
Class Invariants: The end of the road?
(Position Paper)

Matthew Parkinson
University of Cambridge

Matthew.Parkinson@cl.cam.ac.uk

Introduction Since Hoare’s seminal paper on data abstraction [5],
the class invariant has been the foundation for verifying object-
oriented programs. Experience has shown that there are two com-
plications in scaling class invariants to real programs: (1) invariants
need to depend on multiple objects; and (2) invariants need to be
temporarily broken owing to call-backs. There are several pro-
posals in the literature, which extend class invariants to partially
address these two problems. The time seems to be right to pose the
following (deliberately provocative!) question: “Is the class invari-
ant the correct foundation for verifying object-oriented programs?”

The basic unit of a Java program is a class, but interesting pro-
grams use more than one class. They are decomposed into aggreg-
ate1 structures, containing many inter-related classes collaborat-
ing in some function of the system. The aggregate structure is the
key concept in any object-oriented program. Hence our verification
method needs to describe invariants of these aggregate structures.

The class invariant can only reason about a single object. Using
ownership based methodologies [1–4,7,8] we can extend the class
invariant to some aggregate structures, and allow an object’s in-
variant to depend on objects it owns completely. However, in more
complex examples the ownership is less clear cut. Consider two
collaborating classes: neither owns the other and each has an in-
variant depending on the state of the other. Any update to one ob-
ject will potentially invalidate the invariant of the other object. So
how can we update this co-dependent structure? Ideas such as peer
invariants [6], friends and update guards [3], and history proper-
ties [7], have been used to extend the idea of a class invariant, so
that it can depend, soundly, on other objects. But is the complexity
of these proposals a sign that the class invariant is not the correct
foundation?

Our position is to take a step back and consider a more general
foundation. Our approach uses predicates [9, 10] to simply specify
the properties of aggregate structures. A class invariant is then just
a particular (useful!) predicate.

Subject/Observer The subject/observer pattern, given in Figure 1,
exhibits many of the difficulties in reasoning with class invari-
ants. We would like to specify an invariant for theObserver that
this.sub.val = this.cache. However, this invariant does not al-
ways hold, because there is a time between whenupdate is called
on aSubject, andnotify is called on theObserver where the in-
variant is not satisfied.

Instead of trying to write a property of the individual classes, let
us consider a property of the aggregate structure. A singleSubject
object will have manyObserver objects. We expect that, if we
update theSubject object, then all theObserver objects will be
notified and their status suitably updated. The aggregate structure

1 Here we meanaggregatein its most general sense to capture additionally
the UML meanings ofassociationandcomposition.

class Subject {
List obs; int val;
Subject()
{ obs = new List(); }
void register(Observer o)
{ this.obs.add(o);

o.notify(); }
void update(int n) {

this.val = n;
foreach(Observer o:obs)

o.notify();
}
int get() { return this.val; }

}

class Observer {
Subject sub;
int cache;
Observer(Subject s) {

this.sub = s;
s.register(this);

}
void notify()
{ this.cache = s.get(); }
int val()
{ return cache; }

}

Figure 1. Source code for subject/observer pattern

can be specified with the following predicate definition:

SubObs(s, O, v)
def
= Sub(s, O, v) ∧ ∀o ∈ O.Obs(o, s, v)

Here s is the Subject, O is a set (list) ofObservers and v is
the current value of theSubject. In the definition,Sub(s, O, v)
represents aSubject objects, that hasO Observers, and current
value, v; and Obs(o, s, v) represents anObserver object, with
Subject s that had valuev last time it was notified. The ownership
properties are captured directly by using separation logic (see [9,
10] for more details).2 We give the definitions of the predicates in
Figure 2.

The SubObs predicate can be seen as the invariant of the ag-
gregate structure. Accordingly, it should hold on the entry and exit
of every public method of the aggregate (this is just a generaliza-
tion of a class invariant). So the “aggregate invariant” should hold
on the entry and exit of the two constructors, theupdate method of
theSubject, and theval method of theObserver. The other meth-
ods (register, notify andget) are internal to the aggregate structure.
We present the specifications of the methods and constructors in
Figure 2.

When verifying theSubject methods, we use the definition of
SubObs andSub predicates, and verifying theObserver methods
we can use bothSubObs andObs definitions. Hence, theSubject
is independent of theObserver, and vice-versa, but they are both
dependent on the aggregate structure to which they belong, hence
our reasoning remains modular.

We present an example verification of the constructor of the
Observer:

{SubObs(s, O, v) ∗ this.sub7→ ∗ this.cache 7→ }

2 Separation logic in a footnote.Separation logic is an extension to Hoare
logic that allows reasoning about heap data-structures. It has two new
connectives:P ∗ Q means the state can be split into two disjoint parts,
one satisfyingP and the otherQ; x.f 7→ y means the objectx has a field
f containingy; and~i∈{i1,...,in}.P (i) meansP (i1) ∗ . . . ∗ P (in).

9



Predicates

SubObs(s, O, v)
def
= Sub(s, O, v) ∗~o∈OObs(o, s, v)

Sub(s, O, v)
def
= ∃l. s.val 7→v ∗ s.obs 7→l ∗ list(l, O)

Obs(o, s, v)
def
= o.cache 7→v ∗ o.sub7→s

Method Pre-condition Post-condition

s=Subject() emp SubObs(s, ∅, )
s.register(o) Sub(s, O, v) ∗Obs(o, s, ) Sub(s, o :: O, v) ∗Obs(o, s, v)
s.update(n) SubObs(s, O, v) SubObs(s, O, n)
ret=s.get() Sub(s, O, v) Sub(s, O, v) ∧ ret=v

o=Observer(s) SubObs(s, O, v) SubObs(s, o :: O, v)
o.notify() Sub(s, O, v) ∗Obs(o, s, ) Sub(s, O, v) ∗Obs(o, s, v)
ret=o.val() SubObs(s, O, v) ∧ o ∈ O SubObs(s, O, v) ∧ ret=v

whereo ∈ (o′ :: O′)
def
= o = o′ ∨ o ∈ O′ ando ∈ ∅ def

= false

Figure 2. Specification of subject/observer pattern

this.sub = s;
{SubObs(s, O, v) ∗ this.sub7→s ∗ this.cache 7→ }
{SubObs(s, O, v) ∗Obs(this, s, )}
{Sub(s, O, v) ∗ (~o∈OObs(o, s, v)) ∗Obs(this, s, )}

s.register(this);
{Sub(s, this::O, v) ∗ (~o∈OObs(o, s, v)) ∗Obs(this, s, v)}
{Sub(s, this::O, v) ∗ (~

o∈(this::O)
Obs(o, s, v))}

{SubObs(s, this::O, v)}

Interestingly, theObserver’s constructor causes problems for class
invariant based verification, because it calls another class’s method,
which in turn calls back into theObserver. This complicated call-
ing pattern is forbidden in the class invariant approach, and requires
additional machinery [1]. Simply by using predicates over aggreg-
ates we avoid such constraints.

Conclusion We have demonstrated a straightforward proof of the
subject/observer pattern. We have not invented new methodology
or ownership types. We have simply considered a property of an
aggregate structure. These properties, we claim, are the key to
verifying object-oriented programs, and should not be shoehorned
into class invariants. Class invariants have taken us a long way, but
properties of aggregate structures should now form the foundation
of verification.

Acknowledgments We thank Gavin Bierman, Sophia Drossopoulou,
and Peter O’Hearn for encouraging me to write this position paper.

References
[1] M. Barnett, R. DeLine, M. F̈ahndrich, K. R. M. Leino, and W. Schulte.

Verification of object-oriented programs with invariants.Journal of
Object Technology, 3(6):27–56, 2004.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec] programming
system: An overview. InProceedings of CASSIS, pages 49–69, 2005.

[3] M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining
invariants over shared state. InMPC, pages 54–84, 2004.

[4] W. Dietl and P. M̈uller. Universes: Lightweight ownership for JML.
Journal of Object Technology, 2005.

[5] C. A. R. Hoare. Proof of correctness of data representations.Acta
Informatica, 1(4):271–281, 1972.

[6] K. R. M. Leino and P. M̈uller. Object invariants in dynamic contexts.
In M. Odersky, editor,European Conference on Object-Oriented
Programming (ECOOP), volume 3086 ofLNCS, pages 491–516.
Springer-Verlag, 2004.

[7] K. R. M. Leino and W. Schulte. Using history invariants to verify
observers. InProceedings of ESOP, LNCS, 2007.

[8] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants
for layered object structures.Sci. Comput. Program., 62(3):253–286,
2006.

[9] M. J. Parkinson.Local Reasoning for Java. PhD thesis, Computer
Laboratory, University of Cambridge, 2005. UCAM-CL-TR-654.

[10] M. J. Parkinson and G. M. Bierman. Separation logic and abstraction.
In POPL, pages 247–258, 2005.

10


