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Abstract

We extend an existing points-to analysis for Java in two ways. First,
we fully support .NET which has structs and parameter passing
by reference. Second, we increase the precision for calt®me

analyzablemethods. A method is non-analyzable when its code
is not available either because it is abstract (an interface metho

or an abstract class method), it is virtual and the callee cannot be

statically resolved, or because it is implemented in native code (as ; ; ;
ecalls to non-statically resolvable calls such as interface calls, vir-

opposed to managed bytecode). For such methods, we introduc

extensions that model potentially affected heap locations. We also

propose an annotation language that permits a modular analysi
without losing too much precision. Our annotation language allows
concise specification of points-to and read/write effects. Our analy-
sis infers points-to and read/effect information from available code
and also checks code against its annotation, when the latter is pro
vided.

Categories and Subject Descriptors  F.3.2 Logics and Meanings
of Program$. Semantics of Programming Languages—Program
Analysis

General Terms Object-oriented programming, static analysis,
points-to analysis, effects analysis

Keywords object-oriented, points-to analysis
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Managed C++, etc. Unlike Java, the CLR adds support for struct
types and parameter passing by reference via managed pointers,
i.e., garbage collector controlled pointers. For each method in the
application we compute a summary describing a read/write effects

and a points-to graph that approximates the state of the heap at the

dmethod’s exit point.

The more important extension is the inclusion of additional sup-
port for non-analyzablecalls. We can analyze programs that have

tual calls, and native calls while being less pessimistic than Sal-
cianu’s analysis. We define a concise yet expressive specification
anguage to describe points-to and read/write effects for a method.
The method annotations are used (i) as summaries, to analyze code
involving calls to non-analyzable methods; (ii) to enable modular
analysis, i.e., when analyzing a methadhat invokes a method

m, we (a) use the annotatiad(m) in the analysis of the body

of n and (b) we checkn against its specificationd(m); (iii) as
documentation and contracts to impose restrictions on eventual im-
plementations [18]. This allows our analysis to work even without
computing a precise call graph.

In this work we apply our analysis primarily for checking
method puritybut it can be used for any other analysis that requires
aliasing information and/or conservative read/write effect informa-
tion. Purity is informally understood to mean that a method has no
effect on the state. Formally, however, there are different levels of
purity [6]. Our analysis computes weak purity, i.e., it infers weak
purity and it checks whether a method annotated as being weakly

Object-oriented languages, as C# or Java, strongly rely on the ma-pure lives up to its contract. Weakly puremethod does not mutate

nipulation (read/write) of dynamically allocated objects. As a con- any object that was allocated prior to the beginning of the method’s
sequence, static analysis tools for these languages need to computexecution. Because a weakly-pure method can return newly allo-
some heap abstraction. Here, we focus our attention on a static anal<ated objects and since object equality can be observed by clients,
ysis for determining the side-effects of statements and methods. there may be further restrictions on weakly-pure methods in order

Side effect information can be used for program analysis, spec- to use them in specifications [10].
ification, verification and optimization. If it is known that a method The main contributions of the paper are:

m has no side-effects, then during the analysis of a calecan

be handled in a purely functional way. Furthermaregan be used

in assertions and specifications [13, 5]. Side effect-free methods
enable several optimizations such as caching the computed results
and automatic parallelization.

Analysis of side-effects in mainstream OO languages is not
simple as (i) different variables or fields may refer to the same
memory location (aliasing); (ii) the relationship between objects
can be very complex (shape); (iii) the number of objects can be
unbounded (scalability); and (iv) it can be difficult or impossible to
statically determine the control flow because of dynamic binding or
because not all the code is not available at analysis time, e.g., when
analyzing a class library or programs that use native code.

We extend an existing points-to and effect analysis presented by
Salcianu et al. [22] to infer read and write effects for code targetting 11 TheProblem
the .NET Common Language Runtime (CLR) [11]. The CLR is Consider the following simple, but realistic example. Figure 1
the common infrastructure for languages such as C#, Visual Basic, contains a method written by a programmer to copy a list of inte-

e An interprocedural read/write effect inference technique, built
on the top of the points-to analysis, for the .NET memory model
that relaxes thelosed worldassumption.

e A new set of annotations for representing points-to and effect
information in a modular fashion. The annotations are consid-
ered valid for interprocedural analysis when the methods are
called, and verified when the implementations of the methods
are analyzed.

e An implementation integrated into the Spec# compiler [23] to
infer and verify method purity and for checking the admissibil-
ity of specifications in the Boogie methodology [5].
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Li st <i nt > Copy(| Enuner abl e<i nt > src) 1.2 Paper structure

List<int> | = new List<int>(): First, we review the essential ideas from Salcianu’s analysis in Sec-
foreach (int x in src) tion 2 and present our extensions to deal with .NET memory model

| . Add(X) ; and non-analyzable calls. Section 3 presents our annotations and
ret 'ur ni: ' the extensions to Salcianu’s analysis needed to process the points-

} to graphs they represent. Our preliminary experimental results ap-
pear in Section 4. Some related work is reviewed in Section 5 and
our conclusions are presented in Section 6.

Figure 1. A simple use of an iterator in C#.

2. Salcianu’sAnalysis
Salcianu et al. [22] created an analysis for Java programs that

Li st <i nt > Copy( | Enumer abl e<i nt> src) performs an intra-procedural analysis of each method to obtain a
) ) ) ) method summary that models the result of the analysis at the end
List<int> 1 = new List<int>(); of the method’s execution. We briefly review their analysis.
I Enunmerator<int> iter = Their analysis relies on having a precise precomputed call graph
src. Get Enunerat or () ; for the entire application. Methods are traversed in a bottom up
while (iter.MveNext()){ fashion, using already computed method summaries at each call
int x = iter.get_Current(); site. To deal with recursion, a fixpoint computation operates over
I Add(X); every strongly-connected component (i.e., group of mutually recur-
sive methods). When a method invokes another method, the current
return |; state of the caller and the method summary for the callee are unified
} to represent the caller’s state after the call.
The intra-procedural analysis is a forward analysis that com-
Figure2. “Desugared” version of the iterator example. putes a points-to graph (PTG) which over-approximates the heap

accesses made by a methedduring all its possible executions.
Given a methodn and a program locatiopc, a points-to graph
Preis atriple(I, O, L), wherel is the set of inside edge6) the
gers. In C#, théoreachis syntactic “sugar” which the compiler ex- ~ Set of outside edges aridthe mapping from locals to nodésThe
pands (“desugars”) into the code shown in Figure 2. (Programmers Nodes of the graph represent heap objects; there are basically three
are also able to directly write the de-sugared version.) The desug-different types of nodesnside nodesepresent objects created by
ared version shows that there is one method call from the interface™. While parameter nodesepresent the value of an object passed

I Enumerable(T) and two from the interfacéEnumerator(T). as an argument to. Load nodesare used as placeholders for un-
In addition, the constructor for the tydaist(T") is called, as is its known objects or addresses. A load node represents elements read
Add method. from outsidem.

A points-to analysis produces the set of memory locations that ~ Relations between objects are represented using two kind of
are read and written b§fopy. That information can then be used edges:inside edges model references created inside the body of
to determine ifCopy is (weakly) pure. It clearly mutates the list ™ and outside edges model heap references read from objects
that it creates and returns, but that list is created after entry into reachable from outside, e.g., through parameters or static fields.
the method and the original collection from which the integers are ~ When the statement at the program paintis a method call,
drawn is unchanged. Thus, we desire an analysis that is preciseop: the analysis uses a summary of the calRg;..—a PTG
enough to recognize its purity. representing the callee effect on the heap—and computes an inter-

Salcianu’s analysis would not be able to analyze the calls to the Procedural mapping.; :: Node — P(Node). It relates every
interface methods. It would make the conservative approximation Noden € nodes(Pcaice) In the callee to a set of existing or fresh
that the parametesrc could escape to any location in memory hodes in the callefnodes(P7;) Unodes(P.p)) and is used to bind
and that the method has a (potential) write effect on all accessible the callee’s nodes to the caller's by relating formals with actual
locations, such as all static variables. This preclufegy from parameters and also to try to match callee’s outside egdes (reads)
being pure and, perhaps more importantly, pollutes the analysisWith caller’s inside egdes (writes). _
of any method that calls it because those effects then become the For each program point withim, the analysis also records the
effects of the caller. locations that are written to the heap. The summary of a method

We have created a specification language for concisely describ-represents the abstract state at the method's exit point in term of
ing the points-to graph and read/write effects of a method. The de- its parameters. It contains all reachable nodes from the (original)
sign of such a language is subject to common engineering tradeoffs:Parameter nodes.
it should be precise enough to enable the recognition of common .
programming idioms while at the same time be concise enough for 21 Extensionsfor the NET Memory Model
programmers to use in everyday practice. We extend this analysis to support features of the .NET platform

We add annotations written in the language to method signa- not present in Java: parameter passing by reference and struct
tures. At call sites, we trust the annotation of the called method; types. Struct types hawaluesemantics; they encompass both the
annotations are then verified when analyzing a method implemen- primitive types like integers and booleans as well as user-defined
tation. Annotations are inherited: they must be respected in every record types. To accommodate both references and structs, we add
subtype by overriding methods. We use the set of annotations to
model non-analyzable calls with better precision than previously 1the set of nodes is implicitly described by the two sets of edges and the

possible while still computing a conservative points-to graph and |ocal variables map. Salcianu’s analysis also has one more elefgtie
read and write effects of the callee. The annotations describe anescaping node set. Instead, we represent an escaping node by connecting it

approximation of the read and write effects of the method. to a special node that represent the global scope.
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anew level of dereference usiagdress nodesn this model, every m?2 it would be unsound to consider only an effect owérf1 in

variable or field is represented by an address node. In the casethe caller. We need some mechanism to updatezhen more in-

of objects (or primitive types) the address node then refers to the formation becomes available (e.g., when bindingvith its caller).

object itself. A struct value is represented directly by its address. To

access an object we first get a reference to an address node and theh2-1  Omega Nodes

follow that to the value. In the case of structs we directly consider \We introduce a new kind of node, am node, to model the set

the address as the starting offset of the struct. Thus, an addressf reachable nodes from that node. At binding time, instead of

node for an object has outgoing edges labeled with the “contents- mapping a load (or parameter) node with the corresponding node

of” symbol **", while an address node for a struct value has one in the callerw nodes are mapped to every node reachable from the

outgoing edge for each field of the struct: the labels are the field corresponding starting node in the caller. For instance, aode

names. for a parameter in the callee will be mapped to every node reachable
This distinction is used in the assignment of objects and structs. from the corresponding caller argument.

For objects, we just copy the value pointed to by the address node,  Figure 5 shows an example of hawnodes are mapped to caller

and for structs we also copy all the values pointed to by its fields. nodes during the inter-procedural binding. Suppose that somehow

Figure 3 shows the representation of object and struct values andwe know the non-analyzable method call creates a reference from

how the assignment of struct values is done. Address nodes aresome object reachable fropi to some object reachable fropa.

depicted as ovals, values as boxes. Since we don’t know which fields are used on the access path, we
In [4] we formally present the concrete and abstract semantics yse a new edge labél, that represents any field. At binding time

of the extended model. Basically we support the statements thatwe know that fromu1 we can reaci N1 andZ N2. Thus, we must

operate on managed pointers. For instance the statement that loadgdd a reference from both nodes to the nodes reachableiftom

anaddresa = &b assigns ta the address di. If the type ofb is We want to distinguish between a node being merely reachable
a struct typea will contain a reference to it. Thug,can be usedas  from it being writable (e.g., an iterator may access a collection
if it were an object. The pair of statements indirect loads= *b, for reading but not for writing). For this purpose, we introduce a

and indirect storera = b, allows indirect access to values and variant ofw nodeswC nodes. Th& stands foconfined a concept
are typically used to implement parameter passing by reference. Weporrowed from the Spec# ownership system [2]. These nodes have
also keep track of read effects by registering every field reference the same meaning as nodes for binding a callee to a caller, but
(load operation). they represent only nodes reachable from the caller through fields
Figure 4 shows a simple method and three points-to graphs atit owns Ownership is specified on the class definition: a figld
different control points in the method. All of the addresses in the marked as being aswningfield in classI” means that an objeet
figure refer to objects. One node models all globally accessible of typeT owns the object pointed to by iffield, o. f (if any).
objects. The graph on the left shows the points-to graph as itexists  To model potential read or writes we udedges to mean that
at the entry point of the method. The middle graph shows the effect the method may generate a reference using an unknown field for
of executing the body of the method: the points-to graph is shown at any object reachable from the object(s) represented by the source
the exit point of the method. Finally, the right graph is the summary node to the object(s) represented by the target node. As we want a
points-to graph for the method. It represents the method's behavior conservative approximation of the callee’s effect, we only generally
from a caller’s point of view. Notice that the initial value of the introduce inside edges in non-analyzable methods because they
parameter has been restored since a caller would not be able to do not disappear when bound with the caller's edges. We use
detect that it is re-assigned within the method. The summary for the another wildcard edge labé| that includes only a subset of the
method is a triple made up of a points-to graph that approximates |abels denoted by. $ denotes only non-owned fields and allows

the state of the heap, a write 341, and a read seR. distinguishing between references to objects that can be written by
a method, from references that can only be reached for reading (see
2.2 Extensionsfor Non-analyzable M ethods Section 3 in particular th&/ riteCon fined attribute). This is the

distinction that allows the use of impure methods while retaining
guarantees that some objects are not written. For the worst case
acenario we connect every parametarode of the non-analyzable
method to other parameter nodes and to themselves using edges
labeled ag to indicate potential references created between objects

summary nodes for non-analyzable methods. A load node (in par- reachable from the parameters. Section 3 presents our annotation

ticular, a parameter node) is a placeholder for unknown objects thatlanguage that helps eliminate some of these edges.

may be re.sollved in the caller's context. In the case of analyzable 5 5 5 Interprocedural binding

calls, at binding time the analysis tries to match every load node ) )

with nodes in the caller. A match is produced when there is a path T0 deal with the new nodes and edge labels, we adapt the inter-

starting from a callee parameter that unifies with a path in the caller, Procedural mapping.. Recall thatu is a mapping from nodes in

That means that a read or write made on a callee’s load node cor-the callee to nodes in the callee and the caller. Thus, for every

responds to a read or write in the caller. As reads and writes in the Noden;.~ we compute the closure pf(n;,. ) by adding the set of

callee are represented by edges in the points-to graph, those edgekeachable nodes from(nk.”) to itself.

must be translated to the caller. When computing the set of reachable nodes matching@n
Non-analyzable calls may have an effect on every node reach- node we consider only paths that pass through owned fiahs?

able from the parameters. That means that, unlike analyzable calls,edges. Note that we reject paths that confagniges.

some effects might not be translated directly to the caller points- Finally, we convert any load nodeﬂgc, contained in the set

to graph as it may not have enough context information to do the y(nk.”) tow nodes. This is because these nodes could be resolved

binding. For instance, a non-analyzable calleé may modify when more context is available, at which point we still need to

pl.f1.f2.f3 to point to another parametp® and a caller that apply the effect of the non-analyzable call to those nodes. For

performs the method cath2(al, a2) may have points-to informa-

tion only aboutal.f1. As we don’t know “a priori” the effect of 2We mean “owned fields” as defined in the Boogie methodology [2].

Salcianu’s analysis computes a conservative approximation of the
heap accesses and write effects made by a method. A call to a non
analyzable method causes all arguments to escape the caller an
also to cause a write effect on a global location [22].

For a more precise model of non-analyzable calls, we generate
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Befare v1 = v2 After v1 = v2

Figure 3. Modeling objects and structs. On the leftis the address afi, which is a value of a struct type with two fielgd and f2. (vo
can be thought of as an object, e.g., if the struct is passed to a method that takes an object as a parametesultehe aboxedvalue.)
The type off1 is also a struct type with one fielgwhich is of an object type. The type ¢ is an object type. The center and right figures
show an assignment of two variables of struct type.

nodes reachable from outside (in this case the return value) to
the receiver. Note that we do not annotate iCagture. This

is why the edge between the return value and the collection is
labeled as$ which means that the receiver is reachable from
outside but only for reading. ACapture annotation would
generate & edge. There are no edges starting fromdhsode
pointed by&this because of the default annotation for the
receiver adV rite( false).

instance in Figure 5, before the binding all nodes reachable from
al are inside nodes. Those nodes do not change at binding time
as they were created by the caller itself and are not place holders
for unknown objects. Thus, no more context is necessary to solve
the binding between1 and pl. However,a2 can reach the load
node L4 meaning that more context might be necessary to resolve
nodes reachable fronR. That is why we converf4 to anw node.
Full details on the modified computation for the inter-procedural
mappingy is in [4].

We also modify the operation that models field dereference to
support the? and$ edges. It considers those edges as “wild cards”
allowing every field dereference to follow those edges.

e The method is annotated as not accessing globals. This means
that there is no global node (and so no write or read effects on
the global state).

We believe these are reasonable constraints on the behavior of
3. Annotations GetEnymgrator. The points-to graph fOMoveN_ea:t is also

shown in Figure 6. It corresponds to these annotations:
Table 1 summarizes our annotation language. The annotations pro-
vide concise information about points-to and effect information and
allows us to mitigate the effect of non-analyzable calls. Annotating
a method as pure is the same as marking each parameter as not be-
ing writable (unless it is an out parameter). A method annotated as
being write-confined is shorthand for marking every parameter as

e The method is annotated & riteCon fined, which means
that it can only mutate objects it owns. This is represented using
an wC node for the receiver. Note how this is implemented.
The parameter node has two edges. The edge labeled as
which leads back to the reciever means that the method can

write-confined. Obviously not all combinations of the attributes are
allowed. For example, it would be contradictory to label a method
as being both pure and as writing globals.

The full details for mapping the attributes into points-to and
write effect information are found in [4]. Basically their impact is
to a) remove? edges, b) replace nodes by inside nodes, and c)

avoid registering write effects over parameters or the global scope.

We explain the effect of the annotations using some of the
methods in our running example. Figure 7 presents the full list of
annotations. Th&'et Enumerator method returns an object that
is modified later on inC'opy. Notice that the loop would never
terminate unlesster.MoveNext returns false at some point. So

perform any write to nodes in its ownership cone. The other
edge labeled a8 leads to a separate node. That means that
objects reachable using not-owned fields can be read but not
modified. Thus, edges labeled®do not need to be considered
when computing write effects for the method.

class List<T> {

[ G obal Access(fal se)]
public List<T>();

[ G obal Access(fal se)]
public void Add(T t);

either the loop never executes or else some state somewhere must . . .

change so that a different value can be returned. If the state changé
interface | Enuner abl e<T>{

involves global objects, thefopy is not pure so let us assume that
the change is to the objeéter itself. As long as that object was
allocated byGet Enumerator, changes to it would not violate
the weak purity ofCopy. We expectGet Enumerator to return

a fresh object: the iterator. At the same time, it is likely that the

[return: Fresh]

[ Escapes(true)] // receiver spec
[ G obal Access(fal se)]

| Enuner at or <T> Get Enunerat or () ;

returned iterator has a reference to the collection. We need a wayij nt er f ace | Enuner at or <T> {

to distinguish the write effects ilfoveNext so that we do not
conclude that it modifies the collection.

Figure 6 shows the points-to graph f6fet Enumerator. It
corresponds to the following annotations.

e The return value is annotated &%esh. This generates the
inside node for the return value instead of.anode.

e The receiver fhis variable) is annotated aEscapes which

means that the points-to graph must introduce edges from the
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[WiteConfined] bool MveNext();

T Current { [d obal Access(false)] [Pure] get; }

[WiteConfined] void Reset();

Figure 7. The methods needed for analyzidgppy along with
their annotations.
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Figure4. An example method, three points-to graphs for the beginning, end, and summary of the method and the read and write sets for the
method. The latter is expressed both as the sets of n&tidérieansgparameter load nodeand as the access paths.
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Figure5. Effect of omega nodes in the inter-procedural mapping

Attribute Name Target Default | Meaning

Fresh out Parameter | False The returned value is a newly created object.

Read Parameter True The content can be transitively read.

Write Parameter False The content can be transitively mutated.

WriteConfined Parameter False The content can transitively mutate only captured ¢b-
jects.

Escape(bool) Parameter False Will any object reachable from the parameter be reach-
able from another object in addition to the caller’s arqu-
ment

Capture(bool) Parameter False Will some caller object own the escaping-parameter’s
objects ?

GlobalRead(bool) Method True Does the method read a global?

GlobalWrite(bool) Method True Does the method write a global?

GlobalAcccess(booly Method True Does the method read or write a global?

Pure Method False The method can not mutate any object from its prestate
except for out parameters

WriteConfined Method False The method mutates only objects owned by the param-
eters (captured).

Table 1. The set of attributes used to summarize the points-to graph and the read and write sets. The &irdsiitesd F'scape also are
allowed on the “return value” of the method since we model that as an extra (out) parameter. In C#, attributes on return values are specified
at the method level with an explicit target, efgr,et ur n: Fresh] .
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Initial Caller PTG for GetEnumerator PTG After call to PTG for MoveMNext PTG After call to

PTG using annotations p1.GetEnumerator(&iter) using annotations it MoveNext
PNod
this . AVES e
* | PMode e . |
_y (&) : O | .
Y
| | | j’. —Lr— |—-—- I—L_l
[ PEN Y WPLN IN e IN
L — | PLN(this)
L

|

w

| pLNthis) | IN AN 5
L — *

ol @ ©
Figure 6. The evolution ofC'opy’s points-to graph after callingr c. Get Enurnrer at or andi t er . MoveNext . We use the special field

$ to indicate thakrc is reachable froniter butiter is able to mutate objects only using fields ti¥at-'s class owns. For simplicity we do
not show the evolution of the newly created objects pointed to by the list

4. Experimental Results ship types [9] while Leino et al. use data groups [16]. In [14], an

Our implementation is integrated into the Spec# compiler pipeline EfT€Ct System using annotations is proposed: it allows effects to be
and can also be run as a stand alone application. We analyze BoogigPecified on a field or set of fields (regions). It also has a notion of
[3], a program verification tool for the Spec# language [2]. Boo- unshared” fields that corresponds to our ownership system. Using
gie is itself written in Spec# and so already has some annotations. 2 PUrely intra-procedural analysis, they verify methods against their
In this case we use our tool to verify methods annotated as pure. 2notations. However, it seems that it doesn’'t compute points-to-
We analyzed the eight application modules using three different !nformatlon._ Compare_d to their approac_:h, our annotation Iangue_tge
approachedntra-procedural:We analyze each method body inde- is less precise, but still allows enough information about escaping
pendently. In the presence of method calls we use any annotation nd captured parameters. JML [15] and_ Spect [2] are spemﬁce_mon
provided by the callegnter-procedural (bottom up with fixpoint):  anguages that allow specification of write effects. One of the aims
This is a whole program analysis. We compute a partial call graph of our technique is to assist the Spec# compiler in the verification
and analyze methods in a bottom up fashion in order to have the &1d inférence of the read and write effects. We use the purity analy-
callee precomputed before any calls to that method. To deal with SIS to check whether a method can be used in specifications. Javari
recursive calls we perform a fixpoint computation over the strongly [24] Uses atype system to specify and enforce read-only parameters
connected graph of mutually recursive caltger-procedural (top and fields. To cope with caches in real ap.pllcatlons, Javari allows
down with depth 3)Again, a whole program analysis with inline the programmer to declare mutable fields; such fields can be.mu-
simulation. For every method we analyze call chains to a maximum f@ted even when they belong to a read-only object. Our technique
length of three. computes weak purity so mutation of prestate objects are not al-

Table 2 contains the results for the three kinds of analysis. lowed in methods. To automatically deal with caching writes, it is

We show only modules that contain purity annotations. The intra- nec:s.sattrytto .|n]fer obf.ervar:lonallly put:e methodds E6]'. fer side ef
procedural analysis is only slightly less precise than the other oints-1o Information has also been used to infer side er-

two analyses. Furthermore, when using annotations with intra- [€¢tS [21, 19, 8, 7]. Our analysis, as well as Salcianu's analysis [22],

procedural analysis, the precision is substantially better than a full 'sb‘?‘bl‘f to d;ﬁtlngws? ?e“’ﬁ‘“ ObJ%(IZtS aIIociated by tft1e metrllod a_r;d
inter-procedural analysis without annotations. For this application ° Jtecz |nf el prftes ate. 'tIS clana es us to tcompku (a\]/vea pur:jy
we don't find a big difference between the two inter-procedural NSt€ad of only strong purity. In more recent work, L.herem an

analyses. This is because most of the methods are not recursive. ugina [7] present a new inter-procedural analysis that generates

One interesting thing is that we found that many of the methods method signatures that give information about effects and escap-

declared pure in Boogie were not actually pure. Some are observa-INd information. It allows control of the heap depth visibility and
tionally pure, but others either record some logging information in 1€!d branching, which permits a tradeoff between precision and

static fields, or else were just incorrectly annotated as being pure. Scalability. Our analysis also computes method summaries con-
taining read and write effect information that are comparable with

the signatures computed by their analysis but our technique is able
5. Related work to deal with non-analyzable library methods with a concise set of
Our analysis is a direct extension of the points-to and effect anal- annotations that can be checked when code is available. AliasJava
ysis by Salcianu et al. [22]. We add support for a more complex [1] is an annotation language and a verification engine to describe
memory model (managed pointers and structs) and provide a dif- aliasing and escape information in Featherweight Java. Our work
ferent approach for dealing with non-analyzable methods. Insteadalso uses annotations to deal with escape, aliasing and some own-
of assuming that every argument escapes and the method writesership information but also some minimal description about read
the global scope, we try to bound the effect of unknown callees and write effects in order to compensate for information lacking at
using annotations. Using their analysis it is difficult to decide that non-analyzable calls. Hua et al. [20] proposed a technique to com-
a method is pure when it calls a non-analyzable method (e.g., thepute points-to and effect information in the presence of dynamic
iterator example). One alternative is to generate by hand all the loading. Instead of relying on annotations, they only compute infor-
information about the callee (points-to and effects) but it has to be mation for elements that may not be affected by dynamic loading
done for every implementation of an interface or abstract class. Our and warn about the others.

annotation language simplifies that task and allows us to verify the

annotations when code becomes available. .

Type and effect systems have been proposed by Lucassen et al.6' Conclusionsand Future Work
[17] for mostly functional languages. There has been a significant We have implemented an extension to Salcianu’s analysis [22] that
amount of work in specification and checking of effect information works on the complete .NET intermediate language CIL. The ex-
relying on user annotations. Clarke and Drossopoulou use owner-tensions involve several non-trivial details that enable it to deal
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Project #Meths DP || Using Annotations Without Annotations

Intra % | Inter 3 % IF % Intra % | Inter 3 % IF %
Absint 348 66 66 | 100% 66 | 100% 66 | 100% 51| 77% 51| 77% 51| 77%
AlFramework 15063 | 3514 || 2702 | 77% 2725 7% | 2730 | 78% || 1631 | 46% 1688 | 48% | 1688 | 48%
Graph 97 20 14 70% 14 70% 14 70% 10 | 50% 10 | 50% 10 | 50%
Core 9628 | 1326 || 1164 | 88% 1224 | 92% | 1224 | 92% 709 | 53% 729 | 55% | 729 | 55%
ByteCodeTrans 5564 | 984 781 79% 845 | 86% | 863 | 88% 255 | 26% 297 | 30% | 297 | 30%
VCGeneration 2050 | 187 171 91% 171 91% | 171 | 91% 155 | 83% 155 | 83% | 155 | 83%
Compiler Plugin 55 12 10 83% 10 83% 10 83% 8 | 66% 8 | 66% 8 | 66%

Table2. Results for Boogie showing the number of methods annotated as pure that were verified as pure by our analysis. The “DP” (declared
pure) column lists the number of methods in each module that were annotated as pure. The column labeled “Intra” shows the number of
methods verified using the intra-procedural analysis, “Inter 3" the inter-procedural top-down analysis limited to a call-chain depth of three,
and “IF” is the full bottom-up inter-procedural analysis.

with call-by-reference parameters, structs, and other features of theAcknowIedgements
.NET platform. Our model provides a simple operational semantics
for a useful part of CIL. Full details are presented in an accompa-
nying technical report [4].

We have extended the previous analysis by includingodes
that model entire unknown sub-graphs. Together with our annota- Refer ences
tion language, this allows treatment of otherwise non-analyzable
calls without losing too much precision.

We would like to thank the anonymous reviewers for their com-
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