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Abstract
We extend an existing points-to analysis for Java in two ways. First,
we fully support .NET which has structs and parameter passing
by reference. Second, we increase the precision for calls tonon-
analyzablemethods. A method is non-analyzable when its code
is not available either because it is abstract (an interface method
or an abstract class method), it is virtual and the callee cannot be
statically resolved, or because it is implemented in native code (as
opposed to managed bytecode). For such methods, we introduce
extensions that model potentially affected heap locations. We also
propose an annotation language that permits a modular analysis
without losing too much precision. Our annotation language allows
concise specification of points-to and read/write effects. Our analy-
sis infers points-to and read/effect information from available code
and also checks code against its annotation, when the latter is pro-
vided.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Object-oriented programming, static analysis,
points-to analysis, effects analysis

Keywords object-oriented, points-to analysis

1. Introduction
Object-oriented languages, as C# or Java, strongly rely on the ma-
nipulation (read/write) of dynamically allocated objects. As a con-
sequence, static analysis tools for these languages need to compute
some heap abstraction. Here, we focus our attention on a static anal-
ysis for determining the side-effects of statements and methods.

Side effect information can be used for program analysis, spec-
ification, verification and optimization. If it is known that a method
m has no side-effects, then during the analysis of a caller,m can
be handled in a purely functional way. Furthermore,m can be used
in assertions and specifications [13, 5]. Side effect-free methods
enable several optimizations such as caching the computed results
and automatic parallelization.

Analysis of side-effects in mainstream OO languages is not
simple as (i) different variables or fields may refer to the same
memory location (aliasing); (ii) the relationship between objects
can be very complex (shape); (iii) the number of objects can be
unbounded (scalability); and (iv) it can be difficult or impossible to
statically determine the control flow because of dynamic binding or
because not all the code is not available at analysis time, e.g., when
analyzing a class library or programs that use native code.

We extend an existing points-to and effect analysis presented by
Salcianu et al. [22] to infer read and write effects for code targetting
the .NET Common Language Runtime (CLR) [11]. The CLR is
the common infrastructure for languages such as C#, Visual Basic,

Managed C++, etc. Unlike Java, the CLR adds support for struct
types and parameter passing by reference via managed pointers,
i.e., garbage collector controlled pointers. For each method in the
application we compute a summary describing a read/write effects
and a points-to graph that approximates the state of the heap at the
method’s exit point.

The more important extension is the inclusion of additional sup-
port for non-analyzablecalls. We can analyze programs that have
calls to non-statically resolvable calls such as interface calls, vir-
tual calls, and native calls while being less pessimistic than Sal-
cianu’s analysis. We define a concise yet expressive specification
language to describe points-to and read/write effects for a method.
The method annotations are used (i) as summaries, to analyze code
involving calls to non-analyzable methods; (ii) to enable modular
analysis, i.e., when analyzing a methodn that invokes a method
m, we (a) use the annotationA(m) in the analysis of the body
of n and (b) we checkm against its specificationA(m); (iii) as
documentation and contracts to impose restrictions on eventual im-
plementations [18]. This allows our analysis to work even without
computing a precise call graph.

In this work we apply our analysis primarily for checking
method puritybut it can be used for any other analysis that requires
aliasing information and/or conservative read/write effect informa-
tion. Purity is informally understood to mean that a method has no
effect on the state. Formally, however, there are different levels of
purity [6]. Our analysis computes weak purity, i.e., it infers weak
purity and it checks whether a method annotated as being weakly
pure lives up to its contract. Aweakly puremethod does not mutate
any object that was allocated prior to the beginning of the method’s
execution. Because a weakly-pure method can return newly allo-
cated objects and since object equality can be observed by clients,
there may be further restrictions on weakly-pure methods in order
to use them in specifications [10].

The main contributions of the paper are:

• An interprocedural read/write effect inference technique, built
on the top of the points-to analysis, for the .NET memory model
that relaxes theclosed worldassumption.

• A new set of annotations for representing points-to and effect
information in a modular fashion. The annotations are consid-
ered valid for interprocedural analysis when the methods are
called, and verified when the implementations of the methods
are analyzed.

• An implementation integrated into the Spec# compiler [23] to
infer and verify method purity and for checking the admissibil-
ity of specifications in the Boogie methodology [5].

1.1 The Problem

Consider the following simple, but realistic example. Figure 1
contains a method written by a programmer to copy a list of inte-
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List<int> Copy(IEnumerable<int> src)
{

List<int> l = new List<int>();
foreach (int x in src)
l.Add(x);

return l;
}

Figure 1. A simple use of an iterator in C#.

List<int> Copy(IEnumerable<int> src)
{

List<int> l = new List<int>();
IEnumerator<int> iter =
src.GetEnumerator();

while (iter.MoveNext()){
int x = iter.get_Current();
l.Add(x);

}
return l;

}

Figure 2. “Desugared” version of the iterator example.

gers. In C#, theforeachis syntactic “sugar” which the compiler ex-
pands (“desugars”) into the code shown in Figure 2. (Programmers
are also able to directly write the de-sugared version.) The desug-
ared version shows that there is one method call from the interface
IEnumerable〈T 〉and two from the interfaceIEnumerator〈T 〉.
In addition, the constructor for the typeList〈T 〉 is called, as is its
Add method.

A points-to analysis produces the set of memory locations that
are read and written byCopy. That information can then be used
to determine ifCopy is (weakly) pure. It clearly mutates the list
that it creates and returns, but that list is created after entry into
the method and the original collection from which the integers are
drawn is unchanged. Thus, we desire an analysis that is precise
enough to recognize its purity.

Salcianu’s analysis would not be able to analyze the calls to the
interface methods. It would make the conservative approximation
that the parametersrc could escape to any location in memory
and that the method has a (potential) write effect on all accessible
locations, such as all static variables. This precludesCopy from
being pure and, perhaps more importantly, pollutes the analysis
of any method that calls it because those effects then become the
effects of the caller.

We have created a specification language for concisely describ-
ing the points-to graph and read/write effects of a method. The de-
sign of such a language is subject to common engineering tradeoffs:
it should be precise enough to enable the recognition of common
programming idioms while at the same time be concise enough for
programmers to use in everyday practice.

We add annotations written in the language to method signa-
tures. At call sites, we trust the annotation of the called method;
annotations are then verified when analyzing a method implemen-
tation. Annotations are inherited: they must be respected in every
subtype by overriding methods. We use the set of annotations to
model non-analyzable calls with better precision than previously
possible while still computing a conservative points-to graph and
read and write effects of the callee. The annotations describe an
approximation of the read and write effects of the method.

1.2 Paper structure

First, we review the essential ideas from Salcianu’s analysis in Sec-
tion 2 and present our extensions to deal with .NET memory model
and non-analyzable calls. Section 3 presents our annotations and
the extensions to Salcianu’s analysis needed to process the points-
to graphs they represent. Our preliminary experimental results ap-
pear in Section 4. Some related work is reviewed in Section 5 and
our conclusions are presented in Section 6.

2. Salcianu’s Analysis
Salcianu et al. [22] created an analysis for Java programs that
performs an intra-procedural analysis of each method to obtain a
method summary that models the result of the analysis at the end
of the method’s execution. We briefly review their analysis.

Their analysis relies on having a precise precomputed call graph
for the entire application. Methods are traversed in a bottom up
fashion, using already computed method summaries at each call
site. To deal with recursion, a fixpoint computation operates over
every strongly-connected component (i.e., group of mutually recur-
sive methods). When a method invokes another method, the current
state of the caller and the method summary for the callee are unified
to represent the caller’s state after the call.

The intra-procedural analysis is a forward analysis that com-
putes a points-to graph (PTG) which over-approximates the heap
accesses made by a methodm during all its possible executions.
Given a methodm and a program locationpc, a points-to graph
P

pc
m is a triple〈I,O, L〉, whereI is the set of inside edges,O the

set of outside edges andL the mapping from locals to nodes1. The
nodes of the graph represent heap objects; there are basically three
different types of nodes.Inside nodesrepresent objects created by
m, while parameter nodesrepresent the value of an object passed
as an argument tom. Load nodesare used as placeholders for un-
known objects or addresses. A load node represents elements read
from outsidem.

Relations between objects are represented using two kind of
edges:inside edges model references created inside the body of
m and outside edges model heap references read from objects
reachable from outsidem, e.g., through parameters or static fields.

When the statement at the program pointpc is a method call,
op, the analysis uses a summary of the calleePcallee—a PTG
representing the callee effect on the heap—and computes an inter-
procedural mappingµpc

m :: Node 7→ P(Node). It relates every
noden ∈ nodes(Pcallee) in the callee to a set of existing or fresh
nodes in the caller(nodes(Ppc

m )∪nodes(Pop)) and is used to bind
the callee’s nodes to the caller’s by relating formals with actual
parameters and also to try to match callee’s outside egdes (reads)
with caller’s inside egdes (writes).

For each program point withinm, the analysis also records the
locations that are written to the heap. The summary of a method
represents the abstract state at the method’s exit point in term of
its parameters. It contains all reachable nodes from the (original)
parameter nodes.

2.1 Extensions for the .NET Memory Model

We extend this analysis to support features of the .NET platform
not present in Java: parameter passing by reference and struct
types. Struct types havevaluesemantics; they encompass both the
primitive types like integers and booleans as well as user-defined
record types. To accommodate both references and structs, we add

1 The set of nodes is implicitly described by the two sets of edges and the
local variables map. Salcianu’s analysis also has one more element,E, the
escaping node set. Instead, we represent an escaping node by connecting it
to a special node that represent the global scope.
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a new level of dereference usingaddress nodes. In this model, every
variable or field is represented by an address node. In the case
of objects (or primitive types) the address node then refers to the
object itself. A struct value is represented directly by its address. To
access an object we first get a reference to an address node and then
follow that to the value. In the case of structs we directly consider
the address as the starting offset of the struct. Thus, an address
node for an object has outgoing edges labeled with the “contents-
of” symbol “*”, while an address node for a struct value has one
outgoing edge for each field of the struct: the labels are the field
names.

This distinction is used in the assignment of objects and structs.
For objects, we just copy the value pointed to by the address node,
and for structs we also copy all the values pointed to by its fields.
Figure 3 shows the representation of object and struct values and
how the assignment of struct values is done. Address nodes are
depicted as ovals, values as boxes.

In [4] we formally present the concrete and abstract semantics
of the extended model. Basically we support the statements that
operate on managed pointers. For instance the statement that loads
an addressa = &b assigns toa the address ofb. If the type ofb is
a struct typea will contain a reference to it. Thus,a can be used as
if it were an object. The pair of statements indirect load,a = *b,
and indirect store,*a = b, allows indirect access to values and
are typically used to implement parameter passing by reference. We
also keep track of read effects by registering every field reference
(load operation).

Figure 4 shows a simple method and three points-to graphs at
different control points in the method. All of the addresses in the
figure refer to objects. One node models all globally accessible
objects. The graph on the left shows the points-to graph as it exists
at the entry point of the method. The middle graph shows the effect
of executing the body of the method: the points-to graph is shown at
the exit point of the method. Finally, the right graph is the summary
points-to graph for the method. It represents the method’s behavior
from a caller’s point of view. Notice that the initial value of the
parametera has been restored since a caller would not be able to
detect that it is re-assigned within the method. The summary for the
method is a triple made up of a points-to graph that approximates
the state of the heap, a write setW, and a read setR.

2.2 Extensions for Non-analyzable Methods

Salcianu’s analysis computes a conservative approximation of the
heap accesses and write effects made by a method. A call to a non-
analyzable method causes all arguments to escape the caller and
also to cause a write effect on a global location [22].

For a more precise model of non-analyzable calls, we generate
summary nodes for non-analyzable methods. A load node (in par-
ticular, a parameter node) is a placeholder for unknown objects that
may be resolved in the caller’s context. In the case of analyzable
calls, at binding time the analysis tries to match every load node
with nodes in the caller. A match is produced when there is a path
starting from a callee parameter that unifies with a path in the caller.
That means that a read or write made on a callee’s load node cor-
responds to a read or write in the caller. As reads and writes in the
callee are represented by edges in the points-to graph, those edges
must be translated to the caller.

Non-analyzable calls may have an effect on every node reach-
able from the parameters. That means that, unlike analyzable calls,
some effects might not be translated directly to the caller points-
to graph as it may not have enough context information to do the
binding. For instance, a non-analyzable calleem2 may modify
p1.f1.f2.f3 to point to another parameterp2 and a callerm that
performs the method callm2(a1, a2) may have points-to informa-
tion only abouta1.f1. As we don’t know “a priori” the effect of

m2 it would be unsound to consider only an effect overa1.f1 in
the caller. We need some mechanism to updatea1 when more in-
formation becomes available (e.g., when bindingm with its caller).

2.2.1 Omega Nodes

We introduce a new kind of node, anω node, to model the set
of reachable nodes from that node. At binding time, instead of
mapping a load (or parameter) node with the corresponding node
in the caller,ω nodes are mapped to every node reachable from the
corresponding starting node in the caller. For instance, anω node
for a parameter in the callee will be mapped to every node reachable
from the corresponding caller argument.

Figure 5 shows an example of howω nodes are mapped to caller
nodes during the inter-procedural binding. Suppose that somehow
we know the non-analyzable method call creates a reference from
some object reachable fromp1 to some object reachable fromp2.
Since we don’t know which fields are used on the access path, we
use a new edge label,?, that represents any field. At binding time
we know that froma1 we can reachIN1 andIN2. Thus, we must
add a reference from both nodes to the nodes reachable froma2.

We want to distinguish between a node being merely reachable
from it being writable (e.g., an iterator may access a collection
for reading but not for writing). For this purpose, we introduce a
variant ofω nodes:ωC nodes. TheC stands forconfined, a concept
borrowed from the Spec# ownership system [2]. These nodes have
the same meaning asω nodes for binding a callee to a caller, but
they represent only nodes reachable from the caller through fields
it owns. Ownership is specified on the class definition: a fieldf
marked as being anowningfield in classT means that an objecto
of typeT owns the object pointed to by itsf field, o.f (if any).

To model potential read or writes we use? edges to mean that
the method may generate a reference using an unknown field for
any object reachable from the object(s) represented by the source
node to the object(s) represented by the target node. As we want a
conservative approximation of the callee’s effect, we only generally
introduce inside edges in non-analyzable methods because they
do not disappear when bound with the caller’s edges. We use
another wildcard edge label$, that includes only a subset of the
labels denoted by?. $ denotes only non-owned fields and allows
distinguishing between references to objects that can be written by
a method, from references that can only be reached for reading (see
Section 3 in particular theWriteConfined attribute). This is the
distinction that allows the use of impure methods while retaining
guarantees that some objects are not written. For the worst case
scenario we connect every parameterω node of the non-analyzable
method to other parameter nodes and to themselves using edges
labeled as? to indicate potential references created between objects
reachable from the parameters. Section 3 presents our annotation
language that helps eliminate some of these edges.

2.2.2 Interprocedural binding

To deal with the new nodes and edge labels, we adapt the inter-
procedural mappingµ. Recall thatµ is a mapping from nodes in
the callee to nodes in the callee and the caller. Thus, for everyω
nodenL

pc

ω
we compute the closure ofµ(nL

pc

ω
) by adding the set of

reachable nodes fromµ(nL
pc

ω
) to itself.

When computing the set of reachable nodes matching anωC
node we consider only paths that pass through owned fields2 and?
edges. Note that we reject paths that contain$ edges.

Finally, we convert any load nodes,nL
pc, contained in the set

µ(nL
pc

ω
) to ω nodes. This is because these nodes could be resolved

when more context is available, at which point we still need to
apply the effect of the non-analyzable call to those nodes. For

2 We mean “owned fields” as defined in the Boogie methodology [2].
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Figure 3. Modeling objects and structs. On the leftv0 is the address ofv1, which is a value of a struct type with two fieldsf1 andf2. (v0

can be thought of as an object, e.g., if the struct is passed to a method that takes an object as a parameter thenv1 would be aboxedvalue.)
The type off1 is also a struct type with one fieldg which is of an object type. The type off2 is an object type. The center and right figures
show an assignment of two variables of struct type.

instance in Figure 5, before the binding all nodes reachable from
a1 are inside nodes. Those nodes do not change at binding time
as they were created by the caller itself and are not place holders
for unknown objects. Thus, no more context is necessary to solve
the binding betweena1 andp1. However,a2 can reach the load
nodeL4 meaning that more context might be necessary to resolve
nodes reachable froma2. That is why we convertL4 to anω node.
Full details on the modified computation for the inter-procedural
mappingµ is in [4].

We also modify the operation that models field dereference to
support the? and$ edges. It considers those edges as “wild cards”
allowing every field dereference to follow those edges.

3. Annotations
Table 1 summarizes our annotation language. The annotations pro-
vide concise information about points-to and effect information and
allows us to mitigate the effect of non-analyzable calls. Annotating
a method as pure is the same as marking each parameter as not be-
ing writable (unless it is an out parameter). A method annotated as
being write-confined is shorthand for marking every parameter as
write-confined. Obviously not all combinations of the attributes are
allowed. For example, it would be contradictory to label a method
as being both pure and as writing globals.

The full details for mapping the attributes into points-to and
write effect information are found in [4]. Basically their impact is
to a) remove? edges, b) replaceω nodes by inside nodes, and c)
avoid registering write effects over parameters or the global scope.

We explain the effect of the annotations using some of the
methods in our running example. Figure 7 presents the full list of
annotations. TheGetEnumerator method returns an object that
is modified later on inCopy. Notice that the loop would never
terminate unlessiter.MoveNext returns false at some point. So
either the loop never executes or else some state somewhere must
change so that a different value can be returned. If the state change
involves global objects, thenCopy is not pure so let us assume that
the change is to the objectiter itself. As long as that object was
allocated byGetEnumerator, changes to it would not violate
the weak purity ofCopy. We expectGetEnumerator to return
a fresh object: the iterator. At the same time, it is likely that the
returned iterator has a reference to the collection. We need a way
to distinguish the write effects inMoveNext so that we do not
conclude that it modifies the collection.

Figure 6 shows the points-to graph forGetEnumerator. It
corresponds to the following annotations.

• The return value is annotated asFresh. This generates the
inside node for the return value instead of anω node.

• The receiver (this variable) is annotated asEscapes which
means that the points-to graph must introduce edges from the

nodes reachable from outside (in this case the return value) to
the receiver. Note that we do not annotate it asCapture. This
is why the edge between the return value and the collection is
labeled as$ which means that the receiver is reachable from
outside but only for reading. ACapture annotation would
generate a? edge. There are no edges starting from theω node
pointed by&this because of the default annotation for the
receiver asWrite(false).

• The method is annotated as not accessing globals. This means
that there is no global node (and so no write or read effects on
the global state).

We believe these are reasonable constraints on the behavior of
GetEnumerator. The points-to graph forMoveNext is also
shown in Figure 6. It corresponds to these annotations:

• The method is annotated asWriteConfined, which means
that it can only mutate objects it owns. This is represented using
an ωC node for the receiver. Note how this is implemented.
The parameter node has two edges. The edge labeled as?
which leads back to the reciever means that the method can
perform any write to nodes in its ownership cone. The other
edge labeled as$ leads to a separateω node. That means that
objects reachable using not-owned fields can be read but not
modified. Thus, edges labeled as$ do not need to be considered
when computing write effects for the method.

class List<T> {
[GlobalAccess(false)]
public List<T>();
[GlobalAccess(false)]
public void Add(T t);
...

}
interface IEnumerable<T>{
[return: Fresh]
[Escapes(true)] // receiver spec
[GlobalAccess(false)]
IEnumerator<T> GetEnumerator();

}
interface IEnumerator<T> {
[WriteConfined] bool MoveNext();
T Current { [GlobalAccess(false)] [Pure] get; }
[WriteConfined] void Reset();

}

Figure 7. The methods needed for analyzingCopy along with
their annotations.
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void m(A a){
a = this;
D d = new D();
a.f = d;

}

W(m) = {〈PLN(this), f〉}
R(m) = {}
Write(m) = {this.f}
Read(m) = {}

Figure 4. An example method, three points-to graphs for the beginning, end, and summary of the method and the read and write sets for the
method. The latter is expressed both as the sets of nodes (PLN meansparameter load node) and as the access paths.

Figure 5. Effect of omega nodes in the inter-procedural mapping

Attribute Name Target Default Meaning
Fresh out Parameter False The returned value is a newly created object.
Read Parameter True The content can be transitively read.
Write Parameter False The content can be transitively mutated.
WriteConfined Parameter False The content can transitively mutate only captured ob-

jects.
Escape(bool) Parameter False Will any object reachable from the parameter be reach-

able from another object in addition to the caller’s argu-
ment

Capture(bool) Parameter False Will some caller object own the escaping-parameter’s
objects ?

GlobalRead(bool) Method True Does the method read a global?
GlobalWrite(bool) Method True Does the method write a global?
GlobalAcccess(bool) Method True Does the method read or write a global?
Pure Method False The method can not mutate any object from its prestate

except for out parameters
WriteConfined Method False The method mutates only objects owned by the param-

eters (captured).

Table 1. The set of attributes used to summarize the points-to graph and the read and write sets. The attributesFresh andEscape also are
allowed on the “return value” of the method since we model that as an extra (out) parameter. In C#, attributes on return values are specified
at the method level with an explicit target, e.g.,[return:Fresh].

15



Figure 6. The evolution ofCopy’s points-to graph after callingsrc.GetEnumerator anditer.MoveNext. We use the special field
$ to indicate thatsrc is reachable fromiter but iter is able to mutate objects only using fields thatiter’s class owns. For simplicity we do
not show the evolution of the newly created objects pointed to by the listl.

4. Experimental Results
Our implementation is integrated into the Spec# compiler pipeline
and can also be run as a stand alone application. We analyze Boogie
[3], a program verification tool for the Spec# language [2]. Boo-
gie is itself written in Spec# and so already has some annotations.
In this case we use our tool to verify methods annotated as pure.
We analyzed the eight application modules using three different
approaches.Intra-procedural:We analyze each method body inde-
pendently. In the presence of method calls we use any annotations
provided by the callee.Inter-procedural (bottom up with fixpoint):
This is a whole program analysis. We compute a partial call graph
and analyze methods in a bottom up fashion in order to have the
callee precomputed before any calls to that method. To deal with
recursive calls we perform a fixpoint computation over the strongly
connected graph of mutually recursive calls.Inter-procedural (top
down with depth 3):Again, a whole program analysis with inline
simulation. For every method we analyze call chains to a maximum
length of three.

Table 2 contains the results for the three kinds of analysis.
We show only modules that contain purity annotations. The intra-
procedural analysis is only slightly less precise than the other
two analyses. Furthermore, when using annotations with intra-
procedural analysis, the precision is substantially better than a full
inter-procedural analysis without annotations. For this application
we don’t find a big difference between the two inter-procedural
analyses. This is because most of the methods are not recursive.

One interesting thing is that we found that many of the methods
declared pure in Boogie were not actually pure. Some are observa-
tionally pure, but others either record some logging information in
static fields, or else were just incorrectly annotated as being pure.

5. Related work
Our analysis is a direct extension of the points-to and effect anal-
ysis by Salcianu et al. [22]. We add support for a more complex
memory model (managed pointers and structs) and provide a dif-
ferent approach for dealing with non-analyzable methods. Instead
of assuming that every argument escapes and the method writes
the global scope, we try to bound the effect of unknown callees
using annotations. Using their analysis it is difficult to decide that
a method is pure when it calls a non-analyzable method (e.g., the
iterator example). One alternative is to generate by hand all the
information about the callee (points-to and effects) but it has to be
done for every implementation of an interface or abstract class. Our
annotation language simplifies that task and allows us to verify the
annotations when code becomes available.

Type and effect systems have been proposed by Lucassen et al.
[17] for mostly functional languages. There has been a significant
amount of work in specification and checking of effect information
relying on user annotations. Clarke and Drossopoulou use owner-

ship types [9] while Leino et al. use data groups [16]. In [14], an
effect system using annotations is proposed: it allows effects to be
specified on a field or set of fields (regions). It also has a notion of
“unshared” fields that corresponds to our ownership system. Using
a purely intra-procedural analysis, they verify methods against their
annotations. However, it seems that it doesn’t compute points-to-
information. Compared to their approach, our annotation language
is less precise, but still allows enough information about escaping
and captured parameters. JML [15] and Spec# [2] are specification
languages that allow specification of write effects. One of the aims
of our technique is to assist the Spec# compiler in the verification
and inference of the read and write effects. We use the purity analy-
sis to check whether a method can be used in specifications. Javari
[24] uses a type system to specify and enforce read-only parameters
and fields. To cope with caches in real applications, Javari allows
the programmer to declare mutable fields; such fields can be mu-
tated even when they belong to a read-only object. Our technique
computes weak purity so mutation of prestate objects are not al-
lowed in methods. To automatically deal with caching writes, it is
necessary to infer observationally pure methods [6].

Points-to information has also been used to infer side ef-
fects [21, 19, 8, 7]. Our analysis, as well as Salcianu’s analysis [22],
is able to distinguish between objects allocated by the method and
objects in the prestate. This enables us to compute weak purity
instead of only strong purity. In more recent work, Cherem and
Rugina [7] present a new inter-procedural analysis that generates
method signatures that give information about effects and escap-
ing information. It allows control of the heap depth visibility and
field branching, which permits a tradeoff between precision and
scalability. Our analysis also computes method summaries con-
taining read and write effect information that are comparable with
the signatures computed by their analysis but our technique is able
to deal with non-analyzable library methods with a concise set of
annotations that can be checked when code is available. AliasJava
[1] is an annotation language and a verification engine to describe
aliasing and escape information in Featherweight Java. Our work
also uses annotations to deal with escape, aliasing and some own-
ership information but also some minimal description about read
and write effects in order to compensate for information lacking at
non-analyzable calls. Hua et al. [20] proposed a technique to com-
pute points-to and effect information in the presence of dynamic
loading. Instead of relying on annotations, they only compute infor-
mation for elements that may not be affected by dynamic loading
and warn about the others.

6. Conclusions and Future Work
We have implemented an extension to Salcianu’s analysis [22] that
works on the complete .NET intermediate language CIL. The ex-
tensions involve several non-trivial details that enable it to deal
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Project #Meths DP Using Annotations Without Annotations
Intra % Inter 3 % IF % Intra % Inter 3 % IF %

AbsInt 348 66 66 100% 66 100% 66 100% 51 77% 51 77% 51 77%
AIFramework 15063 3514 2702 77% 2725 77% 2730 78% 1631 46% 1688 48% 1688 48%
Graph 97 20 14 70% 14 70% 14 70% 10 50% 10 50% 10 50%
Core 9628 1326 1164 88% 1224 92% 1224 92% 709 53% 729 55% 729 55%
ByteCodeTrans 5564 984 781 79% 845 86% 863 88% 255 26% 297 30% 297 30%
VCGeneration 2050 187 171 91% 171 91% 171 91% 155 83% 155 83% 155 83%
Compiler Plugin 55 12 10 83% 10 83% 10 83% 8 66% 8 66% 8 66%

Table 2. Results for Boogie showing the number of methods annotated as pure that were verified as pure by our analysis. The “DP” (declared
pure) column lists the number of methods in each module that were annotated as pure. The column labeled “Intra” shows the number of
methods verified using the intra-procedural analysis, “Inter 3” the inter-procedural top-down analysis limited to a call-chain depth of three,
and “IF” is the full bottom-up inter-procedural analysis.

with call-by-reference parameters, structs, and other features of the
.NET platform. Our model provides a simple operational semantics
for a useful part of CIL. Full details are presented in an accompa-
nying technical report [4].

We have extended the previous analysis by includingω-nodes
that model entire unknown sub-graphs. Together with our annota-
tion language, this allows treatment of otherwise non-analyzable
calls without losing too much precision.

The abstraction aspect ofω-nodes also holds the promise to
improve the scalability of the analysis by enabling points-to graphs
to be abstracted further than possible in the original analysis by
Salcianu.

We believe our annotation system strikes the proper balance be-
tween precision and conciseness. The annotations are specifications
that are useful not only for the analysis itself, but represent infor-
mation programmers need to use an API effectively. Our technique
needs to be very conservative when dealing with load nodes. We
are planning to improve it by recomputing the set of egdes (?, $, ω)
when new nodes become available. We also plan to leverage type
information to avoid aliasing between incompatible nodes.

Our annotation language appears to be general, but it was de-
signed with our purity analysis in mind. It is possible to create a
different set of annotations; our approach would work given a map-
ping from the set of annotations into points-to graphs. It is also
possible to imagine the annotations being elements of the abstract
domain themselves, instead of using a separate annotation laguage.
Besides usability concerns for real programmers, it could make the
verification of a method against its specification more difficult: our
annotation language is intentionally simple enough to make the ver-
ification easy to perform.

One problematic aspect of the system is the necessity to intro-
duce an ownership system. The concept of ownership certainly ex-
ists in real code, but the right formalization is not fully agreed upon.
There are several different ownership systems in the literature and
we believe the meaning of our annotations would work for any of
them. For now, we have connected our annotations to the Spec#
ownership system.

By relaxing the closed-world requirements so that we do not
need full programs, we hope to enable the use of our system within
real programming practice. In the future we hope to present results
from some real-world case studies.

There are other uses for a points-to and effect analysis besides
method (weak) purity. In addition to using it for checking forms
of observational purity, we have adapted the analysis for studying
method re-entrancy[12]. It is also possible to use it for inferring
and checking methodmodifies clauses.

Acknowledgements
We would like to thank the anonymous reviewers for their com-
ments.

References
[1] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers.

Alias annotations for program understanding. InOOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
311–330, New York, NY, USA, 2002. ACM Press.

[2] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M.
Leino, and Wolfram Schulte. Verification of object-oriented programs
with invariants.Journal of Object Technology, 3(6):27–56, 2004.

[3] Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors,FMCO 2005,
volume 4111 ofLNCS, pages 364–387. Springer, September 2006.

[4] Mike Barnett, Manuel Fandrich, Diego Garbervetsky, and Francesco
Logozzo. A read and write effects analysis for C#. Technical Report
MSR-TR-2007-xx, Microsoft Research, April 2007. Forthcoming.

[5] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Gilles Barthe, Lilian Burdy,
Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors,
CASSIS 2004, volume 3362 ofLNCS, pages 49–69. Springer, 2005.

[6] Mike Barnett and David A. Naumann. Friends need a bit more:
Maintaining invariants over shared state. InMPC 2004, LNCS, pages
54–84. Springer, July 2004.

[7] Sigmund Cherem and Radu Rugina. A practical escape and effect
analysis for building lightweight method summaries. InCC 2007:
16th International Conference on Compiler Construction, Braga,
Portugal, March 2007.

[8] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-
sensitive interprocedural computation of pointer-induced aliases and
side effects. InPOPL ’93: Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
232–245, New York, NY, USA, 1993. ACM Press.

[9] Dave G. Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect.ACM SIGPLAN Notices,
37(11):292–310, November 2002.
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