIMIC-IV Chapter Distribution
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The dataset was divided into three splits, following the approach outlined by Edin et al.
(2023). These splits contain 72.9%, 16.2%, and 10.9% of the documents, respectively, and
were created to ensure that the majority of ICD-10 codes are represented in all three sets.
For this study, the splits are referred to as MIMIC-L, MIMIC-M, and MIMIC-S, with
MIMIC-L being the largest split, MIMIC-M the medium-sized split, and MIMIC-S the
smallest.

Initial experiments using LLMs on the MIMIC discharge summaries revealed that the
models struggled to process the documents effectively due to certain sections, such as lab
results or medication lists. These sections are highly structured, often containing numerous
digits, and lack integration into the free-text narrative of the summaries. To address this,
a preprocessing approach was developed to remove such structured information, ensuring
that the remaining text contained all relevant details in free-text form. Additionally, we
identified sections that provided less critical information, did not convey information due
to pseudonymization, or repeated content from other parts of the summary. These sections
were also removed to make the summaries more concise and easier for the LLMs to process.
Since each discharge summary has a slightly different structure and variations in spelling,
this task was handled using regular expressions, which carries the risk of not capturing
all unwanted sections uniformly across documents. Table 3.1 provides an overview of the
sections that were removed as part of the preprocessing. This process resulted in cleaner,
more focused notes that were more manageable for the LLMs.

Table 3.1: Different sections removed during preprocessing with justifications for removal.

Section Justification

Name / Unit Irrelevant, Pseudonomized
Admission Date / Discharge Date / Date of Birth Irrelevant, Pseudonomized
Medications Structured, numerical data
Lab results Structured, numerical data
Vitals Structured, numerical data
Facility Irrelevant, Pseudonomized
Discharge Instructions Irrelevant, Repetition

3.1.2 SEPR Corpus

The Swedish data used in this study is based on the Stockholm EPR Gastro ICD-10
Pseudo Corpus II (referred to as SEPR II), created as part of the work by Lamproudis
et al. (2024). This corpus was extracted from the Health Bank Infrastructure (Dalianis
et al., 2015), which includes the Stockholm Electronic Patient Record Corpus (SEPR).
SEPR contains Swedish EHRs from over 2 million patients across more than 512 units at
Karolinska University Hospital, collected between 2006 and 2014. The data is available for
academic use through Stockholm University 1.

The SEPR II subset consists of 317,971 patient records, including 81,089 discharge sum-
maries for 113,174 patients, with corresponding ICD-10 codes. All records within this

1Contact the Health Bank, https://www.dsv.su.se/healthbank, at Stockholm University for access.
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dataset pertain to gastrointestinal conditions. The patient records have been automati-
cally de-identified by replacing all PHI tags with realistic surrogates. The dataset contains
a total of 415 unique ICD-10 codes.

Figure 3.3 illustrates the code distribution across all chapters contained in the full SEPR
II dataset. Although all codes in SEPR II originate from ICD-10 chapter XI, which focuses
on Diseases of the digestive system, they can be further subdivided into ten more specific
subcategories. Detailed descriptions of these subcategories are provided in Table A.2 in
the Appendix. SEPR II includes codes from eight of these ten subcategories representing
over 2% of the codes contained in the full dataset. The three most prominent subcategories
are VI, V, and II, corresponding to Other diseases of intestines, Noninfective enteritis and
colitis, and Diseases of oesophagus, stomach and duodenum.

Figure 3.3: SEPR II Chapter Distribution

For this study, the SEPR II corpus was split into three sets containing 75%, 15%, and 10% of
the data, referred to as SEPR-L, SEPR-M, and SEPR-S, respectively, in alignment with the
naming conventions used for the English dataset. Since the Swedish discharge summaries
are significantly more concise and consist only of free text, without the structured sections
present in the MIMIC dataset, no additional preprocessing was applied to them.

3.1.3 Dataset Comparison

The English and Swedish corpora differ in several important properties:

(i) Scope: The MIMIC-IV dataset covers a wide range of medical domains from the
ED and ICU, while the SEPR II corpus is restricted to gastrointestinal conditions.

(ii) Unique ICD-10 Codes: Reflecting the difference in scope, the Swedish corpus
contains 415 unique ICD-10 codes, significantly fewer than the 7,942 unique codes in
the English corpus.
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(iii) Discharge Summary Length: On average, the Swedish discharge summaries con-
tain only 12.5% of the tokens found in the English discharge summaries. Additionally,
the Swedish notes do not have the structured subsections present in the English notes
and instead serve as a single, shorter summary.

(iv) Number ICD-10 Codes: While the Swedish records have 1.09 ICD-10 codes as-
signed per note on average, the English records represent 15.65 codes on average.

Table 3.2 presents the statistical properties of the complete MIMIC-IV and SEPR II
datasets as well as their respective splits, underscoring the differences between the two
corpora. Although SEPR II contains approximately two and a half times as many doc-
uments as MIMIC-IV, MIMIC-IV includes more than three times the number of tokens,
with significantly longer individual documents. This distinction is further emphasized in
the code counts, where MIMIC-IV contains over five times the total codes found in SEPR
II.

Table 3.2: Statistical comparison of the full English and Swedish datasets and their correspond-
ing splits.

Total Docs Total Tokens AVG
Token/Doc Vocabulary Total Codes AVG

Code/Doc Unique Codes

MIMIC-IV Total 122,278 195,297,607 1,597 186,546 1,914,237 15.65 7,942

MIMIC-L 89,098 141,991,892 1594 158,308 1,389,330 15.59 7,939
MIMIC-M 19,802 31,880.837 1610 63,750 210,771 15.76 7,935
MIMIC-S 13,378 21,424,878 1602 63,750 210,771 15.76 7,906

SEPR II Total 317,750 63,401,085 200 532,954 347,188 1.09 419

SEPR-L 237,968 47,496,536 200 455,728 259,778 1.09 419
SEPR-M 47,783 9,543,881 200 191,595 52,419 1.10 413
SEPR-S 32,027 6,365,636 199 153,931 35,031 1.10 411

Figure 3.4 illustrates the frequency distribution of ICD-10 codes within the MIMIC-IV
(Figure 3.4a) and SEPR II (Figure 3.4b) datasets. It shows that for both datasets, a small
subset of codes accounts for a large proportion of the overall code frequencies. The red line
indicates how many codes contribute to 90% of all code appearances. For both datasets,
this corresponds to only around one-fourth of all codes with the other three-fourths of codes
distributed across the remaining 10%. Thus, we observe highly imbalanced frequencies for
both the English and Swedish datasets.

(a) MIMIC-IV Code Frequencies (b) SEPR II Code Frequencies

Figure 3.4: Distribution of codes frequencies for MIMIC-IV (left) and SEPR II(right). The
logarithmic frequencies are shown on the y-axis with the code indices on the x-axis.
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It is important to consider the differences between the corpora when analyzing and inter-
preting the results. A direct comparison of real and synthetic data is meaningful for each
language individually, while any comparison between the two languages should be made
with caution, taking the discussed differences into account.

3.2 Synthesizing Medical Notes

LLaMA-3.1-8B serves as the base model for generating synthetic datasets in this study.
Meta’s LLaMA 3.1 is recognized as a leading model family in SOTA autoregressive LLMs,
demonstrating high performance across diverse tasks and competing with top models like
GPT-4 (Vavekanand & Sam, 2024). LLaMA-3.1 is available in three configurations of 8
billion, 70 billion, and 405 billion parameters, trained on a multilingual dataset of over
15 trillion tokens, providing robust support for eight languages and context lengths up to
128,000 tokens. Being open source, the LLaMA models are broadly accessible for research
applications. For this study, we selected the smallest version, LLaMA-3.1-8B, which offers a
balance of computational efficiency and strong benchmark performance, making it suitable
for environments with limited computational resources.

To adapt LLaMA-3.1-8B for generating synthetic medical notes, transfer learning was
applied. We propose instruction-tuning the model using prompts containing textual de-
scriptions of ICD-10 codes. Instruction-tuning involves fine-tuning the model to follow
specific instructions, which we expect to yield several benefits for synthetic data genera-
tion and address previously reported challenges. Specifically, our approach aims to achieve
the following:

(i) Content control: Prompting with ICD-10 codes allows direct control over the
content of the medical notes, enabling generation within specific medical domains by
guiding note content through targeted codes.

(ii) Variety: Synthetic datasets often face issues with diversity reduction, leading to
limited utility of generated data. By prompting with varied ICD-10 codes, we can
encourage greater variety in the synthetic notes.

(iii) Automatic Labeling: Including ICD-10 codes in the prompt means that the syn-
thetic notes are automatically annotated, providing ready-made labels for subsequent
supervised fine-tuning of downstream models.

The instruction template used in this study follows the well-known Alpaca format,
originally introduced by Taori et al. (2023), which has demonstrated effectiveness for
instruction-tuning in prior research. The template has the following structure:
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Below is an instruction that describes a task, paired with an input that
provides further context. Write a response that appropriately completes
the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

In this setup, the Input field contained textual descriptions of ICD-10 codes, while the
Response field entailed the corresponding synthetic medical note. To identify an effective
instruction for high-quality data generation, three different prompts were manually cre-
ated aiming at a clear and precise formulation of the requirement. These prompts were
then presented to ChatGPT (OpenAI, 2024), asking to select the best option and make
necessary refinements. This approach was chosen based on research indicating that LLMs
can generate effective instructions for specific tasks (Honovich et al., 2023). The final in-
struction used in the framework is shown in Figure 3.5. Future work could explore the
potential of experimenting with different instruction prompts to improve data generation
quality.

Given a list of textual descriptions of procedure and diagnosis
codes, generate a corresponding clinical discharge summary that
provides comprehensive and relevant details about the patient’s
medical history, current condition and treatment received at the
hospital.

Figure 3.5: English instruction used for instruction-tuning LLaMA-3.1-8B with the Alpaca tem-
plate.

The fine-tuning process for this study was implemented using the Axolotl project
(OpenAccess-AI-Collective, 2024), an open-source tool tailored for fine-tuning LLMs. Ax-
olotl supports a variety of model architectures and configurations, along with easy inte-
gration of parameter-efficient, performance-enhancing techniques. Given limited compu-
tational resources, we applied 4-bit quantization with Quantization Low-Rank Adaptation
(QLoRA) (Dettmers et al., 2023). Unlike full model fine-tuning, QLoRA trains only small,
low-rank adapter layers inserted into the model, using 4-bit quantization to compress model
weights. QLoRA has been shown to effectively reduce memory usage while maintaining
comparable model performance and is a popular method used for parameter-efficient fine-
tuning (PEFT) (Xu et al., 2023). To further optimize instruction-tuning, DeepSpeed ZeRO
Stage 3 (Rajbhandari et al., 2020; Rasley et al., 2020) was integrated, enabling efficient
multi-GPU training by sharding optimizer states, gradients, and model parameters across
parallel workers. Detailed training configurations are provided in Table C.1 in the Ap-
pendix.
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For fine-tuning on the Swedish dataset, the same Axolotl framework was employed, with
minor modifications in the source code to accommodate Swedish-specific prompts. The
Swedish version of the adapted Alpaca template and associated instructions are included
in the Appendix, Chapter B. The medical notes and ICD-10 codes from MIMIC-L and
SEPR-L were utilized to transform the ICD-10 codes into descriptive text and integrate
codes as input and medical notes as response into the Alpaca template. These prompts
were then used for instruction-tuning LLaMA.

After instruction-tuning, the trained LoRA adapters were merged back into the base model
for inference. For this stage, we used the open-source vLLM library (vllm-project, 2024),
which optimizes attention memory handling via Paged Attention, significantly boosting
inference speed (Kwon et al., 2023). This increase in efficiency is especially beneficial
given the need to generate a large number of lengthy documents in this study. Configu-
ration details for vLLM, including decoding parameters, can be found in Table C.2 in the
Appendix.

To generate synthetic English datasets, we used textual ICD-10 code descriptions from
MIMIC-S and MIMIC-L to create prompts for decoding. Following the methodology of
Edin et al. (2023), MIMIC-M was designated as the test set for the utility evaluation,
where only real data is required. To promote diversity and facilitate later filtering, five
unique responses were generated for each prompt using random sampling. Similarly, for
the Swedish datasets, two synthetic datasets were generated from prompts extracted from
the ICD-10 code sequences of SEPR-M and SEPR-L, with the real SEPR-S dataset set
aside for testing.

3.3 Assessment Methods

The following chapter introduces the various assessment methods used to evaluate the
generated synthetic notes, focusing on fidelity, privacy, utility, and medical coherence.

3.3.1 Fidelity Evaluation

To evaluate the resemblance of the synthetic data to the real data, we compare key sta-
tistical features of both datasets, including token counts, sentence counts, and vocabulary
size. This comparison is conducted using the synthetic and real MIMIC-S datasets for En-
glish and the synthetic and real SEPR-M datasets for Swedish. These statistical analyses
provide initial insights into whether the synthetic data aligns with the distribution of the
real data. Additionally, the unique token ratio offers an indication of the dataset’s variety
and helps assess whether it suffers from diversity reduction.

In addition, we perform a manual investigation of the synthetic MIMIC-S dataset to eval-
uate whether the synthetic data accurately captures the structure of real discharge sum-
maries, including the representation of individual subsections. This manual review also
aims to identify linguistic and contextual similarities and differences between the synthetic
and real documents. It is important to note that this investigation was conducted without
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the assistance of medical professionals and is intended to provide initial descriptive insights
into the data rather than a detailed content-focused evaluation.

3.3.2 Privacy Evaluation

Operationalizing privacy in datasets poses significant challenges, with no established con-
sensus on evaluation metrics in the literature (Kaabachi et al., 2023). Key difficulties
include identifying dataset features that contribute to privacy risks, measuring the impact
of these features on privacy, and defining thresholds that establish a dataset as private.
DP is one prominent approach, designed to limit the influence of any single data point in
a dataset to reduce re-identification risks. However, as discussed in Chapter 2.3, DP often
comes at the cost of utility loss and additional computational demands.

Both the English and Swedish datasets used for this work underwent pseudonymization
prior to synthetic generation, adding an extra layer of protection to the framework and
minimizing the risk of exposing sensitive PHI. Consequently, the risk of privacy violations
is naturally low, and no additional privacy-preserving measures were incorporated into
the process. With this, we prioritize simplicity in our framework and allow the synthetic
data generation process to retain higher utility without incurring the performance costs
associated with DP.

Since privacy preservation is a core goal of generating synthetic medical notes, it is nonethe-
less essential to assess the extent of privacy protection achieved in the synthetic data. The
use of distance metrics is a common approach to measure the similarity between synthetic
and real data, which serves as a proxy for re-identification risk. Following the methodol-
ogy in Libbi et al. (2021), we employ ROUGE-5 (Lin, 2004) for MIMIC, to calculate the
5-gram overlap between synthetic and real training data. As a baseline comparison, we
also calculate the 5-gram overlap between the real MIMIC-S and MIMIC-L datasets. We
compare our results to Libbi et al. (2021) by reporting average, median, minimum, and
maximum recall scores for the whole datasets and the 122 document pairs with the highest
proximity. To gain further insights, the medical notes with the 20 highest recall scores are
then manually reviewed to determine if these similarities pose privacy concerns or if they
are due to general, non-identifying content.

Additionally, ROUGE-5 will be used to assess whether using the same code sequences
from the model’s fine-tuning data for generation is justifiable. In most cases, data used in
testing (in this case, synthetic data generation) should not overlap with training data to
ensure reliable performance metrics and avoid data repetition, or in our case the risk that
the model is merely copying sequences from its training data. By comparing ROUGE-5
scores between a synthetic hold-out set (MIMIC-S) and a subset of the synthetic MIMIC-L
documents, we can assess whether the reuse of code sequences from the training data in
inference leads to unacceptable levels of similarity or if it can be employed without raising
additional privacy concerns over the use of new code sequences.

For the Swedish data, we follow the methodology of Hiebel et al. (2023) by calculating 8-
gram overlaps between synthetic and real data to assess the risk of the model reproducing
long sequences from its training data. Specifically, we compare the synthetic SEPR-M
dataset to the real SEPR-L dataset. As a baseline, we also calculate 8-gram overlaps
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within the real SEPR-M and SEPR-L datasets. Additionally, we compare our findings to
the 8-gram overlap results reported by Hullmann and Hansson (2024), who used the same
metric to evaluate privacy in their synthetic Swedish medical notes. While these similarity
scores provide an initial indication of privacy risk, they are difficult to interpret without
manual review to confirm if overlapping sequences pose privacy concerns. Due to limited
proficiency in Swedish, no manual investigation was conducted, leaving it as a direction
for future research.

3.3.3 Utility Evaluation

As discussed in Chapter 2.3, various downstream tasks are used to evaluate synthetic data.
Automatic medical coding, in particular, is a highly complex task due to the large number
of ICD-10 codes involved. To accurately capture the contents of a medical note and map
it to a list of ICD-10 codes, the note must exhibit a certain level of medical coherence,
particularly in terms of combining related diagnoses and procedures. Previous research has
shown that medical coherence is not as critical for other tasks, such as NER (Hullmann &
Hansson, 2024; Libbi et al., 2021). Therefore, medical coding is likely a more suitable task
for assessing the overall utility of synthetic notes, as it reflects the quality of the notes in
capturing relevant medical information.

Furthermore, our proposed methodology provides a synthetic dataset annotated with ICD-
10 codes, making it directly applicable for the supervised training of medical coding systems
without the need for further adaptation. Since two previous studies employed similar
methodologies and datasets for synthetic medical note generation (Hullmann & Hansson,
2024; Mawaldi & Mladenov, 2024), we also include downstream utility tasks of clinical
NER for the English dataset and PHI NER for the Swedish dataset, as used in those
works. This allows for a comparison with prior results and an evaluation of whether the
proposed method, which focuses on medical coding, can also support utility for other
downstream tasks, thereby demonstrating its generalizability in substituting real data.

Medical Coding
For training the medical coding systems, the PLM-ICD framework introduced by Huang et
al. (2022), as detailed in Chapter 2.2.2 was used. We followed the adapted implementation
of Edin et al. (2023), who provide a reproducible medical coding framework compatible
with different model architectures trained on MIMIC-IV and the earlier MIMIC-III dataset.
The base model for the English dataset is RoBERTa-PM, a pretrained model that achieved
the best results in a comparison by Huang et al. (2022).

For the Swedish data, we used SweDeClin-BERT (Vakili et al., 2022) as the Swedish medical
pretrained base model. Slight modifications were made to adapt the preprocessing pipeline,
enable training on Swedish data, and address occasional model collapse issues reported by
the original authors. All other settings and configurations were adapted from Edin et al.
(2023), including truncating longer documents to 4000 tokens and tuning thresholds, both
of which have been shown to enhance performance. In line with Edin et al. (2023), we
report nine evaluation metrics, listed and described in Table 3.3.
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Table 3.3: Description of the different performance metrics reported for the medical coding
models.

Metric Description

Micro & Macro AUC-ROC Area under the receiver operating characteristic curve:
Probability that the model ranks a randomly chosen positive instance higher than a
randomly chosen negative one.

Micro F1 Harmonic mean of Micro Precision and Micro Recall.
Macro F1 Arithmetic mean of Macro Precision and Macro Recall.
EMR: Exact match ratio Percentage of instances where all codes were predicted correctly.
Precision@k: Precision@8 and Precision@15 Micro Precision among top 8 and 15 predicted codes.
Precision@R / R-Precision Micro Precision among top k codes, where k equals the true number of relevant codes.
MAP: Mean average precision Micro Precision considering the exact rank of all relevant codes in the document.

Edin et al. (2023) run every model ten times to report mean performance and standard
deviation. To save time and computational resources the runs were limited to three times
in this work. To identify significant differences in model performance, two-sample t-tests
were conducted for all metrics with a determined significance level of α = 0.05.

To ensure that the results reported in Edin et al. (2023) can be reproduced and to validate
the implementation, the model was initially trained on MIMIC-L and evaluated on MIMIC-
M using the original preprocessing methods. Next, the model was trained on a version of
MIMIC-L that had been preprocessed using the method described in Chapter 3.1.1 (i.e.,
MIMIC-L Short), to confirm that shortening the documents does not adversely affect
performance. For all subsequent experiments, either the shortened real data or synthetic
data generated from the shortened data were used. MIMIC-M was consistently employed
as test set to ensure comparability across experiments.

To save computational resources and allow for further experiments, the model was also
built upon MIMIC-S. Both synthetic MIMIC-L and MIMIC-S datasets were utilized as
training data to compare performance. Additionally, the following sub-experiments were
conducted to gain further insights into the utility of synthetic discharge summaries in
training medical coding systems:

(i) Filtering: As described in Chapter 3.2, five different medical notes were generated
for each prompt during decoding. Filtering training datasets has been proven to
enhance model performance, especially in medical applications where high-quality
data is essential for accurate results (e.g., Moore & Lewis, 2010). Since the medical
notes used as training data for medical coding must contain sufficient information
about each code, applying an existing medical coding system may be useful to assess
whether the generated notes adequately cover the required codes. To achieve this,
we used the PLM-ICD model provided by Edin et al. (2023) on each generated note
from the synthetic MIMIC-S set. We then filtered out the notes with the highest and
lowest Micro F1 scores from the five generated responses for each prompt, creating
two new filtered training datasets.

(ii) Balancing: The imbalance of codes in medical datasets is a common issue when
training medical coding systems, often resulting in suboptimal performance for less
frequent codes (Edin et al., 2023; Lamproudis et al., 2024). To address this issue,
two new training datasets were created. The first dataset ensures completely bal-
anced code frequencies across all ICD-10 codes, while the second dataset adjusts the
frequencies by increasing the least frequent codes to a minimum of 10 occurrences
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and proportionally decreasing the more frequent codes. Both datasets maintain the
original number of codes per note in the MIMIC-S set but with balanced or adjusted
frequencies. Note, that the codes with adjusted frequencies were randomly re-ordered
without taking into account co-occurrences of single codes.

(iii) Increasing training size: To evaluate the effect of training data size on model
performance, two approaches were applied to increase the training set based on
MIMIC-S. In the first approach, the training set size was doubled and tripled by
using the first two and three generated outputs for each prompt. In the second ap-
proach, MIMIC-S was expanded by incorporating random subsets of the synthetic
MIMIC-L dataset to double and triple the training set size. This not only evaluates
the impact of training set size but also investigates whether the increased variety in
the generated code sequences influences the model’s performance.

The Swedish models were trained on the real and synthetic SEPR-L and SEPR-M datasets
and tested on the real SEPR-S dataset. Again, performance differences were compared
between the real-data and synthetic-data models calculating two-sample t-tests for each
metric.

In a final experiment on medical coding, we evaluated the suitability of LLaMA-3.1-8B
for our framework by comparing model performance on training data generated by the
instruction-tuned base version of LLaMA to data generated through the integration of two
specialized pretrained language models:

(i) OpenBioLLM-8B: Developed by Saama, OpenBioLLM is an open-source model
built on the foundation of LLaMA-3-8B, specifically adapted for biomedical applica-
tions. This adaptation was achieved through extensive fine-tuning on a large biomedi-
cal corpus, along with Direct Preference Optimization and medical instruction-tuning
to enhance its relevance to the biomedical field (Ankit Pal, 2024).

(ii) AI-Sweden Models/LLaMA-3-8B This model, released by AI Sweden, is a ver-
sion of LLaMA-3-8B, specialized through continuous pretraining on a subset of the
Nordic Pile, a dataset with over 227 billion tokens in Swedish, Danish, and Norwe-
gian. The goal of this adaptation is to optimize the model for Nordic languages (AI
Sweden Models, 2024).

The integration of OpenBioLLM aims to assess whether the framework, fine-tuning the base
LLaMA model on medical notes, is sufficient for medical domain adaptation or if additional
pretraining on biomedical data further enhances the quality of generated synthetic medical
records. Similarly, AI Sweden’s adapted LLaMA model helps determining if the base
model, fine-tuned within our framework, can effectively handle Swedish medical texts, or
if additional pretraining on Swedish is required. Since Meta has not specified the model’s
proficiency in Swedish, it is unclear whether Swedish was included in the pretraining data
for the base model, or to what extent.

To better understand the differences in model performance between real and synthetic
data, we conducted an error analysis focusing on several aspects that provide valuable
insights. First, we analyzed the predicted codes from a general statistical perspective, such
as calculating the total number of unique predictions, the average number of predictions per
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document, and the distribution of predictions across ICD-10 chapters. Second, we assessed
the impact of code frequency in the training data and document length in the test data
on the F1 scores, as both factors are commonly reported to influence model performance.
Third, we examined within-family (WF) and out-of-family (OOF) errors, i.e., the number
of incorrect predictions that still fall within the same ICD-10 chapter, to investigate the
nature of these errors and determine whether the models have potentially learned more
than is apparent from the other reported metrics. Finally, we trained medical coding
models on real data with artificially inserted noise and compared them to the synthetic-
data model to better understand where differences in the utility between real and synthetic
data might stem from.

NER
In addition to medical coding, NER was used as a downstream task to assess the utility
of the synthetic data. This choice was motivated by two main reasons: First, evaluating
synthetic data on multiple downstream tasks provides a more comprehensive assessment
of its general utility. Second, NER is widely used for utility evaluation in synthetic data
research, enabling direct comparison with previous studies. Specifically, two studies similar
to ours were selected as baselines, and their methodologies were replicated to facilitate
result comparison.

For English, we used the framework from Mawaldi and Mladenov (2024) as a baseline. In
their study, synthetic medical notes were created by fine-tuning LLaMA-2-7B to generate
the History of Present Illness section from the Chief Complaint using data from the MIMIC
III dataset. While their approach shares similarities with ours in using earlier versions of
both the model and dataset, their method of transfer learning differs, as they incorporated
part of the medical note in the prompts, whereas we used ICD-10 code transcriptions and
generated only a subsection of the full note, whereas we generate the complete discharge
summary. To evaluate the utility of their synthetic data, they annotated both real and
synthetic subsets of 5,000 documents each using Med7 (Kormilitzin et al., 2021) for drug
name identification and Stanza (Qi et al., 2020) for disease identification. These labeled
datasets were then used to fine-tune BERT base (Devlin et al., 2019) for clinical NER with
drug and disease labels. Their evaluation metrics included accuracy, F1-score, precision,
and recall. Following this approach, we extracted subsets of 5,000 documents from both
the real and synthetic MIMIC-S datasets to implement clinical NER as a downstream task
for utility evaluation.

For Swedish, the implementation of Hullmann and Hansson (2024) was followed. They
employed SEPR II, the same corpus used in this work, to generate synthetic data by
fine-tuning KB-BART (KB Lab, 2023), using the first sentence of a medical note as a
prompt to generate the remainder of the note. Their approach differs from ours in that
they used an encoder-decoder model, whereas we used a decoder-only model and prompted
with the beginning of the note where we used ICD-10 codes. However, their objective of
generating full synthetic medical notes resembling those in SEPR II makes their results
highly comparable. For utility evaluation, they conducted PHI NER as a downstream
task, using SweDeClin-BERT (Bridal et al., 2022) to annotate real and synthetic datasets
of 26,023 notes each with nine PHI tags. These annotated datasets were then used for
supervised fine-tuning of SweDeClin-BERT, with the SEPR PHI Pseudo Manual Corpus
(Velupillai et al., 2009), containing a manually annotated subset of 300 documents, serving
as the evaluation gold standard. Evaluation metrics included accuracy, precision, recall,
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and F1-score. In our work, we followed their methodology by extracting a subset from the
synthetic SEPR-M dataset, matching their token count of 1,187,380 tokens, annotating
them with SweDeClin-BERT NER, and using this data to fine-tune SweDeClin-BERT.

In summary, this work focuses on utility evaluation primarily through medical coding,
implemented based on the approach from Edin et al. (2023). Additionally, by training
NER models as a secondary downstream task, we aim to provide broader insights into the
generalizable utility of the synthetic data. Moreover, the NER evaluation enables direct
comparison with previous research on synthetic medical note generation, specifically with
the clinical NER models of Mawaldi and Mladenov (2024) for English data and the PHI
NER models of Hullmann and Hansson (2024) for Swedish data.

3.3.4 User Study

As discussed in Chapter 2.3, previous research suggests that training data can be effec-
tive for training downstream systems even when it lacks grammatical accuracy or topical
coherence (Hiebel et al., 2023; Libbi et al., 2021). However, while some tasks may not
require coherent narratives, others might depend on accurate medical information to func-
tion effectively. We argue that medical coherence is essential for synthetic data to serve as
a viable substitute for real data across diverse applications.

The importance of grammatical correctness is more complex. Real EHRs often contain
grammar errors, such as spelling mistakes, incomplete sentences, and incorrect punctuation
(Lai et al., 2015). While complete grammatical accuracy in synthetic data could aid
comprehension and processing, it could also create an unnatural distinction from real
data. If desired to accurately mirror the stylistic nuances of real medical records, such
imperfections should be therefore preserved in the synthetic data as well.

Quantitatively measuring medical coherence is challenging, as it requires profound medical
expertise. To address this, a user study was conducted to evaluate the readability and
medical coherence of a sample of synthetic and real document pairs corresponding to the
same code sequences. Medical professionals were recruited as participants and asked to
rate both synthetic and real notes on two criteria: readability and medical coherence. The
ratings were on a bipolar scale from 1 to 5, with 1 indicating the lowest level of quality
and 5 indicating the highest. Specifically, for readability, 1 meant not natural at all and 5
meant completely natural: could be written by a doctor. For medical coherence, 1 indicated
not coherent at all and 5 meant Perfectly coherent: Symptoms, diagnosis, procedures,
etc. fit together perfectly. The samples were presented in random order to eliminate any
sequence-based biases.

The participants were unaware that they were being presented with partially synthetic
medical notes. After each rating, and at the end of each note, they had the opportunity
to provide justifications for their ratings and comment on any unusualities they observed
during their review of the notes.

This study allows for an evaluation of the readability and medical coherence of the syn-
thetic discharge summaries from a professional perspective, offering valuable insights into
how easily synthetic notes can be distinguished from real notes in their quality. It also
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provides indirect information about the potential for using these synthetic notes in real-
world applications. If participants identified medical incoherencies or unusual elements not
found in the real data, it would suggest that the quality of the synthetic data may not yet
be sufficient for use in building clinical decision support systems that can be deployed in
practical scenarios.

In addition to rating readability and medical coherence, participants were asked to perform
manual diagnosis coding on the medical notes. This task served two purposes: first, to
assess whether the presented notes accurately reflect the diagnoses provided as prompts in
the text, and second, to examine the level of inter-annotator agreement between partici-
pants and their performance in comparison to medical coding models. This task was only
presented to participants who confirmed to be experienced in medical coding, stating to
perform this task often or very often.

The study samples were randomly selected from the dataset, with the MIMIC samples
ranging from 300 to 600 words in length and the SEPR samples ranging from 100 to 200
words. This length range was chosen to balance the participants’ reading effort while
ensuring the documents were long enough to provide enough context and pose as a rep-
resentative sample. Following pretests with five independent participants, whose feedback
addressed issues like task clarity, potential ambiguities, and time requirements, the English
questionnaire was reduced to three real-synthetic document pairs, while the Swedish ques-
tionnaire was shortened to four pairs. This adjustment ensured that study participation
would take approximately 30 minutes. Since medical expertise was a key requirement for
participation, all participants had to confirm that they possessed such expertise by being
engaged in a profession in the medical field before starting the study. The questionnaire
following the presentation of each medical note is included in the Appendix (see Chapter
D).

3.4 Experimental Setup

The Department of Computer and System Sciences (DSV) at Stockholm University pro-
vided the study setting for this work. All experiments were conducted on a DSV-provided
server equipped with four NVIDIA RTX A5000 graphical processing units (GPUs), each
offering 24GB of RAM (NVIDIA, 2024). The server did not have internet access to ensure
data security and control over the experimental environment.

3.5 Ethical Considerations

Both the MIMIC and SEPR corpora contain sensitive clinical data that require careful eth-
ical consideration in their use. Relevant privacy agreements were signed prior to gaining
access to the datasets. Additionally, an ethics training program provided by CITI, includ-
ing the courses Data or Specimens Only Research and Conflicts of Interest, was completed
before access to the MIMIC dataset was granted. All data protection regulations, includ-
ing the General Data Protection Regulation (GDPR) (European Parliament & Council
of the European Union, 2016) and the Health Insurance Portability and Accountability
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Act (HIPAA) (Centers for Medicare & Medicaid Services, 1996), were strictly adhered to
throughout the research. The data used in this study was pseudonymized minimizing the
risk of data leakage, and only the data relevant to our experiments was processed. All
experiments were conducted on a server provided by DSV, which was isolated from the
internet. All models used in this study were loaded, trained, and saved locally on this
server, ensuring no data was transmitted to online APIs. This research has been approved
by the Regional Ethical Review Board in Stockholm under permission no. 2007/1625-31/5.
While we do our best to protect patient privacy and maintain medical correctness in our
synthetic notes, we do not recommend the distribution or use of any generated data or
models trained on this data in real-world settings without further privacy evaluations.

Recognizing the environmental impact of using computationally intensive LLMs and
energy-demanding GPUs, efforts were made to minimize the carbon footprint of this study.
This was achieved by incorporating PEFT methods and limiting computational resources
to the minimum required for the experiments.
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This chapter presents the results from the various assessment methods applied to the
synthetic data.

4.1 Fidelity: Statistical Comparison and Manual Investigation

To assess the fidelity of the synthetic data, i.e., how closely it resembles the real data, a
range of statistical features were compared between the real and synthetic corpora. For the
English data, MIMIC-S was used as the baseline for comparison, while SEPR-M served as
the reference dataset for the Swedish data. In the Appendix, examples of synthetic medical
notes are provided for both English (see Figure E.1) and Swedish (see Figure E.2).

Table 4.1: Statistical comparison of the real and synthetic MIMIC-S datasets.

Statistical Comparison real vs. synthetic MIMIC-S

Total
Docs

AVG
Sent/Doc

AVG
Token/Doc

AVG
Token/Sent

Total
Sent

Total
Tokens

Unique
Tokens

Unique
Ratio

Real 13,378 72.4 1,285.5 17.7 969,065 17,197,361 96,380 0.006
Synth 13,378 79.34 1,638.8 20.66 1,061,409 21,923,740 233,845 0.011

Table 4.1 compares key statistical features between the real and synthetic MIMIC-S
datasets. Notably, the synthetic data exhibits a greater total count of tokens and sen-
tences, with sentences being, on average, three tokens longer in the synthetic dataset.
Furthermore, synthetic documents contain, on average, seven more sentences per docu-
ment, making them significantly longer than the real documents. The synthetic dataset
also has a notably larger vocabulary, with over 59,000 more unique tokens than the real
data. While the overall higher token count in the synthetic dataset accounts for the in-
crease, the ratio of unique words is also higher in the synthetic data at 1.1%, compared to
0.6% in the real data.

This suggests that the fine-tuned LLaMA model can generate content in the synthetic
discharge summaries that it did not encounter during fine-tuning, resulting in a synthetic
dataset with greater variety than the original. This finding is particularly noteworthy
since previous research has often reported reduced variety and a smaller vocabulary in
synthetic datasets (Hullmann & Hansson, 2024; Libbi et al., 2021; Mawaldi & Mladenov,
2024). These limitations in variety can hinder downstream performance, so the increased
vocabulary size observed in this study may help mitigate this issue.
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Table 4.2: Statistical comparison of the real and synthetic SEPR-M datasets.

Statistical Comparison real vs. synthetic SEPR-M

Total
Docs

AVG
Sent/Doc

AVG
Token/Doc

AVG
Token/Sent

Total
Sent

Total
Tokens

Unique
Tokens

Unique
Ratio

Real 47,783 13.96 199.93 14.33 666,826 9,553,204 191,578 0.02
Synth 47,783 13.88 252.32 18.18 663,164 12,056,615 391,152 0.03

The statistical comparison of the real and synthetic SEPR-M datasets for the Swedish data
is presented in Table 4.2. Overall, the comparison aligns closely with that of the MIMIC
data. Unlike the synthetic MIMIC dataset, however, the synthetic SEPR dataset mirrors
the real SEPR dataset in terms of the average number of sentences per document and
contains a slightly lower total sentence count. Nonetheless, the synthetic SEPR dataset
features longer sentences, with an average of four additional tokens per sentence, resulting
in a higher total token count and a significantly larger vocabulary. Specifically, the syn-
thetic data includes 1% more unique tokens than the real dataset. This suggests that our
proposed method consistently introduces more variety into the synthetic data than prior
approaches and even surpasses the variety present in the real data.

In addition to the statistical analysis, a manual review of the synthetic dataset was con-
ducted to examine key characteristics and assess its resemblance to the real data. Due
to language constraints, this investigation was limited to the MIMIC dataset. Table 4.3
summarizes the notable similarities and differences identified, along with illustrative ex-
amples.

Table 4.3: Some examples of key findings of the manual investigations in the synthetic MIMIC-S
data.

Similiarities

Abbreviations [...] PMH past MI, HTN, Afib on ASA verapamil CCB digoxin [...]
Spelling Mistakes [...] that was suspcious for [...] , he was suppose to undergo [...]
Pseudonymization Mr. is a yo M admitted to the Acute Care Surgery Service on with abdominal pain.

Differences

Repetitions [...] but no pain or nausea nausea [...]
Inconsistencies [...]Patient is a yo M. She denies any dizziness [...]
Hallucinations Given this and the fact that patient is a poor historian, a follow up MRI ordered for .

The investigation found that the synthetic data successfully captures several core attributes
of the real dataset. Structurally, the synthetic documents replicate the general format of
discharge summaries, including distinct sections described in Chapter 3.1.1. The sentence
style mirrors that of the original data, characterized by concise, sometimes incomplete
sentences focused on delivering precise information without digression. Disease mentions
appear naturally embedded in the notes, mostly without explicit repetition of their full
names as provided in the prompt.

A closer examination revealed that the synthetic documents contain many abbreviations,
along with occasional grammatical errors and spelling mistakes, reflecting patterns also
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present in the training data. Given that discharge summaries typically include numer-
ous abbreviations and errors (Dalianis, 2018; Lai et al., 2015), it is expected that these
characteristics would persist in the synthetic data unless addressed during preprocess-
ing. Additionally, the synthetic data seems to replicate the masked pseudonymization of
MIMIC, as shown in the example provided in Table 4.3.

Despite these similarities, the synthetic data also displays certain characteristics that are
more indicative of typical LLM-generated text. For instance, repetition is occasionally
observed, either in isolated words (as shown in Table 4.3) or across longer passages spanning
several sentences, which can create an unnatural flow. LLMs are also prone to generating
hallucinations, where content may be factually incorrect, irrelevant, or fabricated (Z. Ji et
al., 2023). While coherence issues will be further explored in the user study, some irrelevant
sections have already been identified. For example, one document mentions an MRI ordered
because the patient is described as a “poor historian”, which seems contextually odd and
irrelevant. Thus, this example likely illustrates an LLM hallucination. Additionally, while a
detailed assessment of medical inconsistencies will be covered in the user study, some minor
inconsistencies, such as mismatched gender references, were noted during this review.

Overall, the fidelity assessment shows that, while the synthetic data captures many charac-
teristics of the real datasets, there are also notable distinctions. The statistical comparison
reveals that synthetic documents generally contain more tokens. This feature could be
adjusted during decoding if necessary. A positive differentiation is the increased variety,
reflected in the larger vocabulary size, which appears to address limitations observed in
prior approaches. Although preliminary findings indicate that LLM-related artifacts, such
as repetitions and hallucinations, are relatively uncommon, their presence could still influ-
ence the synthetic data’s utility. Issues related to medical coherence and readability will
be further examined in Chapter 4.5.

4.2 Privacy: Similarity

To evaluate whether the generated synthetic datasets preserve privacy, two different sim-
ilarity metrics for the English and Swedish datasets were employed. These metrics were
used to compare the synthetic data to the training data used in the instruction-tuning
process. The goal was to assess the risk of the synthetic data potentially leaking sensitive
information from the training data.

4.2.1 MIMIC: ROUGE-5 Recall

To assess the similarity between the synthetic and real MIMIC datasets, ROUGE-5 scores
were computed following the methodology of Libbi et al. (2021). Specifically, we compared
the synthetic MIMIC-S dataset to the real MIMIC-L dataset and a subset of the synthetic
MIMIC-L dataset (equal in size to the MIMIC-S dataset) to the real MIMIC-L dataset. To
have a baseline of the proximity within real datasets, ROUGE-5 was additionally calculated
between the real MIMIC-S and real MIMIC-L data, The recall scores for the entire dataset

35



4 Results

as well as the 122 documents with the highest recall values are presented and compared to
the results reported by Libbi et al. (2021) in Table 4.4.

Table 4.4: Comparison of ROUGE-5 Recall Scores: Real MIMIC-S, Synthetic MIMIC-S and a
Subset of Synthetic MIMIC-L vs. Real MIMIC-L, compared to Libbi et al. (2021).
The results are reported for the full dataset and the 122 document pairs with the
highest scores.

All Real/Synthetic Pairs Highest 122 Real/Synthetic Pairs

AVG Median Min Max AVG Median Min Max

Libbi et al. (2021) 0.031 0.026 0.000 1.000 0.207 0.143 0.025 1.000

MIMIC-S real 0.138 0.088 0.006 1.000 0.794 0.779 0.727 1.000

MIMIC-S synth 0.097 0.052 0.001 1.000 0.760 0.748 0.690 1.000
MIMIC-L synth 0.068 0.036 0.000 0.900 0.668 0.648 0.587 0.900

The baseline comparison of real MIMIC-S to real MIMIC-L demonstrates significantly
higher ROUGE-5 scores than those achieved with both synthetic datasets. The average
recall score for the real MIMIC-S dataset stands at 0.138, which is approximately double
that of the synthetic MIMIC-S data. Moreover, among the 122 closest document pairs, the
real-real comparison yielded the highest scores, though the difference here is less strong.
From a privacy perspective, these findings are particularly encouraging. The low simi-
larity of synthetic datasets to the training data, which is even lower than the similarity
between real datasets, suggests that the fine-tuned model successfully generates diverse
and novel discharge summaries rather than replicating segments from the training data,
thus, ensuring high privacy protection.

The synthetic MIMIC-L subset shows overall lower ROUGE-5 scores compared to the
MIMIC-S data, indicating that these synthetic documents are, on average, more distant
from the real documents. This suggests a lower risk of re-identification, implying that
the synthetic data generated from MIMIC-L prompts poses a reduced privacy risk. Thus,
this result supports the approach of generating synthetic datasets from MIMIC-L code
sequences, i.e. from the same code sequences the LLaMA model was trained on without
presenting a higher security risk than when applied to new code sequences.

When compared to the results of Libbi et al. (2021), both synthetic datasets of this work
exhibit higher ROUGE-5 scores. However, a direct comparison is not very meaningful,
as Libbi et al. (2021) used a different dataset. As discussed in Chapter 3.1.1, the MIMIC
documents follow a highly structured format, where certain 5-gram overlaps, such as Major
Surgical or Invasive Procedure, are expected and even desired to produce realistic data.
This is also highlighted in the higher recall scores of the baseline. Therefore, a more
detailed investigation is needed to assess privacy concerns more accurately. To further
explore this, we conduct a more in-depth analysis of the 20 highest-risk documents from
the synthetic MIMIC-S dataset, based on their ROUGE-5 scores.

Table 4.5 demonstrates why a high ROUGE-5 score does not necessarily indicate a privacy
concern by showing the total count of occurrences of the overlapping 5-grams found in
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the 20 most similar documents in MIMIC-L. None of the identified 5-grams are unique,
and most appear frequently, with a median occurrence of 1005 times. This suggests that
the presence of overlapping 5-grams does not directly map to specific real documents in
the training data. However, Table 4.6 reveals that within these 20 documents, there are
long overlapping sequences of up to 216 words that significantly increase the risk of re-
identification. A manual investigation of the document pairs yielded two key findings:

(i) No leakage of PHI could be found.

(ii) Long overlapping passages enable mapping to original documents.

Finding (i) was expected, as the original data is already pseudonymized, meaning PHI
was already filtered out in the real data. Finding (ii), however, suggests that applying
this method to non-pseudonymized data could pose a privacy risk, and adjustments, such
as the integration of DP, would be necessary to mitigate this risk. To further reduce the
likelihood of re-identification, ROUGE-5 recall scores could be used to filter out documents
that are too similar to the original dataset.

However, the average and median ROUGE-5 recall scores for the entire dataset show
that most synthetic documents differ substantially from the original data, contributing to
the creation of a new and varied synthetic dataset. Given that no identical documents
were found between the synthetic and real data, and in light of the significant differences
observed, we have opted not to apply additional filtering in this work.

Table 4.5: Total counts of overlapping 5-grams
in MIMIC-L, extracted from the
20 most similar document pairs be-
tween synthetic MIMIC-S and real
MIMIC-L.

AVG Median Min Max

3249 1005 6 88910

Table 4.6: Word lengths of the longest over-
lapping word sequences in the 20
most similar document pairs be-
tween synthetic MIMIC-S and real
MIMIC-L

AVG Median Min Max

93 79 19 216

4.2.2 SEPR: 8-Gram Overlap

For the Swedish privacy evaluation, we followed the approach outlined by Hiebel et al.
(2023), calculating 8-gram overlap between the real and synthetic datasets. We then
compared our results to those of Hullmann and Hansson (2024), who reported 8-gram
overlap results for their Swedish synthetic dataset, which was also generated from the
SEPR corpus. Table 4.7 presents the 8-gram overlap between the synthetic SEPR-M and
real SEPR-L datasets, with the overlap between real SEPR-M and SEPR-L serving as a
baseline for comparison. The results are also compared to those reported by Hullmann
and Hansson (2024).
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Table 4.7: 8-gram overlap between synthetic SEPR-M and real SEPR-L in comparison to base-
line and Hullmann and Hansson (2024)

8-Gram Overlap

Hullmann and Hansson (2024) 0.02442
Synthetic SEPR-M 0.00179
Baseline 0.00488

As shown in Table 4.7, the 8-gram overlap between the synthetic SEPR-M dataset and the
real SEPR-L dataset is smaller than the overlap between the real SEPR-M and SEPR-L
datasets, as well as the results reported by Hullmann and Hansson (2024). This suggests
that the fine-tuned LLaMA model did not simply replicate parts of the training data but
generated a new and varied dataset. The lower overlap compared to the real SEPR-M
dataset may be attributed to the higher vocabulary and unique token ratio discussed in
Chapter 4.1, which could also explain the substantially lower overlap compared to the re-
sults of Hullmann and Hansson (2024), who reported a smaller vocabulary in their synthetic
dataset.

However, it is important to note that the overlap alone does not allow for conclusions
regarding the risk of privacy leakage. These results only indicate that the model successfully
generated a dataset that differs from the training data. To assess the privacy risk more
thoroughly, further evaluations, such as a manual investigation, would be required to ensure
that documents do not undesirably leak private information or allow for direct mappings
to real documents. Due to language constraints, we refrain from such an investigation for
this work.

Overall, the privacy assessment indicates that the proposed framework can effectively
generate new medical notes rather than merely replicating sequences encountered dur-
ing instruction-tuning. However, longer duplicated sequences were identified in the most
similar document pairs in the real-synthetic MIMIC comparison. Additionally, the simi-
larity metrics used in this assessment alone cannot offer a fully reliable privacy evaluation
without further investigation. Therefore, integrating additional assessment methods or
privacy-preserving techniques into the fine-tuning process would be essential when work-
ing with data that has not been pseudonymized in advance.

4.3 Utility: Medical Coding

This chapter presents the results of the utility evaluation for medical coding models trained
on synthetic data. We first present the results of models trained on the MIMIC datasets,
followed by those trained on SEPR data and data generated using the domain-specific
versions of LLaMA.
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4.3.1 English Models

The results of the medical coding models trained on the synthetic datasets are presented
in Table 4.8, alongside comparisons to models trained on real MIMIC datasets. The real
MIMIC-M set serves as test data for all reported experiments. We reproduced the imple-
mentation by Edin et al. (2023) using MIMIC-L as training data, and our model results fall
within the reported standard deviation for all metrics except Exact Match Ratio (EMR),
where we achieved a 0.2% higher score. To confirm that the adapted preprocessing method
described in 3.1.1 does not impact model performance, we also trained a model on the pre-
processed MIMIC-L Short dataset and compared its results to Edin et al. (2023). Similarly,
the model’s performance on all metrics except EMR fell within the reported standard de-
viation, with our preprocessing method yielding a 0.1% higher EMR.

Overall, no significant differences were observed between the performance of our reproduced
model, the model trained with our adapted preprocessing method, and the results reported
by Edin et al. (2023). This finding supports the assumption that much of the information
in discharge summaries is irrelevant to the task of medical coding, justifying the document
shortening step during preprocessing and before being used to fine-tune LLaMA. Accord-
ingly, the synthetic training datasets can be considered short versions, since LLaMA was
trained on the preprocessed, shortened MIMIC-L dataset before the generation process.

To establish a real baseline using a smaller dataset, enabling more experiments while saving
time and computational resources, we trained a model on the preprocessed real MIMIC-
S dataset. As expected, this model is outperformed by the model trained on the larger
MIMIC-L dataset, aligning with previous findings that the amount of training data plays
a crucial role in model performance (Edin et al., 2023). Despite this, the model trained on
MIMIC-S achieved a mean micro F1 score of 48.2%, representing a non-trivial performance
that serves as a useful comparison point for models trained on synthetic data.

The models trained on the synthetic MIMIC-L and MIMIC-S datasets were compared to
their real data counterparts. As shown in Table 4.8, both synthetic models were signif-
icantly outperformed by the real-data models across most metrics except EMR for both
models and Micro AUC and Macro F1 for the synthetic MIMIC-S model. However, the
synthetic models still demonstrate competitive performance. Notably, the model trained
on synthetic MIMIC-L outperforms the real-data model trained on MIMIC-S, suggesting
that synthetic data has the potential to achieve superior results as the training set size in-
creases. Given that one advantage of the proposed data-generation framework is its ability
to produce arbitrary amounts of synthetic data, this finding indicates a promising direction
for training models on synthetic data that could potentially surpass SOTA models trained
on real datasets.

In the following, the results of the sub-experiments addressing filtering, balancing, and
increased training data will be presented.

(i) Filtering: The five outputs generated for MIMIC-S were filtered by using them as
input to the medical coding model from Edin et al. (2023). Using the outputs with the
highest and lowest micro F1 scores, two new training datasets were created to train
medical coding models. It was expected that these models would show significantly
higher and lower performance, respectively, compared to the synthetic MIMIC-S

39



4 Results

model trained on the first output of the decoding stream. However, as shown in
Table 4.8, no significant differences were found between any of the three models.
Thus, the proposed filtering method cannot be used to improve model performance
or to create a dataset suitable for preference tuning. However, the results suggest
that the generation model is capable of producing consistent outputs, where each
of the first five outputs obtained during decoding represents the prompted ICD-10
codes similarly well.

(ii) Balancing: Given that highly unbalanced code frequencies are known to hinder
model performance, we created two new synthetic datasets with a more balanced code
frequency distribution. These datasets were designed to maintain the same number
of training samples as MIMIC-S and match the number of codes per document. One
dataset was fully balanced, while the other adjusted the lowest frequency codes to
have a minimum occurrence of ten. Both datasets were used as training data. The
performance metrics in Table 4.8 show that the model trained on the fully balanced
dataset achieved near-zero scores for most metrics, failing to predict any code with
confidence above the threshold. Similarly, the model trained on the dataset with a
minimum frequency of ten exhibited very low performance, significantly worse than
the model trained on synthetic MIMIC-S data. While this model managed to predict
codes with confidence above the threshold, nearly all predictions were incorrect.

The complete balancing of codes is expected to underperform on an imbalanced test
set, as high-frequency codes typically contribute significantly to the performance of
classification systems. Another potential issue is the random distribution of codes
used to create these datasets. Certain disease codes naturally co-occur, while others
may result in rare or incompatible combinations. A potential solution could involve
adding a step to the dataset creation process where medical expertise or statistical
patterns are used to ensure that codes are recombined in a more meaningful man-
ner. Overall, our approach to balancing code frequencies failed to improve model
performance.

(iii) Increasing training data: To evaluate the effect of training data size, the MIMIC-
S dataset was doubled and tripled in two different ways. First, by using the second
and third outputs generated during inference for the same prompts, i.e., using the
same code sequences with multiple outputs (referred to as “Dupli”). Second, by aug-
menting MIMIC-S with documents from the synthetic MIMIC-L dataset, selecting
random subsets of the same document number as MIMIC-S (referred to as “New”).
The results show a noticeable increase in performance metrics when doubling the
training size using both approaches, with a higher performance increase when sup-
plementing MIMIC-S with new data. When tripling the dataset size, the performance
continues to improve with the inclusion of new data even though this improvement
is very subtle. When using duplicated code sequences, the model performance does
not further increase when tripling instead of doubling the data set size. For both
dataset sizes, the model incorporating new code sequences significantly outperforms
the model duplicating code sequences across almost all metrics. These results show
on the one hand the importance of varied samples in the training data and on the
other hand that increasing the size of training data has a large positive effect when
working with smaller data sets, which is more difficult to achieve the larger the data
set is.
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The results of the synthetic and real MIMIC medical coding models overall demonstrate
that synthetic documents generated from MIMIC and LLaMA-3.1-8B have the potential to
serve as effective training data for creating high-performing models. However, the models
trained on synthetic data still do not perform at the same level as those trained on real
MIMIC data. A promising outcome is that model performance improves with increasing
dataset size, which should be explored further in future work. Additionally, the issue of
imbalance in the training dataset could theoretically be addressed using synthetic data.
While our approach to balancing code frequencies did not yield successful results, we
encourage future work to further explore this possibility.

Table 4.8: Results of medical coding model trained on different MIMIC datasets.
Significance: *p<0.05, **p<0.01, ***p<0.001. The color of the asterisk indicates the
reference model used to test for statistical differences and is additionally shown next
to the model name..

Classification Ranking

AUC-ROC F1 EMR Precision@k R-precision MAP
Training Data Micro Macro Micro Macro 8 15

Edin et al. (2023) 99.2±0.0 96.6±0.2 58.5±0.7 21.1±2.3 0.4±0.0 69.9±0.6 55.0±0.6 57.9±0.8 61.9±0.9
Real MIMIC-L 99.2 96.6 58.9 22.8 0.6 70.3 55.4 58.4 62.5
Real MIMIC-L Short 99.2±0.0 96.6±0.1 58.7±0.4 22.8±1.8 0.4±0.0 70.0±0.3 55.1±0.4 58.0±0.4 62.0±0.5

Real MIMIC-S Short 96.9±0.4 83.5±1.7 48.2±1.7 3.8±0.8 0.1±0.0 59.7±1.7 45.1±1.7 46.0±1.9 46.4±2.3

Synth MIMIC-L* **98.9±0.0 **94.8±0.0 *54.8±0.8 *15.9±0.7 0.3±0.1 **65.5±1.0 *50.9±1.1 *53.9±0.8 *56.9±1.0
Synth MIMIC-S* 95.4±0.2 *77.0±0.9 *37.6±0.6 2.1±0.3 0.1±0.0 *48.3±0.6 *35.5±0.6 *35.8±0.7 *34.8±0.7

MIMIC-S Best F1* 95.5±0.4 77.3±1.7 36.6±1.9 2.1±0.4 0.0±0.0 46.6±2.6 34.5±1.8 34.7±2.0 33.5±2.3
MIMIC-S Worst F1* 95.7±0.3 78.4±1.3 37.8±1.5 2.2±0.3 0.0±0.1 48.4±1.8 35.8±1.3 36.1±1.4 35.1±1.7

MIMIC-S Balanced* **48.4±3.0 ***50.0±0.1 **0.4±0.0 **0.2±0.1 0.0±0.0 ***0.2±0.2 ***0.1±0.1 ***0.1±0.1 ***0.3±0.0
MIMIC-S Min10* *89.1±1.5 ***50.5±0.5 ***17.7±0.1 ***0.1±0.0 0.0±0.0 ***24.5±0.0 ***18.1±0.3 ***18.4±0.0 ***14.7±0.2

MIMIC-S 2x Dupli 97.8±0.1 88.3±0.2 50.1±0.7 8.1±0.7 0.2±0.1 61.7±0.8 47.2±0.7 48.7±0.8 50.0±0.9
MIMIC-S 3x Dupli 97.7±0.1 87.9±0.1 49.7±0.4 9.3±1.4 0.2±0.0 61.4±0.5 47.0±0.4 48.5±0.6 49.6±0.5
MIMIC-S 2x New* ***98.4±0.1 ***91.8±0.4 *52.3±0.8 10.7±1.0 *0.2±0.0 *63.8±0.9 *49.3±0.8 *51.1±0.9 *53.1±1.1
MIMIC-S 3x New* ***98.8±0.1 ***93.7±0.3 **53.5±0.9 *12.1±1.7 **0.2±0.0 **65.1±0.8 **50.5±0.8 **52.5±1.0 **55.1±1.2

4.3.2 Swedish Models

The results of the Swedish medical coding models are presented in Table 4.9. For com-
parison, we also report the results from Lamproudis et al. (2024), who trained a medical
coding model on SEPR II. However, their results are only partially comparable to ours,
as a different training algorithm was used, and the dataset splits are not defined in detail,
meaning there is no identical test set. The PLM-ICD model trained on SEPR-L shows
at 60.2% a similar Micro F1 score to that reported in Lamproudis et al. (2024). When
using the significantly smaller SEPR-M as training data, the performance drops to a mean
Micro F1 of 52.4%. The models trained on the respective synthetic datasets exhibit a per-
formance decrease similar to what was observed with the English datasets. However, their
performance can still be considered competitive, especially given the enhanced privacy in
comparison to models trained on real data. Compared to the MIMIC models, it is notable
that the SEPR models show much higher EMR and much lower Precision@8 and Preci-
sion@15 metrics, while R-precision remains comparable. This discrepancy is likely due to
the significantly fewer codes per document in SEPR compared to MIMIC, enabling higher
EMR scores and making Precision@8 and Precision@15 less suitable as evaluation metrics.
As described in Chapter 3.1, there are several key differences between the English and
Swedish datasets, which make a direct comparison less meaningful. However, the respec-
tive differences between real and synthetic data are comparable and, as discussed, quite
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similar. This suggests that our proposed framework generates synthetic data of similar
utility for training medical coding systems in English and Swedish.

Table 4.9: Results of medical coding model trained on different SEPR datasets.
Significance: *p<0.05, **p<0.01, ***p<0.001

Classification Ranking

AUC-ROC F1 EMR Precision@k R-precision MAP
Training Data Micro Macro Micro Macro 8 15

Lamproudis et al. (2024) - - 61.0 - - - - - -

Real SEPR-L 99.3±0.1 97.0±0.2 60.2±0.9 23.4±1.1 48.8±0.7 12.3±0.1 6.9±0.0 60.4±0.7 71.9±0.7
Synth SEPR-L 98.8±0.2 **95.3±0.1 **54.7±0.6 ***14.3±0.7 *44.1±0.8 **11.7±0.1 **6.6±0.0 **54.5±0.5 *66.3±0.9

Real SEPR-M 98.5±0.0 92.2±1.2 52.4±0.5 15.0±0.9 40.5±1.2 11.5±0.0 6.6±0.0 52.1±0.8 64.4±0.6
Synth SEPR-M *98.1±0.1 89.7±0.8 **45.9±1.1 *8.2±1.3 *30.5±2.6 *10.9±0.1 **6.3±0.0 **45.3±1.4 **58.4±1.2

4.3.3 Effect of Domain Adaptation

To evaluate the suitability of the LLaMA-3.1-8B base model within our framework, we
integrated two additional pretrained models into the data generation process. Synthetic
data generated by these models was used to train medical coding models and then com-
pared against models trained on the synthetic dataset generated by LLaMA-3.1-8B. To
examine the impact of domain-specific pretraining, OpenBioLLM-8B, a model adapted to
the medical domain, was employed to generate a synthetic dataset from MIMIC-S code
sequences. Surprisingly, as shown in Table 4.10, the performance of the model trained on
this dataset did not significantly differ from the MIMIC-S model trained on synthetic data
generated by the fine-tuned base model, despite the common expectation that domain-
specific pretraining enhances model performance (Gururangan et al., 2020). To further
assess whether language-specific pretraining could improve Swedish synthetic records, a
synthetic SEPR-M dataset was generated using a fine-tuned version of LLaMA-3-8B from
AI Sweden. However, once again, no significant difference emerged between the models
trained on this dataset and the synthetic SEPR-M dataset generated using the base version
of LLaMA-3.1-8B.

Overall, these results suggest that fine-tuning LLaMA-3.1-8B on discharge summaries is
sufficient to adapt the model to both the medical domain and the Swedish language.
Thus, further adaptation through additional pre-training does not appear to influence the
generation output. Whether this holds true for other languages remains to be investigated,
as it is unclear how much Swedish data was included in the training set of the base model.
Similarly, outcomes might vary with different medical models, as the effectiveness of domain
adaptation heavily depends on the data and methods used (Lu et al., 2024). Furthermore,
it should be noted that the adapted models were based on the older LLaMA-3-8B version.
This difference in model versions could also explain why the domain-specific models did
not generate data of higher utility. For the purposes of this work, however, the base version
of LLaMA-3.1-8B seems to be a good fit for the synthetic generation framework.
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Table 4.10: Results of medical coding model trained on data obtained from further domain-
specific models compared to models trained on datasets generated using LLaMA-
3.1-8B base. None of the differences is statistically significant with p ≥ 0.05

Classification Ranking

AUC-ROC F1 EMR Precision@k R-precision MAP
Training Data Micro Macro Micro Macro 8 15

Domain-Specific Pretraining: MIMIC-S

Base 95.4±0.2 77.0±0.9 37.6±0.6 2.1±0.3 0.1±0.0 48.3±0.6 35.5±0.6 35.8±0.7 34.8±0.7
Pretrained 95.7±0.6 80.8±5.0 36.3±0.7 1.7±0.1 0.0±0.0 45.6±0.7 33.5±0.7 34.2±0.6 33.1±0.9

Language Pretraining: SEPR-M

Base 98.1±0.1 89.7±0.8 45.9±1.1 8.2±1.3 30.5±2.6 10.9±0.1 6.3±0.0 45.3±1.4 58.4±1.2
Pretrained 98.3±0.0 92.0±0.3 48.8±0.1 10.8±0.2 36.4±0.2 11.2±0.0 6.4±0.0 48.2±0.2 61.0±0.2

4.3.4 Error Analysis

The error analysis is conducted on MIMIC data to help analyze and interpret performance
differences. The analysis focuses on several aspects that aim to identify differences between
the real and synthetic MIMIC-L and MIMIC-S models. This aims to better understand
the differences between real and synthetic data and to evaluate which properties of the
synthetic data reduce its utility for training medical coding models.

Predictions

Table 4.11: Some statistics about code predictions by real and synthetic MIMIC-L and MIMIC-
S models compared to target codes from the test set.

Unique
Codes

Correctly
Predicted

AVG
Codes/Doc Total Codes Exact Match Subset Match Threshold

Test Set 7,935 - 15.86 314,136 0.1% 1.5% -

Real MIMIC-L 4,701 59.2% 14.3 283,784 0.8% 5.1% 0.38
Synth MIMIC-L 4,027 50.7% 14.1 279,171 0.8% 5.7% 0.29

Real MIMIC-S 1,053 13.3% 12.6 250,450 0.2% 11.5% 0.32
Synth MIMIC-S 1,125 14.2% 13.70 271,247 0.3% 17.4% 0.21

Table 4.11 highlights key prediction characteristics for the real and synthetic MIMIC-S and
MIMIC-L models. Across all models, fewer unique codes are predicted than those present
in the targets of the test set. The real MIMIC-L model correctly predicts approximately
59% of the codes at least once, while the synthetic MIMIC-L model correctly predicts
around 51%. The MIMIC-S models show a considerable drop in correctly predicted codes,
with only 13% for the real model and 14% for the synthetic model. On average, each model
predicts 1 to 3 fewer codes than the targets, resulting in an overall lower code count across
the test set. These findings suggest that the models might have difficulties predicting rare
codes resulting in a substantially smaller amount of unique counts.

Table 4.11 also details the exact matches and subset matches between predicted code
sequences and those in the training data, shedding light on the models’ capacity to generate
new code combinations. The real test set exhibits low overlap with training data sequences,
showing an exact match ratio of 0.1% and a subset match ratio of 1.5%. While exact match
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ratios increase across all models, the rise is more pronounced in the MIMIC-L models,
reaching an exact match ratio of 0.8%. This may be due to the shorter average predicted
code sequences in the MIMIC-S models, which reduces the likelihood of exact matches.
However, subset matches increase more substantially in the MIMIC-S models, reaching
11.5% for real and 17.4% for synthetic MIMIC-S, suggesting difficulty in generating novel
code combinations, which may contribute to reduced performance.

Thresholds tuned for optimal performance varied, ranging from 0.21 for the synthetic
MIMIC-S model to 0.38 for the real MIMIC-L model. Consistent with findings from Edin
et al. (2023), these variations underline the importance of model-specific threshold tuning
over a fixed 0.5 threshold to prevent suboptimal or biased performance reporting.

(a) Chapter Distribution: Real

(b) Chapter Distribution: Synthetic

Figure 4.1: Code chapter distributions of predicted codes by the real-data MIMIC-L (top) and
synthetic-data MIMIC-L (bottom) models.
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Figure 4.1 illustrates the code distributions across different ICD chapters for the predictions
of the real-data MIMIC-L model (top) and the synthetic-data MIMIC-L model (bottom).
As shown, the chapter-wise distributions are nearly identical, covering the same 14 chap-
ters, each with more than 2% of the codes. This distribution is also very similar to the
real chapter distribution, as depicted in Figure 3.2 in Chapter 3.1.1, with one difference
being the inclusion of a 15th chapter, representing over 2% of the codes in the real data.
Notably, a large portion of the predictions falls within Chapters IV, IX, and XXI, which
are also the most frequently represented chapters in the training data. In conclusion,
the chapter distributions of the predictions reveal that both models successfully replicate
the real data’s distribution while also predicting codes from underrepresented chapters,
demonstrating that both models have learned to predict disease codes from a wide range
of medical fields.

Code Frequency and Document Length
Figure 4.2 illustrates the impact of document length in the test set and code frequency
in the training set on the F1 scores for models trained on real and synthetic MIMIC-L
datasets. Both models show reduced performance on documents under 1000 words, an
observation already reported by Edin et al. (2023), who found through manual inspection
that shorter documents often lack essential information for accurate disease prediction.
Table 4.12 reports the respective Pearson and Spearman correlation coefficients. The
correlations for document lengths are split into ranges of 0-1000 and 1000-4000 words.
This split reflects the observed trend: F1 scores increase with document length up to 1000
words, then decline as document length extends to the 4000-word truncation limit.

All correlations are statistically significant (p<0.001). Document length shows weaker
correlations compared to code frequency, with positive correlations for documents up to
1000 words and negative correlations thereafter. The coefficients are slightly different than
those reported in Edin et al. (2023). This may be due to the distinct preprocessing method
applied here.

When comparing the real and synthetic models in Figure 4.1, similar trends are evident,
with the synthetic model generally achieving lower F1 scores but following a comparable
pattern in response to code frequency and document length. The synthetic model is slightly
more sensitive to code frequency, while document length effects are marginally lower for
short documents and slightly higher for longer ones compared to the real-data model.

Overall, the influence of document length on performance is minor, with the negative
correlation being near zero, whereas code frequency has a substantial effect, aligning with
findings from Edin et al. (2023) and Huang et al. (2022) and explaining the low count of
unique codes discussed before. This highlights the need for additional training samples of
low-frequency codes, as the models struggle to learn these codes effectively otherwise.
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(a) F1 vs. Code Frequencies (b) F1 vs. Document Length

Figure 4.2: Macro F1 vs. code frequencies in training data (left) and Micro F1 vs. document
length in test data (right) of real (blue) and synthetic (green) MIMIC-L medical
models

Table 4.12: Correlation between Macro F1 score and the logarithm of code frequency as well as
Micro F1 score and document length split into length 0 to 1000 and 1000 to 4000.
All correlations are significant with p<0.001.

Code Frequency Document Length

0-1000 1000-4000

Pearson Spearman Pearson Spearman Pearson Spearman

Real 0.48 0.51 0.19 0.19 -0.05 -0.05
Synthetic 0.50 0.52 0.17 0.16 -0.08 -0.06

OOF vs. WF errors
To better understand the incorrect predictions made by the models, we calculated WF
and OOF errors. Table 4.13 presents the counts and percentages of correct and incorrect
predictions as well as WF and OOF errors for models trained on real and synthetic MIMIC-
L data. Overall, the synthetic-data model made slightly more errors than the real-data
model even though exhibiting a lower count of altogether predictions. Both models exhibit
a significantly higher proportion of WF errors than OOF errors, with a ratio of 79.4%
for the real model and 82.5% for the synthetic model. This indicates that the models
are often able to capture the general disease category, though they may miss the specific
code, suggesting more learning occurred than what the reported performance metrics may
reflect. Even though the real-data model made more errors than the synthetic-data model,
a higher proportion of these errors are WF family, resulting in a slightly lower OOF error
count for the synthetic model compared to the real model.

ICD-10 codes often vary by granularity, which can be difficult to capture in discharge
summaries that may lack specific details. For instance, as Edin et al. (2023) illustrate, there
are approximately ten different codes related to tobacco use and nicotine dependence; some
codes achieve F1 scores over 50%, while others score 0%. They argue that class imbalances
among highly infrequent codes result in the model strongly favoring more frequent ones.
The high number of WF errors implies that while the model can identify the general disease
area, code imbalance or insufficient detail in the summary likely leads to the prediction of
an incorrect, more common code.
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Table 4.13: Counts of overall correct and wrong predictions as well as WF and OOF family
errors alongside percentages for the real-data and synthetic-data MIMIC-L models

Real MIMIC-L Synth MIMIC-L

Correct Wrong WF OOF Correct Wrong WF OOF

176,270 107,514 85,356 22,158 162,939 116,232 94,733 21,499
62.1% 37.9% 79.4% 20.6% 58.4% 41.6% 81.5% 18.5%

Noise
The previous error analysis revealed similar error patterns between models trained on
synthetic and real data, with the synthetic-data models generally performing slightly worse.
This discrepancy may stem from noise present in the synthetic data, which could hinder
its utility. The high vocabulary observed in the synthetic data suggests that while it adds
diversity, it may also introduce noise. Two hypotheses were formulated to explain how this
noise might be distributed across the synthetic medical notes:

• H1: All or most synthetic medical notes contain a certain percentage of noise.

• H2: Some synthetic medical notes contain a high percentage of noise, while others
contain none or very little.

To test these hypotheses, noise was artificially introduced into the real MIMIC-S dataset
by substituting words with random entries from the NLTK wordlist (Bird et al., 2009). For
H1, a varying uniform percentage of words was replaced across all documents. For H2, 90%
of words were replaced, but only in a random subset of varying size. These noisy datasets
were used to train medical coding models, and their F1 scores were plotted against code
frequency and document length to compare with the synthetic MIMIC-S model.

The results showed that under H1, substituting 20% of words across all documents pro-
duced F1-score curves very closely aligned with those of the synthetic data model (see
Figure 4.3). Under H2, substituting 90% of words resulted in most similar curves to the
synthetic MIMIC-S model when done for 15% of the documents (see Figure 4.4). Com-
paring Figures 4.2 and 4.4 demonstrates that the model trained on data with noise added
as per H1 aligns more closely with the synthetic-data model than the model trained under
H2.

This alignment strongly supports H1, indicating that noise in the synthetic data is dis-
tributed across all documents, reducing its utility for training medical coding models. This
conclusion is further supported by the filtering experiments, which showed no substantial
improvements in model performance. If the noise was localized to a subset, of documents,
filtering would likely have led to significant enhancements. This reinforces the hypothesis
that the noise is widespread and not concentrated in specific documents.

The noise in synthetic data likely originates from LLM artifacts, such as hallucinations
and repetitions, as well as differences in the way diseases and procedures are described
compared to real data. These discrepancies may not be immediately noticeable but subtly
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hinder performance when the models are evaluated on real-world data. To address this is-
sue, future work should focus on a more detailed analysis of the noise in synthetic data and
on refining the generation process to suppress unwanted artifacts without compromising
diversity. Integrating explainability methods, such as feature attribution techniques in the
medical models as described in Edin et al. (2024), could help identify dataset features that
contribute to predictions and distinguish noise from valuable information. Such explain-
ability methods not only offer insights into the quality of synthetic data but can also foster
trust in clinical NLP systems by making model behavior more transparent. By mitigating
the impact of noise and enhancing data quality, synthetic medical datasets can be further
optimized for downstream tasks while maintaining their diversity and privacy-preserving
properties.

(a) H1: F1 vs. Code Frequencies (b) H1: F1 vs. Document Length

Figure 4.3: H1: Macro F1 vs. code frequencies in training data (left) and Micro F1 vs. document
length in test data (right) of real MIMIC-S containing 20% noise in each document
(blue) and synthetic MIMIC-S (green) medical models

(a) H2: F1 vs. Code Frequencies (b) H2: F1 vs. Document Length

Figure 4.4: H2: Micro F1 vs. code frequencies in training data (left) and document length in
test data (right) of real MIMIC-S containing 15% documents with 90% noise (blue)
and synthetic MIMIC-S (green) medical models

4.4 Utility: NER

This Chapter presents the results of the second utility evaluation using the synthetic doc-
uments as training data for NER models. The results of training a clinical NER model on
the MIMIC data are presented first, followed by the results of the PHI NER model trained
on synthetic SEPR data.
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4.4.1 Clinical NER

Following Mawaldi and Mladenov (2024), 5,000 random documents from both the synthetic
and real MIMIC-S datasets were extracted and annotated using Med7 for drug names and
Stanza for diseases. Table 4.14 shows the number of sentences, total words, and unique
words for our real and synthetic subsets, compared to the datasets used by Mawaldi and
Mladenov (2024). Since Mawaldi and Mladenov (2024) only generated the History of
Present Illness section of the dataset, our datasets are substantially larger. As discussed
in Chapter 4.1, the vocabulary and unique token ratio in our synthetic data are higher
than in the real data. In contrast, the synthetic data in Mawaldi and Mladenov (2024) has
a substantially smaller vocabulary compared to the real dataset, even though the synthetic
dataset contains more tokens overall.

Table 4.14: Statistical properties of synthetic and real NER MIMIC training sets compared to
Mawaldi and Mladenov (2024)

Sentences Total Words Unique Words

Real Mawaldi and Mladenov (2024) 73,526 1,030,875 60,186
Real Our Work 377,161 6,440,092 63,211

Synth Mawaldi and Mladenov (2024) 112,322 1,411,143 26,019
Synth Our Work 428,119 8,275,997 123,905

Table 4.15 presents the label and unique label counts in our dataset, compared to those
reported by Mawaldi and Mladenov (2024). Unsurprisingly, our datasets contain substan-
tially more labels, reflecting their larger size. Similar to the findings regarding vocabulary,
we observe more unique labels in our synthetic dataset compared to the real dataset, with
the ratio of unique labels being slightly higher in the synthetic data. In contrast, Mawaldi
and Mladenov (2024) report fewer unique labels in their synthetic dataset, despite it con-
taining more labels overall. This further highlights the common issue of diversity reduction
in synthetic datasets, which the generation approach of this work appears to have over-
come.

Table 4.15: Disease and drug label counts of real and synthetic NER training sets from our work
compared to Mawaldi and Mladenov (2024)

Diseases Unique Diseases Drugs Unique Drugs Total Entities

Real Mawaldi and Mladenov (2024) 61,628 10,623 20,967 1,729 82,595
Real Our Work 267,549 49,827 104,933 6,213 372,482

Synth Mawaldi and Mladenov (2024) 123,476 50,90 28,092 652 151,568
Synth Our Work 309,661 88,528 136,636 13,435 446,297

Following Mawaldi and Mladenov (2024), we used the annotated datasets to fine-tune
BERT base for clinical NER, evaluating performance on a test set of 1,000 real documents.
Note, that the test sets used in Mawaldi and Mladenov (2024) and our work are not
identical due to the lack of a reproducible split, making comparisons approximate. Table
4.16 presents the clinical NER model results from our study alongside those reported by
Mawaldi and Mladenov (2024). Our models, trained on both real and synthetic data,
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achieved a weighted F1 score of 0.87. All metrics of our real and synthetic models and the
synthetic-data model by Mawaldi and Mladenov (2024) are nearly identical. The real-data
model from Mawaldi and Mladenov (2024) performed slightly better, with a weighted F1
of 0.89.

These consistent performance metrics across models trained on varying token counts and
label diversity suggest that automatic annotation in training data may achieve an upper
limit of performance under the tested conditions. Errors in the automatic labeling process
may propagate through successive models when being used for training. This might limit
further gains in model accuracy even when increasing training data size or label counts.
One potential improvement could involve integrating annotation directly into the synthetic
generation process, as demonstrated by Libbi et al. (2021).

Nonetheless, the proposed method demonstrates strong clinical NER performance using
synthetic data, comparable to real data while enhancing privacy. The lack of performance
gains with additional training data suggests that smaller datasets might suffice, offering
the potential for reduced computational costs. Our findings indicate that synthetic MIMIC
data effectively trains clinical NER models without compromising performance, and the
higher label variety within the synthetic data may benefit more complex NER models
requiring diverse training labels. Future work should explore the minimum data require-
ments for optimal performance and the potential benefits of label variety observed in the
synthetic data.

Table 4.16: Performance of clinical NER models trained on real and synthetic MIMIC data
compared to Mawaldi and Mladenov (2024).

Our models Mawaldi and Mladenov (2024)

Precision Recall F1 Accuracy Support Precision Recall F1 Accuracy Support

Real
Diseases 0.82 0.89 0.84 - 10868 0.85 0.90 0.87 - 13920
Drugs 0.93 0.95 0.94 - 3965 0.94 0.95 0.95 - 4539
Weighted 0.84 0.90 0.87 - 14833 0.87 0.92 0.89 - 18459

0.98 0.98

Synth
Diseases 0.82 0.88 0.85 - 10868 0.83 0.88 0.85 - 113920
Drugs 0.93 0.95 0.94 - 3965 0.93 0.93 0.93 - 4539
Weighted 0.85 0.90 0.87 - 14833 0.85 0.89 0.87 - 18459

0.98 0.98

4.4.2 PHI NER

Similar to our approach, Hullmann and Hansson (2024) developed a synthetic dataset
based on SEPR II. To enable comparison, we followed their PHI NER evaluation method-
ology by extracting a random subset of our synthetic SEPR-M dataset that matches the
synthetic token count of 1,187,380 reported by Hullmann and Hansson (2024). We used
SweDeClin-BERT NER to annotate this data with nine distinct PHI tags, and evaluated
model performance on a manually annotated test set of 300 patient notes that served as
the gold standard in Hullmann and Hansson (2024). Table 4.17 displays the label counts
for our synthetic subset compared to the real, synthetic, and test sets in Hullmann and
Hansson (2024). Our synthetic dataset contains substantially more PHI labels, particularly
in the categories of First_Name and Last_Name as well as Full_Date. This difference
may relate to the vast vocabulary observed in our synthetic data.
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Table 4.17: Comparison of label count contained in Synthetic, Real, and Test datasets as re-
ported in Hullmann and Hansson (2024) and a subset of synthetic SEPR-M with
equivalent token count

Hullmann and Hansson (2024) Our Work

Synthetic Real Test Synthetic

Organisation 110 113 0 230
Age 802 933 59 1,344
Full_Date 3,892 2,659 532 7,557
Location 777 389 157 688
First_Name 2,185 2,443 917 5,626
Health_Care_Unit 4,777 1,489 1,170 3,496
Phone_Number 15 34 226 137
Last_Name 2,346 1,973 930 8,367
Date_Part 4,217 4,407 778 5,893

Total 19,121 14,440 4,769 33,338

The annotated datasets were used to fine-tune SweDeClin-BERT, a Swedish BERT model
adapted to the medical domain. Table 4.18 presents the results. Hullmann and Hansson
(2024) reported a significant performance gap between their real and synthetic data models,
with the real model outperforming the synthetic by 0.10 in Macro F1 and 0.19 in Weighted
F1 scores. In contrast, our synthetic-data model achieves substantially higher performance
than the synthetic model from Hullmann and Hansson (2024), even exceeding their real-
data model on average, reaching a Macro F1 score of 0.72 and a Weighted F1 score of 0.99.
Note, that the Organization label is absent in the target set, leading to zero metrics for
that label. For consistency and comparability, we include it in the evaluation despite this
limitation.

The performance gain of our synthetic model is likely due to the larger label count, offering
more training samples. However, the rather small performance difference between our
synthetic model and the real-data model reported by Hullmann and Hansson (2024) despite
the significantly larger label count, suggests a potential advantage in real data, such as
reduced noise. It is important to note that, as with the clinical NER model, performance
could be constrained by the limitations of automatic annotation, which may introduce
errors that hinder further improvements.

In summary, both the clinical and PHI NER model results suggest that the generated
synthetic data offers high utility, comparable to real data while providing increased privacy
protection. The observed increase in unique labels and vocabulary within the synthetic
data appears beneficial for training NER models. The combined findings from both the
medical coding and the NER downstream tasks point to the general utility of synthetic
data generated by the proposed framework. Future research should explore additional
downstream tasks to validate the generalizability assumption. Additionally, issues arising
from automatic annotations of training data should be investigated to better understand
and interpret performance metrics.
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Table 4.18: Performance of PHI NER models trained on real and synthetic SEPR data compared
to Hullmann and Hansson (2024)

Hullmann and Hansson (2024) Our Work

Real Synthetic Synthetic
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Organisation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Age 0.79 0.97 0.87 0.96 0.95 0.96 0.94 0.96 0.95
Full_Date 0.90 0.97 0.93 0.73 0.98 0.84 0.93 0.95 0.94
Location 0.90 0.25 0.38 0.75 0.18 0.29 0.70 0.32 0.44
First_name 0.95 0.97 0.96 0.70 0.74 0.72 0.71 0.97 0.82
Health_Care_Unit 0.35 0.58 0.43 0.22 0.46 0.30 0.51 0.67 0.58
Phone_Number 0.88 0.86 0.87 0.80 0.45 0.58 0.78 0.93 0.85
Last_Name 0.92 0.95 0.94 0.87 0.73 0.79 0.60 0.97 0.74
Date_Part 0.96 0.97 0.96 0.82 0.97 0.89 0.91 0.97 0.94

Accuracy 0.98 0.97 0.99
Macro AVG 0.74 0.72 0.70 0.65 0.61 0.60 0.71 0.77 0.72
Weighted AVG 0.91 0.89 0.86 0.64 0.75 0.67 0.99 0.99 0.99

The employed utility evaluation focused on using established clinical NLP approaches
built upon real data to assess synthetic data utility rather than optimizing high-performing
competitive models. Future work should aim to further adapt and refine models to leverage
the properties of synthetic data, thereby achieving optimal performance.

4.5 User Study: Readability and Medical Coherence

This chapter presents the results of the user study investigating readability and medical
coherence of the generated medical notes.

4.5.1 MIMIC Samples

Ten participants took part in the MIMIC study, all of whom confirmed having professional
medical knowledge and working as doctors. The medical fields they specialize in are listed
in Table 4.19, with some participants reporting expertise in more than one field. The
years of experience range from a minimum of two years to a maximum of 38 years. Five
out of the ten participants reported performing ICD-10 coding often or very often. These
participants were asked to perform medical coding on the discharge summaries, while the
other five participants, who indicated they sometimes, never, or rarely perform ICD-10
coding, were not presented with this task. The participants were recruited in Germany,
and none of them were native English speakers. This should be taken into account when
interpreting the results.
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Table 4.19: Medical fields in which study participants work

Medical field Count

Anesthesia 1
Dentistry 1
Emergency surgery 1
Gynecology 1
Neuropediatrics 1
Oncology 1
Orthopedics 1
Pediatrics 1
Radiology 1
Trauma surgery 1
Urology 1

Unspecified 2

The participants rated three real and three synthetic documents, each belonging to the
same code sequences, on readability and medical coherence using a bipolar scale with 5
levels. The results of these ratings are presented below. Figure 4.5 shows that readability
was slightly higher for the real documents. Table 4.20 reveals a mean of 3.7 and a median
of 4 for the real documents, compared to the synthetic documents, which had a mean of
3.3 and a median of 3.0. A similar pattern emerged for the medical coherence ratings.
The real documents were again rated higher, with a mean of 3.5 and a median of 4.0,
while the synthetic documents slightly lagged behind, with a mean of 3.3 and a median of
3.0. However, a t-test revealed that neither of these differences was statistically significant
p ≥ 0.05.

Figure 4.5: Comparison of readability and medical coherence averages across all documents and
participants between real and synthetic documents in the MIMIC study. The boxes
represent the interquartile range (IQR), with whiskers extending 1.5 times the IQR,
and the median value indicated by a black line. The differences are not statistically
significant with p ≥ 0.05.
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Mean Median

Real Synthetic Real Synthetic

Readability 3.7 3.3 4.0 3.0
Medical Coherence 3.5 3.3 4.0 3.0

Table 4.20: Comparison of mean and median values of readability and medical coherence ratings
between real and synthetic documents in the MIMIC study

Figure 4.6 illustrates the differences for each of the three real-synthetic document pairs.
The real documents achieved higher or identical mean and median readability and medical
coherence scores across all document pairs, except for document pair three, where the
synthetic document received a slightly higher mean rating. Independent two-sample t-
tests revealed none of the differences as statistically significant (p ≥ 0.05).

Furthermore, the boxplots in 4.6 show a wide range of ratings for each document. Pairwise
Cohen’s Kappa calculations yielded a mean score of 0.03 for readability and 0.06 for medical
coherence. These low scores indicate a low level of agreement between the participants.
This variability may be explained by the different medical fields in which the participants
work. Given that each participant has a different medical focus and varying years of
experience, it is likely that their personal experiences and expertise influenced their ratings.
Furthermore, since none of the participants are native English speakers, their proficiency
in English may have influenced their ratings, particularly those related to readability.

Overall, all documents received a mean rating above 3 for both readability and medical
coherence, indicating that none of the documents were perceived as entirely unrealistic or
unpleasant to read. The non-significant difference between real and synthetic documents
suggests that the synthetic documents are of a similar quality to the real ones. However, the
wide range of ratings that are sometimes very low for both real and synthetic documents
implies there may be structural or content issues within the real documents that have
carried over to the synthetic ones.

Figure 4.6: Comparison of readability and medical coherence scores averaged across participants
for single document pairs in the MIMIC study. The boxes represent the IQR with
whiskers 1.5 times the IQR and outliers as points outside this range. The median
value is indicated by black lines. None of the differences are statistically significant
with p ≥ 0.05.
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Figure 4.7: Correlation between Readability (x-axis) and Medical Coherence (y-axis) in the
MIMIC study. There is a strong positive correlation (p<0.001) with a Pearson
correlation coefficient of 0.76 and a Spearman correlation coefficient of 0.78.

A strong positive correlation between readability and medical coherence, with a Pearson
correlation coefficient of 0.76 and Spearman correlation coefficient of 0.78, as shown in
Figure 4.7, indicates that some documents are generally of higher quality than others.
However, the low inter-annotator agreement complicates the interpretation of these results.
To better understand potential issues within the documents, some of the participants’
justifications for their answers are presented in the following.

Table 4.21: Participants’ justifications for their ratings on readability and medical coherence,
with counts for synthetic and real documents

Synthetic Real

Too many abbreviations |||
Hard to follow / unpleasant reading |||
Repetition |

Diagnosis missing |
Contradicting recommendations |
Insufficient information about treatment |
Insufficient information about patient’s status || |
Diagnosis does not fit MRI |

Table 4.21 presents some participants’ justifications for their readability and medical co-
herence ratings. The first three justifications regard readability, while the last four concern
medical coherence. For each justification, the number of references to real and synthetic
documents is also noted.

For readability, several participants criticized the synthetic documents for containing exces-
sive abbreviations and being difficult to follow which are issues that may be interconnected.
Notably, this criticism was never applied to real documents. One participant mentioned
that repetitions in a real document hindered readability. The justifications for medical
coherence ratings fall into two main categories: missing or insufficient information, and
contradictory information. These issues were noted for both real and synthetic documents.

55



4 Results

Additionally, some participants criticized missing lab results; however, these omissions were
intentional due to preprocessing and can therefore be neglected within the scope of this
interpretation. It is important to note that providing justifications was optional, thus, the
content and number of comments per document is less meaningful but still offers insight
into potential issues within the discharge summaries.

One participant mentioned that their ratings were influenced by their medical specialty,
making some documents easier for them to read than others. This observation supports the
idea that low inter-annotator agreement may stem from the varied medical backgrounds
of the participants.

In summary, the user study revealed no statistically significant differences between real and
synthetic documents in terms of readability and medical coherence ratings, though real doc-
uments achieved slightly higher scores. It is important to note that this study evaluated
a small sample of documents, so the interpretation of these results should be cautious. A
strong correlation between readability and medical coherence suggests that certain doc-
uments are of generally higher quality than others. Low inter-annotator agreement may
stem from participants’ varied medical specialties. Overall, the synthetic documents ap-
pear to be of comparable quality to real ones, maintaining medical coherence and a similar
language style. This result supports the broader and more generalizable applicability of
the synthetic documents, even in contexts requiring medical coherence. However, some low
ratings for both synthetic and real samples indicate existing issues that should be further
investigated. Controlling for these issues in the generation process could help prevent the
transfer of problematic elements from real to synthetic documents making them of even
higher utility than real documents.

In addition to the ratings, five participants with experience in ICD-10 coding were asked
to assign codes to the discharge summaries. Table 4.22 presents the mean, maximum, and
minimum Micro F1 scores for each document, as well as the mean number of predicted
codes and the maximum number of overlapping codes between two participants. The
results reveal very low mean F1 scores, with an average of only 6.1% across all documents.
Even the maximum F1 score of 40.0% is significantly lower than what this work’s best
medical coding models could achieve. When examining the number of predicted codes, it
becomes clear that a key factor contributing to these low scores is the fact that, on average,
less than half of the target codes were predicted.

While the real documents achieved a slightly higher average F1 score compared to the
synthetic documents with a difference of 1.6%, this difference provides limited insight into
how well the discharge summaries represent the correct codes, given the generally low
scores. A manual review of the codes revealed that the granularity of the codes was a
significant factor in the low F1 scores. Participants often did not provide the codes with
sufficient granularity to match the targets, for example, by only specifying the first three
digits of a code, or by deviating only in the last digits, reflecting fine-grained distinctions.
Thus, many errors are WF errors, similar to what was observed in the error analysis of the
medical coding models (see Chapter 4.3.4). Since participants were not instructed on the
required granularity, more specific instructions would likely have led to higher F1 scores,
making direct comparisons to model performance less meaningful.

The final column of Table 4.22 shows the maximum overlap of codes between any two
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participants for each document. Notably, there were no identical sets of codes between
any two participants for any of the documents, with a maximum overlap of two to three
codes per document. This shows not only discrepancies between the provided codes and
the target but also a low level of agreement among participants.

The purpose of presenting this task is not to directly compare the F1 scores to those of
the previously reported models. A significantly larger sample size and more participants
would be required for such comparisons. Additionally, as noted, the instructions given to
participants should be adjusted to avoid biases in the results. Furthermore, in a real-world
setting, coders typically specialize in a specific medical field, narrowing the range of codes
they would encounter. Nonetheless, these results highlight the complexity of the ICD-10
coding task and why it is known to be error-prone, with little agreement even among
experienced coders. This underscores the need for high-performance automatic medical
coding systems to support and improve this process. The use of synthetic training data is
one promising path for enabling the practical application of these systems. At the same
time, these findings emphasize the importance of carefully selecting gold standard labels
for training such systems, as these labels often come from manually labeled real data that
may contain errors themselves.

Table 4.22: Micro F1 scores for ICD-10 predictions of participants in MIMIC study, alongside
averaged number of predictions and maximum code overlap between any two par-
ticipants

Mean F1 Min. F1 Max. F1 Target
Length

Mean Pred
Length

Max. Code
Overlap

Real 1 4.6 0.0 18.2 10 5.8 3
Synthetic 1 0.0 0.0 0.0 10 4.3 2
Real 2 0.0 0.0 0.0 14 3.7 3
Synthetic 2 3.3 0.0 13.3 14 3.5 2
Real 3 16.0 0.0 40.0 7 4.6 2
Synthetic 3 12.5 0.0 22.2 7 4.8 2

All synthetic 5.3 0.0 22.2 10.3 4.7 3
All real 6.9 0.0 40.0 10.3 4.2 2
Combined 6.1 0.0 40.0 10.3 4.5 3

4.5.2 SEPR Samples

The SEPR user study involved four participants: three nurses and one doctor, all native
Swedish speakers, all of whom stated to perform ICD-10 coding often or very often, and
were given the task of coding the medical notes. The participants rated four real and four
synthetic notes on readability and medical coherence. Each pair of real and synthetic notes
corresponded to the same ICD-10 code.

Given the small number of participants, the evaluation will be kept brief. However, the
inclusion of this study is particularly important, as it provides valuable qualitative insights
into the contents of the synthetic Swedish documents, especially considering the lack of
further manual investigation due to language constraints.
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Figure 4.8 presents an overall comparison of readability and medical coherence ratings.
While the ratings were generally higher for the SEPR samples than for the MIMIC samples,
the pattern remained similar, with synthetic notes generally receiving slightly lower ratings
than real notes (see Table 4.23). However, the differences were not statistically significant
p ≥ 0.05.

Figure 4.8: Comparison of readability and medical coherence averages across all documents and
participants between real and synthetic documents in the SEPR study. The boxes
represent the interquartile range (IQR), with whiskers extending 1.5 times the IQR,
and the median value indicated by a black line. The differences are not statistically
significant with p ≥ 0.05.

Mean Median

Real Synthetic Real Synthetic

Readability 4.3 3.9 5.0 4.0
Medical Coherence 4.3 3.6 4.5 4.0

Table 4.23: Comparison of mean and median values of readability and medical coherence ratings
between real and synthetic documents in the SEPR study

Figure 4.9 compares the ratings for the four document pairs. The only statistically signifi-
cant difference was found in the medical coherence ratings for document pair 3 (p < 0.05).
This difference was driven by the very high ratings for the real document, rather than
exceptionally low ratings for the synthetic document. Although the inter-annotator agree-
ment was slightly higher than in the MIMIC study with a Mean Cohen’s Kappa of 0.15
for readability and 0.16 for medical coherence, the agreement remains low, as evidenced
by the range of ratings visible in Figure 4.9.
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Figure 4.9: Comparison of readability and medical coherence scores averaged across participants
for single document pairs in the SEPR study. The boxes represent the IQR with
whiskers 1.5 times the IQR and outliers as points outside this range. The median
value is indicated by black lines. The only statistical significant difference with
p ≥ 0.05 was found for the medical coherence ratings of document pair 3.

As shown in Figure 4.10, there was again a strong positive correlation between readability
and medical coherence, suggesting that some medical notes are perceived as generally
higher quality than others.

Figure 4.10: Correlation between Readability (x-axis) and Medical Coherence (y-axis) in the
SEPR study. There is a strong positive correlation (p<0.001) with a Pearson
correlation coefficient of 0.65 and a Spearman correlation coefficient of 0.66.

Table 4.24 presents the Micro F1 scores from the ICD-10 coding tasks. The mean F1 score
for the SEPR study (18.35%) was higher than in the MIMIC study (6.1%), likely due to
the shorter length of the SEPR notes and the fact that only one target code was required
per document. As in the MIMIC study, low F1 scores were largely due to fine-grained
discrepancies with the target codes. However, unlike the MIMIC study, additional perfor-
mance drops in the SEPR study resulted from an excessive number of codes being assigned
rather than too few. While the manual coding performed in this study was considerably
worse than the best-performing models, these results are not directly comparable due to
the aforementioned limitations, but they highlight the challenges in manual ICD-10 coding
and the potential benefits of automation.
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Table 4.24: Micro F1 scores for ICD-10 predictions of participants in SEPR study, alongside
averaged number of predictions and maximum code overlap between any two par-
ticipants

Mean F1 Min. F1 Max. F1 Target
Length

Mean Pred
Length

Max. Code
Overlap

Real 1 44.5 0.0 66.7 1 2.3 2
Synthetic 1 34.4 0.0 66.7 1 2.3 2
Real 2 17.9 0.0 100 1 2.0 1
Synthetic 2 0.0 0.0 0.0 1 1.3 0
Real 3 0.0 0.0 0.0 1 2.5 0
Synthetic 3 50.0 0.0 100 1 1.3 1
Real 4 0.0 0.0 0.0 1 3 2
Synthetic 4 0.0 0.0 0.0 1 1.8 1

All synthetic 21.1 0.0 100 1 1.7 2
All real 15,6 0.0 100 1 2.5 2
Combined 18.35 0.0 100 1 2.1 2

In conclusion, the SEPR study supports the findings of the MIMIC study, showing that
the generated Swedish notes are comparable to the English notes in terms of readability
and medical coherence. Since the differences between real and synthetic notes were not
statistically significant, the results suggest that synthetic data could be a viable substitute
for real data, even in contexts requiring medical coherence. The SEPR study’s findings
support the general applicability of synthetic documents across languages and settings,
reinforcing the broader conclusions drawn from the MIMIC study.
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This study presents a framework for generating synthetic medical notes that effectively
balance privacy and utility while maintaining medical coherence, diversity, and content
richness. By leveraging instruction-tuning with ICD-10 textual descriptions, the framework
addresses common challenges in synthetic data generation, such as diversity reduction, and
demonstrates promising performance across multiple evaluations.

Comparing this framework comprehensively to prior research remains challenging due to
the wide variety of evaluation methods employed in the field. Nonetheless, selective com-
parisons with existing studies and an analysis of reported difficulties suggest that the
proposed approach addresses several common limitations in synthetic medical note gener-
ation.

The fidelity analysis revealed that synthetic notes exhibit key similarities with real notes
while introducing some differences. For instance, synthetic notes tend to be longer on
average, which is controllable during decoding if desired. More significantly, synthetic
datasets feature a broader vocabulary and higher unique word ratio compared to real
datasets, a notable improvement over prior work that often reported diversity reduction
resulting in a strongly reduced vocabulary (Hullmann & Hansson, 2024; Libbi et al., 2021;
Mawaldi & Mladenov, 2024). Diversity reduction restricts the utility and generalizability
of synthetic data by narrowing its range of patterns. Our framework appears to mitigate
this issue, likely due to the use of ICD-10 descriptions in the prompts. These descriptions
generate diverse and variable inputs, encouraging broader content generation and richer
vocabulary. Unlike methods that prompt using fragments of medical notes, which can lack
variety, this approach also enables scalable generation of synthetic datasets across various
medical domains, independent of the size of the original dataset.

Despite these positive findings, the synthetic notes exhibit some artifacts typical of LLM
outputs, such as hallucinations, repetitions, and occasional incoherence. While these issues
seem relatively rare, they introduce noise that could affect their utility for downstream
applications and enable differentiation from real notes. Further refinements are needed to
minimize such artifacts and enhance overall data quality.

The utility of the synthetic datasets was evaluated through two downstream tasks: NER
and medical coding. In the NER tasks, the synthetic data performed comparably to real
data and outperformed synthetic datasets generated by previous methods. For example,
models trained on synthetic SEPR data performed better than models trained on synthetic
data from earlier studies and even slightly better than models trained on real data of equiv-
alent size when compared to Hullmann and Hansson (2024). This improvement is likely
attributable to the higher variety in the synthetic data, which yielded richer training labels.
However, the nearly identical performance across all models in the clinical NER task, when
compared to (Mawaldi & Mladenov, 2024), suggests limitations in the implementation of
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this task. This outcome may be attributed to its reliance on automatic annotation, which
introduces errors during the labeling process and affects the quality of the training data.

In medical coding tasks, our models trained on synthetic data underperformed compared
to those trained on real data of equivalent size but demonstrated significant improvement
when the volume of synthetic training data was increased. This indicates that synthetic
datasets could achieve SOTA performance with sufficient volume, albeit at the cost of
increased computational resources. Given the substantial privacy advantages of synthetic
data, this trade-off may be justified. The ability to generate arbitrary amounts of syn-
thetic data makes these results particularly promising. While the filtering and balancing
approaches employed in this study did not improve performance, future work should ex-
plore these strategies further. The flexibility to shape synthetic datasets to meet specific
needs and optimize model training is a key advantage that should be fully leveraged to
maximize utility.

Attributing the difference in performance to variations in the datasets is challenging. The
error analysis revealed similar error patterns in both real and synthetic datasets, with
the synthetic data generally performing slightly worse, similar to how models trained on
reduced real data might behave. Inserting artificial noise into the real dataset revealed
very similar performance patterns to the synthetic-data model when adding 20% of random
words in every document and using it as training data. This suggests that the synthetic
data contains widespread noise explaining its lower utility compared to the real data.
Consequently, the observed variety in the synthetic data, while generally desirable, may
also contribute to the noise that downgrades the utility of the dataset.

While medical models trained on synthetic data do not yet achieve parity with real-data
models, they represent a substantial improvement over previous efforts in this domain. For
instance, Falis (2024) generated synthetic datasets by employing GPT-3.5 in a zero-shot
setting and reported a negative effect on overall performance when using the synthetic
data as augmentation. This disparity likely stems from the data generation method itself,
highlighting the importance of fine-tuning models for such tasks. Zero-shot employment,
constrained by its reliance on the LLMs’ pretaining knowledge and the given prompt, may
be insufficient for teaching models to produce discharge summaries that accurately capture
the content and context of the prompted codes.

The comparison of different downstream tasks also highlights the limitations of relying on
simpler tasks like NER to assess the utility of synthetic data which is a common practice
(see 2.1). As pointed out in earlier work, NER does not necessarily require medical coher-
ence (Libbi et al., 2021), and as evidenced in the performance difference in this work, a
strong utility for NER is not necessarily transferable to other tasks. More complex tasks,
such as medical coding, can provide a more robust evaluation of utility.

The privacy evaluation, conducted using similarity metrics such as ROUGE-5 and 8-gram
overlap, indicated that synthetic notes had lower proximity to training data than real notes,
reflecting strong privacy protections. However, manual inspection revealed instances of
longer sequence copying in the most similar English document pairs. While pseudonymiza-
tion mitigated risks in this study, implementing additional privacy-enhancing methods,
such as DP techniques, could strengthen these protections in future work. From a fi-
delity perspective, lower similarity scores between synthetic-real document pairs compared
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to real-real pairs may be linked to the increased variability in synthetic data, which, as
discussed, may also bear negative effects.

Medical coherence, a critical factor for synthetic notes, was assessed through a user study
involving medical professionals to rate readability and medical coherence of English and
Swedish samples. Although real documents tended to receive slightly higher ratings, the
differences were not statistically significant, indicating that the framework can generate
realistic and coherent medical content in both languages. While earlier work struggled to
create medical coherent notes (Falis et al., 2024; Hiebel et al., 2023; Libbi et al., 2021),
this achievement is likely due to instruction-tuning with ICD-10 descriptions, which guide
the model’s content generation and help to create contiguous notes. However, the user
study also revealed that some issues inherent in real notes may have been transmitted to
synthetic notes, highlighting the need to involve medical professionals in refining datasets
to address these challenges. By identifying and specifying such issues, targeted controls
can be implemented in the generation process to prevent their transmission to synthetic
documents, thereby enhancing the overall quality and reliability of the synthetic data.

Manual ICD-10 coding of the user study highlighted the complexity and error-proneness
of this task, as evidenced by low agreement among coders and generally low-performance
scores. While these results are biased for various reasons and thus, not directly comparable
to the coding models implemented in this work, these findings underscore the need for
high-performing automated medical coding systems to enhance consistency, reduce human
error, and alleviate administrative burdens in healthcare. Synthetic data offers a privacy-
preserving solution for training such systems, overcoming the barriers posed by the sensitive
nature of real patient data.
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6 Limitations and Future Directions

The framework presented for generating synthetic English and Swedish medical notes of-
fers promising insights; however, several limitations affect the interpretability, applicability,
and generalizability of the results. Future work should address these limitations by build-
ing upon our framework, focusing on optimizing the generation process and evaluation
methods. Below, these limitations are discussed in more detail, along with proposed future
directions derived from the findings of this work.

Integration of Medical Expertise
Aside from the user study, no medical expertise was integrated into the development or
evaluation of the proposed framework. As a result, manual assessments should be consid-
ered preliminary and limited in depth. Since the primary goal of synthetic note generation
and clinical NLP systems, such as automated medical coding systems, is practical applica-
tion, future work should incorporate appropriate medical expertise. Expert feedback could
help address real-world requirements, enhance data quality, and improve system reliability.
For example, medical experts could help design more realistic code sequences to address
issues with low-frequency codes or expand datasets in meaningful ways. They could also
identify shortcomings in real discharge summaries to avoid transferring these issues into
synthetic datasets.

Language Constraints
Language constraints limited the depth of investigation and assessment for the Swedish-
generated data. To gain a more comprehensive understanding of its quality and privacy-
preserving properties beyond quantitative performance metrics, future work should include
evaluations conducted by native Swedish speakers. Furthermore, testing the framework
with other languages is recommended to evaluate its generalizability. The uncertainty
about the extent of Swedish content in the pretraining data of LLaMA-3.1-8B highlights
the need to test additional languages.

Dataset Limitations
The study was conducted using two distinct datasets: one focusing on gastrointestinal
conditions in Swedish and the other on ED notes in English. While these datasets represent
specific medical domains, the generalizability of the proposed approach to other medical
domains remains unclear. Future research should evaluate synthetic note generation for
additional medical specialties to ensure broader applicability.

Furthermore, previous studies have shown that medical notes often contain errors and in-
consistencies, particularly in the assignment of ICD-10 codes. This work assumes that real
notes are suitable for building clinical NLP systems and that the assigned ICD-10 codes
serve as a reliable gold standard for medical coding systems. The proposed framework
for medical note generation builds on the assumption that the ICD-10 codes adequately
represent the content of the note. However, this assumption may inadvertently introduce
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errors into the framework. Future research should investigate this aspect further, focusing
on evaluating the accuracy and consistency of real medical notes and their ICD-10 anno-
tations. Addressing these issues could lead to more robust synthetic data generation and
improve the reliability of medical coding systems.

Model and Fine-Tuning Considerations
While LLaMA-3.1-8B demonstrated suitability for the proposed framework, future com-
parisons with alternative models could reveal valuable insights. This includes exploring
larger models within the LLaMA family, different language model families such as Falcon
(Almazrouei et al., 2023), or models building on different architectures. Additionally, the
fine-tuning process could be further optimized by experimenting with different PEFT meth-
ods, hyperparameter configurations, or prompt variations. Exploring instruction-tuned
base models such as LLaMA-3.1-8B Instruct could also yield improvements. These exper-
iments, while outside the scope of this work due to time and computational constraints,
present promising approaches for further optimization of the generation process.

Privacy Considerations
This work refrained from integrating privacy-enhancing methodologies to maintain sim-
plicity and avoid the additional computational costs and utility trade-offs associated with
techniques like DP. However, privacy evaluations revealed risks of longer sequences from the
training data appearing in the synthetic dataset. Future research should explore privacy-
enhancing methods to balance the privacy utility trade-off effectively. Moreover, expanding
privacy evaluations, e.g., by assessing presence disclosure risks, would provide deeper in-
sights into the risks associated with using and distributing synthetic discharge summaries,
which is particularly essential if they are intended for real-world applications.

Evaluation Framework and Generalizability
Last, as discussed in Chapter 2, there is no consensus on standardized privacy and utility
evaluations for synthetic medical notes. In this work, the synthetic data was tested as
training data for two distinct downstream tasks, demonstrating its suitability and indi-
cating, alongside strong performance in the user study, its generalizable utility. However,
additional downstream tasks should be tested to further ensure the generalizability of its
utility. The development of a unified evaluation benchmark for both utility and privacy
is urgently needed to facilitate comparisons across different approaches and assess the
performance of the proposed framework relative to other methods.
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7 Conclusion

This work introduces a novel framework for generating synthetic English and Swedish
medical notes, addressing the critical shortage of high-quality medical data needed to
train robust clinical NLP applications. The framework successfully narrows the privacy-
utility gap by generating synthetic datasets with high variety, robust privacy protections,
and medical coherence. Leveraging ICD-10 codes for instruction-tuning resulted in dis-
charge summaries with a broad vocabulary, that achieved strong utility for NER tasks
and showed potential for SOTA performance in medical coding with further enhancements
such as increased training data. The lower utility of the synthetic data for training medi-
cal coding models is most likely attributable to widespread noise contained in the dataset.
LLaMA-3.1-8B model has proven suitable for this task, adapting to the medical domain
and Swedish language without requiring prior domain-specific adaptation, all while main-
taining computational efficiency due to its relatively small model size.

To further enhance the framework, we recommend addressing the limitations identified in
this study and exploring additional refinements. The variety of applied evaluation tasks lays
the groundwork for a unified benchmarking system, enabling consistent comparisons across
different synthetic data generation approaches. The promising results of this work suggest
that, with continued research, the privacy utility trade-off can be fully overcome. Synthetic
clinical datasets could ultimately match or even exceed the performance of real data in
training clinical applications. Achieving this goal would represent a major step forward in
enabling privacy-preserving and effective clinical NLP solutions for healthcare.
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A ICD-10 Chapters

Table A.1: Description of MIMIC Chapters

Chapter Blocks Title

I A00-B99 Certain infectious and parasitic diseases
II C00-D48 Neoplasms

III D50-D89 Diseases of the blood and blood-forming organs and certain disorders
involving the immune mechanism

IV E00-E90 Endocrine, nutritional and metabolic diseases
V F00-F99 Mental and behavioural disorders
VI G00-G99 Diseases of the nervous system
VII H00-H59 Diseases of the eye and adnexa
VIII H60-H95 Diseases of the ear and mastoid process
IX I00-I99 Diseases of the circulatory system
X J00-J99 Diseases of the respiratory system
XI K00-K93 Diseases of the digestive system
XII L00-L99 Diseases of the skin and subcutaneous tissue
XIII M00-M99 Diseases of the musculoskeletal system and connective tissue
XIV N00-N99 Diseases of the genitourinary system
XV O00-O99 Pregnancy, childbirth and the puerperium
XVI P00-P96 Certain conditions originating in the perinatal period
XVII Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities

XVIII R00-R99 Symptoms, signs and abnormal clinical and laboratory findings,
not elsewhere classified

XIX S00-T98 Injury, poisoning and certain other consequences of external causes
XX V01-Y98 External causes of morbidity and mortality
XXI Z00-Z99 Factors influencing health status and contact with health services
XXII U00-U99 Codes for special purposes
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Table A.2: Description of SEPR Chapters

Chapter Blocks Title

I K00-K14 Diseases of oral cavity, salivary glands and jaws
II K20-K31 Diseases of oesophagus, stomach and duodenum
III K35-K38 Diseases of appendix
IV K40-K46 Hernia
V K50-K52 Noninfective enteritis and colitis
VI K55-K64 Other diseases of intestines
VII K65-K67 Diseases of peritoneum
VIII K70-K77 Diseases of liver
IX K80-K87 Disorders of gallbladder, biliary tract and pancreas
X K90-K93 Other diseases of the digestive system
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B Swedish Prompt

The instructions translated into Swedish resulted in the following Alpaca template:

Nedan är en instruktion som beskriver en uppgift, parad med en ingång som
ger ytterligare sammanhang. Skriv ett svar som pålämpligt sätt kompletterar
begäran.

### Instruktion:
{instruction}

### Ingång:
{input}

### Svar:

Figure B.1 illustrates the Swedish instruction filling the "Instruktion" field during
instruction-tuning and generation of the synthetic SEPR datasets.

Utifrån en lista med textuella beskrivningar av diagnoskoder,
generera en motsvarande klinisk anteckning som ger omfattande
och relevanta detaljer om patientens sjukdomshistoria, nuvarande
tillstånd och behandling som mottagits påsjukhuset.

Figure B.1: Swedish instruction used for instruction-tuning LLaMA-3.1-8B with the Alpaca tem-
plate.
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C Configurations

Table C.1: Training configuration for instruction-tuning of LLaMA.

Parameter Value

Load in 4-bit true
Validation Set Size 0.05
Adapter Type QLoRa
Sequence Length 6000 (Engl.), 4096 (Swed.)
Lora R 32
Lora Alpha 16
Lora Dropout 0.05
Gradient Accumulation Steps 2
Micro Batch Size 1
Number of Epochs 4
Optimizer paged_adamw_32bit
Learning Rate 0.0002
LR Scheduler cosine
Gradient Checkpointing true
Flash Attention true
Warmup Steps 10
Weight Decay 0.0
Deepseed Deepspeed Zero3
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C Configurations

Table C.2: Decoding configuration for synthetic note generation.

Parameter Value

Decoding Strategy Random sampling
Top-k -1 (all)
Max tokens 6000 (Engl.), 4000 (Swed.)
Temperature 1.0
Repetition Penalty 1.5
N (Number of output sequences) 5
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D User Study Questionnaire
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D User Study Questionnaire

Figure D.1: Study Questionnaire

Figure D.1 depicts the user study questionnaire. Participants were presented with both
synthetic and real medical notes. After reading each note, they were asked to respond to the
presented questions. The ICD-10 coding task was assigned only to selected participants.
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E Synthetic Medical Note Examples

Chief Complaint: left hip pain

Major Surgical or Invasive Procedure: : left THA by

History of Present Illness: year old male with left hip osteoarthritis which has
failed conservative management now presents for left hip replacement on

Past Medical History: Left hip pain s p cortisone injections last in , H o
MI in , PCI s p stent , ischemic , cardiomyopathy, H o afib in . off anti
coagulation now , Stroke, HTN, osteoarthritis, hyperlipidemia, falls ,

Postoperative course was remarkable for the following: POD 1, calcium was
6.6 and magnesium was 1.9. This was repleted per recommendations. POD 2,
phosphate was 1.9 and this was repleted. Patient’s gabapentin was discontinued
due to hypotension following 2 doses. Otherwise, pain was controlled with a
combination of IV and oral pain medications. The patient received Aspirin 325 mg
twice daily for DVT prophylaxis starting on the morning of POD 1. The surgical
dressing was changed and the Silverlon dressing was removed 48 hours after surgery.
A dry sterile dressing was reapplied. The patient was seen daily by physical therapy.
Labs were checked throughout the hospital course and repleted accordingly. At
the time of discharge the patient was tolerating a regular diet and feeling well.
The patient was afebrile with stable vital signs. The patient’s hematocrit was
acceptable and pain was adequately controlled on an oral regimen. The operative
extremity was neurovascularly intact and the dressing was intact. The patient’s
weight bearing status is weight bearing as tolerated on the operative extremity with
no hip bridging or repetitive resistant hip flexion. Walker or two crutches. Wean
as tolerated. Mr. is discharged to home with services in stable condition. 13.
Metoprolol Succinate XL 75 mg PO DAILY 14. Rosuvastatin Calcium 40 mg PO
QPM

Discharge Disposition: Home With Service

Discharge Diagnosis: left hip osteoarthritis

Figure E.1: Example of synthetic MIMIC discharge summary extracted from the synthetic
MIMIC-S dataset.
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E Synthetic Medical Note Examples

Inlagd för några veckor sedan pågrund av blod i avföringen. Kommer nu för en-
doskopisk undersökning ( gastroskopi och koloskopi ). Patienten mår utmärkt bra
och har inte haft några symtom sedan han blev utskriven., Således tvåtill synes helt
benigna polyper i kolon som idag avlägsnats med slyngan. Ingen blödning., Via
inremitterande., Inremitterande., I distala sigmoideum påcirka 30 cm : s höjd från
den ileocekala valveln noteras en cirka 4 mm - stor flack polyp med utseende som
hyperplastisk polyp. Polypen avlägsnas med vanlig biopsitång. Inga omkringlig-
gande förändringar. Inga tecken till blödning efteråt. I distala transversum samt
proximala descendens ses ytterligare en cirka 5 mm stor flack polyp med utseende
som hyperplastisk polyp. Denna avlägsnas med vanlig biopsitång. återigen inga
omkringliggande förändringar. Inget blod i lumen., Dr Emelie Luusua ., Blod i
avföring. Utredning.

Figure E.2: Example of synthetic SEPR discharge summary extracted from the synthetic SEPR-
M dataset.
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