
A
�

rtificial Intelligence117(2000)277–296

Onagent-basedsoftwareengineering
�

Nicholas
�

R. Jennings1

Departmentof ElectronicsandComputerScience, University of Southampton,SouthamptonSO171BJ, UK

Received 21 September 1999

Abstract

Agent-based computing represents an exciting new synthesisboth for Artific ial Intelligence (AI)
and, more generally, Computer Science. It has the potential to significantly improve the theory
and the practice of modeling, designing, and implementing computer systems.Yet, to date, there
has been little systematic analysis of what makes the agent-based approach such an appealing and
powerful computationalmodel. Moreover, evenlesseffort hasbeendevoted todiscussingtheinherent
disadvantagesthatstem from adopting an agent-oriented view. Hereboth setsof issuesareexplored.
The standpoint of this analysis is the role of agent-basedsoftware in solving complex, real-world
problems. In particular, it will be argued that the developmentof robust and scalable software
systemsrequires autonomousagents that cancomplete their objectiveswhile situated in a dynamic
anduncertain environment, thatcanengagein rich,high-level social interactions,andthatcanoperate
within flexible organisational structures. 2000Elsevier ScienceB.V. All rights reserved.

Keywords: Agent-based computing;Software engineering; Multi-agentsystems; Agentinteractions; Social level

1.
�

Introduction

A
�

n increasing numberof computer systemsare being viewed in termsof autonomous
agent� s. Agents are being espoused as a new theoretical model of computation that
more closely reflects current computing reality than Turing Machines [58]. Agents
are� being advocatedas a next generationmodel for engineeringcomplex, distributed
s� ystems[36,59].Agents are also being used as an overarching framework for bringing
together
�

thecomponentAI subdisciplinesthatarenecessary to designandbuild intelligent
entities� [41,49].Yetdespite this intense interest, anumberof fundamentalquestionsabout
t
�
henatureand theuseof theagent-oriented approachremain unanswered.In particular:
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� w� hataretheessential conceptsandnotionsof agent-based computing?
� w� hat makes the agent-based approachan appealing and powerful computational

model?
� w� hatarethedrawbacksof adopting an agent-oriented approach?
� w� hat are the wider implications for AI and computer science of agent-based

comput� ing?
Thes
�

e questions can be tackled from many different perspectives, ranging from the
philos� ophicalto the pragmatic.This paperproceedsfrom the standpointof using agent-
bas
�

ed software to address real-world problems. However in the course of this analysis,
a� numberof broaderpoints are madeaboutgeneraldirection and emphasis of future AI
research.

Building high quality softwarefor real-world applicationsis difficult. Indeed, it hasbeen
ar� guedthat such developments are oneof the most difficult construction tasks humans
undertak� e (both in termsof thenumberand the flexibility of theconstituentcomponents
and� in termsof their interconnections). Moreover, this statement is true no matter what
model� s and techniquesare applied: it is a consequenceof the “essential complexity of
s� oftware” [4]. Such complexity manifests itself in the fact that the softwarehasa large
numberof parts that have many interactions[53]. 2 Gi

�
ven this stateof affairs, the role of

s� oftware engineering is to provide models and techniquesthat make it easier to handle
t
�
his complexity [46,54]. To this end, a wide rangeof software engineering paradigms
have recentlybeendevised (e.g.,object-orientation[2,42], component-ware[55], design
patterns� [18] andsoftwarearchitectures[6]). Eachsuccessive developmenteither claims
to
�

make the engineering processeasieror to extend the complexity of applications that
can� feasibly bebuilt. Althoughevidenceis emerging to supportthese claims, researchers
cont� inueto strive for more efficient and powerful techniques, especially assolutionsfor
e� vermoredemandingapplicationsaresought.

In this article, it is arguedthat althoughcontemporarymethodsarea step in the right
di
�

rection,whenit comesto developingcomplex, distributed systemsthey fall short in two
main ways:

(
�
i) the interactions betweenthe various computational entities are too rigidly defined;

and�

(ii)
�

thereare insufficient mechanisms availablefor representingthe system’s inherent
or� ganisationalstructure(seeSection 4 for moredetailsof thesearguments).

A
�

gainst thisbackground,the two central argumentsof thispapercanbeexpressed:

The
�

Adequacy Hypothesis. Ag
�

ent-oriented approachescan significantly enhanceour
a� bility to model, design and build complex, distributedsoftware systems.

The
�

Establishment Hypothesis. As
�

well as being suitable for designing and building
comple x systems, the agent-orientedapproach will succeedas a mainstream software
engi! neering paradigm.

2 In this context, the term “complexity” is used in a generalmanner(as in [11,15,57]); not" in the specific
technical

#
senseof algorithmic or computationalcomplexity.
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In seeking to arguefor thesehypotheses, it is clearthat thiswork differsin flavour from
t
�
hemajority of scientific papers. It presentsnonew theorems, hasno experimental results,
an� d does not describe a novel application. Rather, it represents a (qualitative) analysisof
an� importantand fast growing areaof computerscience.The aim of this analysis is to
p� rovide the intellectual justification of preciselywhy agent-basedsystems are well suited
t
�
o engineering complex softwaresystems. Theanalysiscontainedherein isbasedonmore
than
�

a decadeof experiencein using agent-basedtechniquesto construct large-scale,real-
w� orld applicationsin a wide variety of industrial andcommercial domains(see[17,25,30,
3
$
3,34]). Despite thesecaveats,this paper does

%
mak� e a numberof important contributions

to
�

thestateof theart. Firstly, despite agent-basedsystemsbeing toutedasanapproachthat
will� havea major impacton futuregenerationsoftware(“pervasivein everymarket by the
year& 2000” [27] and“ the new revolution in software” [21]), therehasbeenno systematic
e� valuation of wh' y t

�
his may be the case. Thus, althoughthereare an increasing number

of� deployed agentapplications (see [37,44] for a review), nobody has systematically
analys� ed precisely what makes the paradigmeffective. This is clearly a major gap in
knowledgethat this paperseeksto address. Secondly, therehasbeencomparatively little
w� ork on viewing agent-basedcomputing as a serioussoftware engineering paradigm that
can� significantly enhancedevelopmentsin a wide rangeof applications. Thisshortcoming
is rectifiedby recasting the essential componentsof agentsystemsinto more traditional
s� oftwareengineeringconcepts. Fromhere,it canbeshownthattheagent-basedapproachis
a� both anatural anda logicalevolution of a rangeof contemporaryapproachesto software
engi� neering.

Theremainderof thepaperis structuredas follows. Section 2 discusses theessenceof
agent� -based computing.Section 3 makes thecase as to why anagent-orientedapproachis
well� suitedto engineeringcomplex, distributedsystems.Section 4 argueswhy agent-based
techniques
�

are likely to succeedandmake it into themainstreamof software engineering.
S
(

ection 5 highlights the potential disadvantagesof adopting an agent-oriented approach.
Section
(

6 advocatesa new perspective on modelingcomputersystems(the s) ocial level
[32]) as a promising meansof remedying the identifiedshortcomings. Finally, Section 7
places� thework in a broaderAI andcomputersciencecontext.

2
*

. The essence of agent-based computing

The first step in arguing for an agent-oriented approachto software engineering is to
preci� sely identify and define the key notions and concepts of agent-based computing.
Defining and classifying phenomenais alwaysa task fraughtwith difficulty—therewill
al� ways be objections to basic definitions, arguments that important points have been
o� verlooked,or claimsthatit isreally nothingnew anyway. Suchobservationsareespecially
pertinent� if the entity to be definedis both intangibleand a relatively new phenomenon.
N
+

evertheless, such definitionsareprecisely what areneededin orderto arguefor agent-
ori� ented software engineering. Given this necessity, the approachtaken here is to offer
a� definition that is sufficiently encompassing to cover a broad range of phenomena that
can� reasonably go undertheheading of agent-basedsystems, yet sufficiently tight that it
can� rule out systemsthatare clearly not agent-based. Aroundthe edgestherewill always
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be
�

debate. Moreover, the definitions offered here concentrate on necessary, rather than
s� ufficient, conditionsso they canalwaysbeextended.

Her
,

e the key definitional problemrelatesto the term “agent”. At present, there is much
debate
�

[16], and little consensus, aboutexactly whatconstitutesagenthood.However, an
increas
-

ing numberof researchersfind thefollowing characterisationuseful [59]:

An agent is an encapsulatedcomputer systemthat is situated in some environment
and. that is capable of flexible, autonomousaction in that environment in order to
meet/ its designobjectives.

There
�

are a numberof pointsaboutthisdefinitionthatrequirefurtherexplanation.Agents
are:�

(i)
0

clearly identifiable problem solving entities with well-defined boundariesand
interfaces;

(ii)
0

situated(embedded)in aparticularenvironment—they receiveinputsrelatedto the
s� tateof their environmentthroughsensorsandthey actontheenvironmentthrough
ef� fectors;

(
0
iii) designed to fulfill a specific purpose—they have particular objectives (goals) to

achie� ve;
(i
0

v) autonomous—they have control both over their internal state and over their own
beha
�

viour;3

(
0
v) capable of exhibiting flexible problemsolving behaviour in pursuit of their design

objecti� ves—they needto be both reactive (ableto respondin a timely fashion to
changes� thatoccurin theirenvironment)andreactive(ableto actin anticipationof
futuregoals) [60].

W
1

henadopting an agent-oriented view of theworld, it soonbecomesapparentthat most
p� roblems require or involve multiple agents; to represent the decentralised nature of
th
�

e problem, the multiple loci of control, the multiple perspectives or the competing
interests[3]. Moreover, the agentswill needto interactwith one another, either to achieve
t
�
heir individualobjectivesor to managethe dependencies that ensue from being situated
i
-
n a commonenvironment[9,29]. These interactionscan vary from simple information
i
-
nterchanges, to requests for particular actions to be performedand on to cooperation,
co� ordination and negotiation in order to arrange interdependent activities. In all of these
cases,� however, thereare two points that qualitatively differentiateagent interactions from
t
�
hose that occur in other computational models. Firstly, agent-oriented interactions are
conceptualis� ed as taking placeat the know

2
ledge level [40]. That is, they are conceived

in terms of which goals should be followed, at what time, and by whom (cf. method
invocation or function calls that operate at a purely syntactic level). Secondly, asagents
are� flexible problem solvers, operating in an environmentover which they have only
p� artial control and observability , interactions needto be handled in a similarly flexible

3
3

Having control over their own behaviour is oneof the characteristics that distinguishesagentsfrom objects
[59]. Althoughobjectsencapsulate stateand behaviour (more accuratelybehaviour realisation) [2], they fail to
encapsulatebehaviour activationor actionchoice.Thus, any objectcaninvoke any publicly accessible methodon
any otherobjectatany time.Oncethemethodis invoked, thecorrespondingactionsareperformed.In this sense,
objectsare totally obedientto oneanotherand do nothave autonomy over their choiceof action.
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Fig. 1. Canonicalview of anagent-based system.

manner. Thus, agents needthe computationalapparatus to make run-time deci
�

sionsabout
the
�

natureand scopeof their interactionsandto initiate (andrespondto) interactionsthat
w� ere not foreseenat design time (cf. the hard-wired engineering of such interactionsin
e� xtant approaches).

In
4

most cases, agentsactto achieveobjectiveseitheronbehalf of individuals/companies
o� r aspart of some wider problem solving initiative. Thus, when agents interact there is
t
�
ypically some underpinning organisational context betweenthem [14,19]. This context
defi
�

nesthe natureof therelationship betweenthe agents (e.g.,they may bepeersworking
t
�
ogether in a teamor one may be the managerof the other agents) and consequently
influencestheir behaviour. Since agents make decisions about the nature and scope
o� f interactions at run time, it is imperative that this key shaping factor is taken into
account.� Thus organisational relationships needto be representedexplicitly. In many
cas� es, these relationshipsaresubjectto ongoingchange:social interaction meansexisting
rel5 ationships evolve and new relations are created. This meansthe temporal extent of
rel5 ationships can also vary significantly, from just long enoughto deliver a particular
s� ervice once, to a permanentbond. To cope with this variety and dynamic, agent
res5 earchershave:devised protocols that enableorganisationalgroupingsto beformedand
di
�

sbanded;specified mechanismsto ensure groupingsact together in a coherentfashion;
and� developedstructuresto characterisethemacrobehaviourof collectives(see[37,60]for
a� n overview).

Drawing thesepoints together (Fig. 1), theessential conceptsof agent-based computing
can� be seen to be: agents, high-level interactions and organisational relationships (see
[14,19,23]for broadly similar characterisations).

3.
6

The case for an agent-based approach to software engineering

Probablythe most compellingargumentthat could be made for adoptingan agent-
o� rientedapproachto softwaredevelopment isto haveasetof quantitativedatathatshowed,
on� astandardset of softwaremetrics, thesuperiority of theagent-basedapproach(in terms
of� productivity, software reliability, system maintainability, etc.) over a rangeof other
t
�
echniques. However suchdatasimply doesnotexist (asit doesn’ t for othercontemporary
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methods in software engineering).4 Hence the arguments for agent-oriented software
en� gineering must bequalitative in nature.

Th
�

e structure of the argument that will be used here is based on the suitability of
agent� -based techniquesfor tackling complex, real-world problemsand it hasthefollowing
broad
�

form. On the onehand,thereare a numberof well-known techniquesfor tackling
co� mplexity in software. Also the key characteristics of complex software systems are
(reas
0

onably) well understood. On the other hand,the essential concepts and notionsof
t
�
he agent-based paradigm have beenelucidated (Section 2). Thus, an argumentand an
e� valuationcanbemadeby examiningthedegreeof matchbetweenthesetwo perspectives;
a� high degreeof matchwould be indicativeof the suitability of the agent-basedapproach,
whereas� a poordegreewouldbe indicativeof its unsuitability.

B
7

efore this match process can commence,however, the techniquesfor tackling
co� mplexity in softwareneedto be introduced. Booch [2] identifies threesuch tools:

8 Decomposition: The most basic technique for tackling large problemsis to divide
them
�

into smaller, moremanageablechunkseachof which canthenbedealtwith in
relative isolation.Thishelpstacklecomplexity because it limits thedesigner’sscope;
at� any giveninstantonly a portion of theproblemneedsto beconsidered.

9 Abstraction:Theprocessof definingasimplified modelof thesystemthatemphasises
s� ome of the details or properties, while suppressing others. Again, this technique
w� orksbecause it limits thedesigner’sscopeof interest at a giventime.Attentioncan
be
�

focused on the salient aspects of theproblem,at the expense of the less relevant
d
�
etails.

: O
;

rganisation:5
<

The
�

process of identifying and managing the interrelationships
between
�

the variousproblemsolving components. The ability to specify andenact
or� ganisational relationships helps designerstackle complexity in two ways. Firstly,
by
�

enabling a numberof basic components to be groupedtogether and treated as
a� higher-level unit of analysis (e.g.,the individual components of a subsystem can
be
�

treatedasa single coherentunit by the parentsystem).Secondly, by providing a
meansof describing thehigh-level relationshipsbetweenvariousunits(e.g.,anumber
of� componentsmaywork together(cooperate)to provideaparticularfunctionality).

Ne
+

xt, thecharacteristicsof complex systemsneedto beenumerated[53]:
= C

>
omplexity frequently takes the form of a hierarchy. That is, a system that is

compos� edof interrelatedsubsystems, eachof which is in turnhierarchicin structure,
until� thelowest level of elementarysubsystemis reached.Theprecisenatureof these
or� ganisationalrelationshipsvariesbetweensubsystems, howeversomegeneric forms

4 Software paradigms generallygo throughthreemain phases. Firstly, early pioneersidentify a new way of
doing things(based on intuition and insight). Secondly, individualsandorganisationsthat areearly adoptersof
leading-edgetechnologiesrecognise the potential (based on qualitative arguments) and start to build systems
us? ing thenew concepts. Thirdly, theadvocatedconcepts, and knowledgeof their advantages(sometimesbacked
up? by quantitative data), become more widespreadandenter the mainstreamof software engineering. At this
tim

#
e,agent-orientedtechniquesarefirmly in phase two, but oneof theaims of thispaperis to start themovement

to
#

wards phase three.
5

@
Booch [2] actually uses the term “hierarchy” for this final point. However, the more neutral term

“organisation” is preferred here.
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(s
0

uchas client-server, peer, team,etc.) canbe identified.These relationshipsarenot
s� tatic: they oftenvary over time.

A It is possible to distinguish between the interactions am. ong s� ubsystems and the
interactions with' in s� ubsystems. The latter are both more frequent(typically at least
an� orderof magnitudemore)andmorepredictable thantheformer. Thisgivesrise to
t

�
he view thatcomplex systemsare nearB ly decomposable: subsystemscanbetreated
al� most asif they areindependentof oneanother, but not quite, since thereare some
interactions betweenthem. Moreover, althoughmany of these interactions can be
predi� cted at design time,somesimply cannot.

C Thechoiceof which componentsin thesystemareprimitiveisrelatively arbitraryand
isdefinedby theobserver’saimsandobjectives.

D Hierarchic systemsevolvemorequickly thannon-hierarchiconesof comparablesize.
In other words, complex systemswill evolve from simple systems morerapidly if
th

�
ereares) table intermediate forms, th

�
anif therearenot.

W
1

ith these two characterisationsin place,theprecise form of thematchprocessargument
in favourof agent-based softwareengineering cannow beexpressed:

E sh� ow that agent-oriented decomposition is an effective way of partitioning the
probl� emspaceof a complex system(Section 3.1);

F s� how that the key abstractionsof the agent-orientedmindset area naturalmeansof
model� ing complex systems(Section 3.2);

G s� how that the agent-oriented philosophyfor dealing with organisationalrelationships
i
-
sappropriatefor complex systems(Section 3.3).

3
H
.1. Themeritsof agent-orienteddecomposition

Theagent-oriented approachadvocatesdecomposing problemsin termsof autonomous
agent� s that can engagein flexible, high-level interactions. Considering the autonomous
natureof the problem solving entities first. Autonomy, in this context, meansthat the
problem� solvershave their own persistent threadof control (i.e., they are active) andthat
t
�
hey decidefor themselveswhichactionsthey should performatwhat time.Decomposing
a� problemin such a way aids the process of engineeringcomplex systemsin two main
w� ays. Firstly, it is simply a natural representation for complex systems that are invariably
d
�
istributed(“all realsystemsaredistributed” [22]) and that invariably havemultiple loci of

cont� rol (“realsystemshaveno top” [42,p.47]).6 Thisdecentralisation,in turn,reducesthe
s� ystem’scontrol complexity andresultsinalowerdegreeof couplingbetweencomponents.
Thefactthatagentsareactivemeansthey know for themselveswhenthey should beacting
and� whenthey should update their state (cf. passive objects that needto be invoked by
so� me external entity to do either). Such self-awarenessreducescontrol complexity since
th
�

e system’s control know-how is takenfrom a centralisedrepository and localisedinside
each� individualproblemsolving component.Secondly, sincedecisionsaboutwhatactions
s� houldbe performedaredevolved to autonomousentities, selection canbe based on the

6
I

Indeed
J

theview thatdecompositions based uponfunctions/actions/processes are more intuitive andeasier to
produceK than those based upon data/objectsis even acknowledgedwithin the object-orientedcommunity [42,
p.K 44].
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localsituation of theproblemsolver. Thisenablesselection to be responsiveto theagent’s
actu� al state of affairs, rather than some external entity’s perception of this state,7

L
and�

means� thattheagentcanattemptto achieveitsindividualobjectiveswithoutbeing forcedto
perform� potentiallydistractingactionssimply becausethey arerequestedby someexternal
en� tity.

Moving onto the flexible nature of interactions. The fact that agents make decisions
about� the natureand scopeof interactionsat run-time makesthe engineering of complex
s� ystems easier for two main reasons. Firstly, the system’s inherentcomplexity means
it is impossible to know a p. riori about� all potential links: interactions will occur at
unpredi� ctable times, for unpredictable reasons, betweenunpredictable components. For
th
�

is reason, it is futile to try and predict or analyse all the possibilities at design-time.
R
M

ather, it is more realistic to endow the componentswith the ability to make decisions
about� the nature and scope of their interactions at run-time. From this, it follows that
components� needtheability to initiate (andrespondto) interactionsin a flexible manner
(
0
see Section 5 for a discussion of the downside of this flexibility ). Thus agents are

s� pecifically designed to deal with unanticipated requests and they can spontaneously
generatN erequestsfor assistancewheneverappropriate. Secondly, theproblemof managing
cont� rol relationshipsbetweenthesoftwarecomponents is significantly reduced(seeabove
di
�

scussion). All agents are continuously active and any coordination that is required is
handl
O

edbottom-upthroughinter-agentinteraction.Thus, theorderingof thesystem’s top-
level goals is no longersomething that hasto be rigidly prescribedat design time.Rather,
it becomessomethingthat ishandledin acontext-sensitivemannerat run-time.

T
�
o illustrate how an agent-oriented stance affectsthe manner in which a problem is

decompos
�

ed,consider the domain of flexible manufacturing control and, in particular, the
tas
�

k of producingindividually tailoredgoods(suchascarsbuilt accordingto a customer’s
s� pecification) (Fig. 2). Themanufacturing process involvesa numberof basic parts (A, B
and� C) thathavevariousoperations(O1 to

�
O9

P )
Q

performeduponthemby variousmachines
(M
0

1 to
�

M9
P ).

Q
Operationsmay be performedon a single component(e.g.,O1 by

�
M1 on�

p� art A’s) or they may involve the joining of multiple parts to form a new composite (e.g.,
O
R

5
< by

�
M5

< j
S
oins parts of typeA and B). Someoperationsmay fail (e.g.,O5

< and� O2
T ) a

Q
nd

cons� equently will needto be redone.The endproducts (P1 to
�

PU )
Q

are composed of the
cons� tituentcomponentswith varioussequencesof operationsperformeduponthem.

Theindustry standardapproachto this problemis to devisea globalschedule, typically
co� vering oneday, for the entire manufacturing process. This indicateswhen the various
part� sshould be releasedfrom their stores, whichmachinesthey should be routedthrough,
and� whatoperationsshould be performedat the variousmachines. Theproblemwith this
cent� ralised andpre-plannedapproach,however, is that the schedule is rarely adheredto
in practice:machinesandoperationsfail andoperationstake longerthanexpected.When
su� ch disturbancesoccur, the plant controller either has to initiate a costly rescheduling
e� xerciseor use theout-of-datescheduleasan approximateguide.

7
V

Recognis
W

ing the importanceof allowing decisionsaboutactionexecutionto be basedon local state,object-
orientedlanguagessuchas Eiffel allow theserver to assert, and subsequentlytest, preconditionsthatneedto be
establishedbeforeoneof its routinescanbeinvoked [42].
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Fig.
X

2. Exemplar flexible manufacturingsystem.

As
�

a consequence of thesedifficulties, several organisations have deployed an agent-
oriented� approach(see [7,44] for details of specific systems). In such systems, each
manuf� acturedpartis representedby an autonomousagentthathastheobjectiveof getting
itself to the end of the manufacturing line, having had a specified set of operations
performed� uponit. Eachmachine is also representedby an agent. Such agents have the
obj� ective of maximising their throughputandthey do this by deciding what components
will� beacceptedin whatorderandwhatoperationswill beperformedat whattime.Thus,
for a given part to have an operation performeduponit, its agentmust negotiate with a
machine agentcapable of performing thatoperation. Componentagents representing the
co� nstituent parts of a composite item also needto coordinate their actions so they arrive
at� joining machinesat the sametime. Whencomponentsare joinedin this manner, a new
or� ganisationalstructurerepresenting thecomposite is formed.

The
�

success of suchagent-orientedsystems, bothin termsof increasedthroughputand
greatN er robustness to failure, canbeattributedto a numberof points. Firstly, representing
t
�
he components and the machines as agents meansthe decision making is much more
localis
Y

ed.It can,therefore,be moreresponsive to prevailing circumstances. If unexpected
e� vents occur, agents have the autonomyand proactiveness to try alternatives. Secondly,
becaus
�

e the schedulesare built up dynamically throughflexible interactions, they can
readi5 ly be altered in the event of delays or unexpected contingencies. For example, if
o� ne of the constituent parts of a composite item is delayedenZ route t

�
o a synchronisation

point,� it caninform the remainingteammembers. Togetherthey canthenre-arrangethe
meeting time and adapt their individual behaviour accordingly. Thirdly, the explicitly
d
�
efined relationships between the constituent parts of a composite item identify those

agents� thatneedtocoordinatetheiractions. Moreover,acomposite itemteamcanbetreated
as� asingleconceptual entity by machinesfurther on down themanufacturing line.This, in
turn,
�

easestheschedulingtask by reducingthenumberof itemsthatneedto beconsidered
duri
�

ng decisionmaking.

3
[
.2. Thesuitability of theagent-orientedabstractions

A
�

significant part of any design process is finding the right models for viewing the
p� roblem. In general, there will be multiple candidatesand the difficult taskis picking the
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most appropriateone.Whenit comesto designingsoftware,themost powerful abstractions
ar� e those that minimise the semantic distance between the units of analysis that are
intuitively used to conceptualise the problem and the constructs present in the solution
paradi� gm.

In
4

thecaseof complex systems, theproblemto becharacterisedconsistsof subsystems,
s� ubsystem components, interactionsand organisational relationships. Taking each in
tu
�

rn:
\ There is a clear and strong degree of correspondencebetween the notions of

su� bsystems and agent organisations. They both involve a number of constituent
components� thatactandinteractaccordingto their rolewithin thelargerenterprise.

] The
�

suitability of viewing subsystem componentsas agentshasalreadybeenmade
(S

0
ection 3.1).

^ The interplaybetweenthe subsystems and betweentheir constituent components
is most naturally viewed in terms of high level social interactions. For instance,
B

7
ooch [2] begins his analysis of complex systemsfrom the following standpoint:

“at any given level of abstraction, we find meaningful collections of entities that
col� laborate to achieve some higher level view” [2, p. 34]. This view and level of
abs� tractionaccordsprecisely with thetreatmentof interactionaffordedby theagent-
ori� entedapproach.Agentsystemsareinvariably describedin termsof “cooperating to
achi� eve commonobjectives”, “coordinating their actions” or “negotiating to resolve
co� nflicts”.

_ C
`

omplex systemsinvolvechangingwebsof relationshipsbetweentheir variouscom-
ponent� s. They also require collectionsof components to be treated asa single con-
ceptual� unit whenviewed from a differentlevel of abstraction.On both levels, the
agent� -orientedmindsetagain providessuitableabstractions. A richset of structuresis
ty

�
pically available for explicitly representing and managing organisational relation-

s� hips(e.g.,roles[38], norms[10] andsocial laws[52]). Interaction protocolsexist for
forming new groupingsanddisbanding unwanted ones(e.g.,[50,51]).Finally, struc-
t
�
uresareavailablefor modelingcollectives(e.g.,joint intentions[30] andteams[56]).
The latterpoint is especially useful in relation to representing subsystems since they
are� nothingmorethana teamof componentsworkingtogether to achieveacollective
goalN .

3.3.
[

Theneedfor flexiblemanagement of changingorganisationalstructures

Or
R

ganisational constructsarefirst-classentitiesin agent systems.Thusexplicit represen-
t
�
ationsaremadeof organisationalrelationshipsandstructures. Moreover, agent-based sys-
tem
�

s have the concomitant computational mechanisms for flexibly forming, maintaining
and� disbandingorganisations. In theflexiblemanufacturingscenario, for example,individ-
ual� part agents form themselves into ever morecomplex structuresasthey move through
th
�

e assembly process.In this case,the part agents explicitly represent the other compo-
nents to which they will eventually be joined. This organisational collective then negoti-
ates,� as a single conceptual entity, with subsequent machine agents that needto perform
operat� ionsuponit. Similarly, if somepartof the teamis delayedenZ route t

�
o a synchroni-
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s� ation rendezvous, thentheexplicit organisationalmodel identifiesthose agents thatneed
to
�

re-coordinatetheir activities. Finally, if a constituentcomponentagentis destroyedor
ruined in the manufacturing process (e.g.,by a faulty machining operation), thenthe re-
maining� teammemberswill entera negotiationprocess in order to find a replacement.
Thi
�

s organisational updating is typical of the dynamic nature of groupings in complex
sy� stems.

This representationalpower enablesagent-orientedsystemsto exploit two facetsof the
nature of complex systems. Firstly, thenotion of a primitive componentcanbevariedac-
cordi� ng to theneedsof theobserver. Thusatonelevel, entiresubsystemscanbeviewedas
s� ingletons, alternatively, teamsor collectionsof agentscanbeviewedasprimitivecompo-
nenta s, andso on until thesystem eventually bottomsout. Secondly, suchstructuresprovide
a� variety of stable intermediateforms,that,asalready indicated, areessential for the rapid
d
�
evelopment of complex systems. Their availability means individual agents or organi-

s� ational groupingscanbe developedin relative isolation and thenaddedinto the system
in an incremental manner. This, in turn, ensuresthereis a smooth growth in functional-
ity.

4. Towards the software engineering mainstream

Having madethe case that an agent-oriented approachis well suited to designing and
b
�
uilding complex systems(Section3), thenext stepis to determinewhetherit will succeed

as� a mainstreamsoftware engineeringparadigm.This question is importantbecause the
his
O

tory of computingis littered with apparentlypromising technologiesthat werenever
widely� adopted.Fortunately, however, therearetwo compellingreasonsfor believing that
agent� -based techniqueswill becomewidely adopted.Firstly, theagent-based approachcan
be
�

viewedasanaturalnext stepin theevolution of awholerangeof approachesto software
engi� neering.8 S

(
econdly, agent-based techniquesare the ideal computational model for

de
�

veloping software for open,networked systems (such as the Internet). Eachof these
issueswill now bedealtwith in turn.

A
�

numberof trendsbecomeevident when examining the evolution of programming
model� s from assembly languages, to proceduralandstructured programming, to object-
bas
�

ed and declarative programming,onto component-ware,design patterns, andsoftware
architectures� (see, for example,[1]). Firstly, therehas been an inexorablemove from
languagesthat have their conceptual basis determined by the underlying machine
archi� tecture,to languagesthat have their key abstractionsrooted in the problemdomain.
H
,

ere the agent-oriented world view is perhapsthe most natural way of characterising
man� y typesof problem. Just as the real-world is populated with (passive) objects that
ha
O

veoperationsperformedon them,so it is equally (if notmore)full of active,purposeful

8 It is not" envisaged that agent-based approacheswill supplanttechniquessuch as object-orientation,design
patternsK or component-ware. Rather, agent-based computing should be seen as providing a higher level of
computationalabstraction and this may, in turn, be realised throughobject-based systems or in a component-
bas

b
ed fashion.
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agents� that interactto achieve their objectives. 9
P

Indeed,many object-orientedanalyses
s� tart from precisely this perspective: “we view the world as a set of autonomousagents
t
�
hat collaborate to perform some higher level function” [2, p. 17]. Secondly, the basic
b
�
uilding blocks of the programming models exhibit increasing degreesof localisation

and� encapsulation [44]. Agentsfollow this trendby localising purpose inside eachagent,
by
�

giving eachagentits own threadof control, and by encapsulating action selection.
Thirdly, ever richermechanismsfor promotingre-use are beingprovided.Here,theagent
viec w also reachesnew heights. Rather thanstoppingat re-use of subsystem components
(des
0

ign patterns and component-ware)and rigidly preordained interactions (application
frameworks), agents enable whole subsystems and flexible interactions to be re-used.
In the formercase, agentdesigns and implementationsare re-used within and between
appl� ications. Consider, for example, the class of agentmodels that hasbeliefs (what the
agent� knows), desires(what theagentwants) andintentions(whattheagentisdoing)at its
core.� SuchBelief-Desire-Intention(BDI) architectureshavebeenusedin awidevarietyof
appl� icationsincluding air traffic control [39], process control [30], simulation [47], fault
di
�

agnosis [26], transportation [5], and scientific data interpretation [17]. In thelatter case,
flexiblepatternsof interaction suchas theContractNet Protocol [12] (anagentwith a task
to
�

completeadvertisesthis factto others that it believesarecapable of performing it, these
ag� ents may submit a bid to perform the taskif they are interested, and the originator then
del
�

egates the task to the agent that makes the best bid) and various forms of resource-
al� location auction (e.g.,English,Dutch,Vickrey) havebeenre-used in significantnumbers
of� applications(see[8], for example). Thethirdnotionof re-useisthatagentsenablelegacy
(non-agent
0

) software to be incorporated in a relatively straightforwardmanner[35]. The
t
�
echniqueusedisto placewrappingsoftwarearoundthelegacy code.Thewrapperpresents
an� agentinterfaceto the other software components and thus from the outside it looks
like any otheragent. On theinside,thewrapperperformsa two-way translation function:
tak
�

ing external requestsfrom otheragentsand mapping theminto callsin the legacy code,
and� taking the legacy code’s external requests and mapping theminto the appropriate set
o� f agent communication commands. This ability to wrap legacy systems means agents
may initially be used as an integration technology. However, as new requirementsare
unco� vered,so bespokeagentsmaybedevelopedandadded.Thisfeatureenablesacomplex

9
d

Although thereare certainly similarities betweenobject- and agent-orientedapproaches(e.g., both adhere
to

#
the principle of information hiding and recognise the importanceof interactions), thereare also a number of

im
e

portantdifferences. Firstly, objectsare generallypassive in nature:they needto besent a messagebeforethey
becom

b
e active. Secondly, althoughobjectsencapsulate stateand behaviour realisation they do not encapsulate

actionchoice(Section2). Thirdly, object-orientationfails to providean adequateset of conceptsandmechanisms
for modelingcomplex systems: for suchsystems “we find thatobjects, classes and modulesprovide an essential
yetf insufficient meansof abstraction” [2, p. 34] Individual objectsrepresent too fine a granularityof behaviour
andmethodinvocation is too primitive a mechanism for describing the typesof interactionsthat take place.As
hasalreadybeenargued,agentswith their coarser level of granularity andhigher-level view of interaction are
eminently more suitable. Finally, object-orientedapproachesprovide only minimal support for specifying and
managingorganisational relationships (basically relationships aredefinedby static inheritancehierarchies). In
recognitionof this fact,Hewitt andInman[24] introducedthenotionof ORGs into thebasic Actor model.This
proK vided a number of inbuilt organisational structuresthat designerscould exploit during their developments.
Gasser andBriot [20]also notesimilar limitationsof object-basedconcurrentprogrammingfor modelingcomplex
social relationships.
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s� ystem to grow in an evolutionary fashion (based on stable intermediate forms), while
adheri� ng to the important principle that thereshould alwaysbe a working version of the
s� ystemavailable.In summary, agent-oriented techniquesrepresent anaturalprogressionof
current� softwareengineering thinkingand,for this reason,themain conceptsandtenetsof
the
�

approachshouldbe readilyacceptableto mainstreampractitioners.
T

�
urning now to the question of software models for open,networked systems. Such

sy� stems are characterisedby the fact that there is no single controlling organisation, by
t
�
he fact that the softwarerepresents the interests of a diverse rangeof stakeholders, and
by
�

the fact that there is constant change[19,23]. In such environments, the dominant
so� ftwaremodel needs to be basedon synthesisor construction, rather thandecomposition
or� reduction. Thus the “system” is simply the collection of independently developed
so� ftware entities that are interacting with one another at any instant in time. From this
pers� pective,anumberof requirementscanbeplaceduponthecomputationalmodel:

(
0
i) the individual problemsolving entities needto be able to act to achieve specified

obj� ectives(i.e.,they must beactiveandautonomous);
(

0
ii) theseentities must do so in a flexible manner in order to cope with the inherent

uncertainty� they face(i.e., they needto bereactiveandproactive);
(

0
iii) the computational entities needto be capable of interacting with entities that were

not foreseenat design time and in a mannerthat is appropriate to their current
s� ituation (i.e.,they must beable to engagein flexible interactions); and

(i
0

v) any organisational relationships that do exist betweenthe stakeholdersmust be
reflectedin thebehaviourandactionsof theproblemsolvers(i.e.,theorganisational
relationships needto be explicitly representedand taken into accountduring the
action� selectionprocess).

In short, thedesiredcomputationalmodelneedsto beagent-based.

5.
g

The downside of an agent-based approach to software engineering

H
,

avinghighlightedthepotential benefitsof agent-based softwareengineering (Sections
3
$

and 4), this section seeksto pinpoint some of the concomitant drawbacks. Here the
ai� m is to identify and isolate those aspects of complex system developments that are
mademoredifficult by adopting an agent-basedapproach.Thus, it doesnot address those
d
�
ifficulties that arise from engineering large systems perh se (e.g.,

0
issuesof performance

engineering� and security),nor with those problemsthatare caused by thefact thatagent-
b
�
asedsystemsareboth distributedand concurrent, nor with the issuesthatariseasa result

of� software having to maintain anongoing interaction with a dynamic and unpredictable
en� vironment[45]. Finally, the aim is to concentrateon issues that are intrinsic to the
agent� -based philosophy(cf. themany social andpragmatic problemsoftenassociatedwith
de
�

veloping systemsusing any new technology [61]). Against this background,thereare
tw
�

o majordrawbacksassociatedwith theveryessenceof an agent-basedapproach:
i t

�
hepatternsand theoutcomesof theinteractionsareinherently unpredictable;

j predicting� the behaviour of the overall system based on its constituent components
is extremely difficult (sometimesimpossible) because of the strong possibility of
emer� gentbehaviour.
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Although the flexibility of agent interactionshas many advantageswhen it comesto
engineering� complex systems, thedownside is that it leadsto unpredictabilityin therun-
t
�
imesystem.Asagentsareautonomous, thepatternsandtheeffectsof their interactionsare
uncert� ain. Firstly, agents decide at run-time which of their objectivesrequire interaction
in
-

a given context, which acquaintancesthey will interact with in order to realisethese
obj� ectives, and when these interactions will occur. Hence decisions about the number,
pat� tern andtiming of interactionsdependon a complex interplay of the agent’s internal
s� tate, the agent’s perception of the environment (perhapsincluding the state of its
acquai� ntances), and the organisational context that exists when the decision is made.
C
`

ombining these multifariousfactorsmeansthat it is difficult to make predictionsabout
t
�
he system’s interactions. Secondly, thereis a de-coupling,andpotentially a considerable
de
�

greeof variability, betweenwhatoneagentfirst requests throughaninteractionand the
out� comethat eventually ensues. Sinceagents have autonomyover their own choices: the
request maybe immediately honouredasit is, it may berefused completely, or it maybe
modified throughsomeform of social interchange.In short, in the generalcase, both the
nature(asimplerequest versusaprotractednegotiation)andtheoutcomeof aninteraction
cannot� bedeterminedat theonset.

The
�

secondsourceof unpredictabilityin agent-orientedsystemsrelatesto thenotionof
emer� gentbehaviour. It haslongbeenrecognised thatinteractivecomposition—collections
of� processes (agents) actingside-by-sideandinteractingin whatever way they have been
des
�

ignedto interact[43]—results in behaviouralphenomenathatcannotbedeconstructed
s� olely in terms of the behaviour of the individual components. That is, the whole is
oft� en greater than the sum of the parts. Such emergent behaviour is a consequenceof
the
�

interactionbetweencomponentsand given their sophisticationand flexibility in agent
s� ystems, it is clear that the scopefor unexpectedcollective behaviour is considerable.
In certain situations (e.g., social simulations and market systems) emergence is not
necessarily abadthingsincetheensuingbehaviour isamoreaccuratemodelof theproblem
b
�
eing addressed. However, whenpredictability is adesirable systemproperty, thentheaim

is to minimiseits occurrenceand impact.
B

7
oth of theaforementioneddrawbacksapply to thegeneralcaseof usinganagent-based

approach.� However in specific systemsand applications, designersareable to circumvent
th
�

esedifficultiesby using interaction protocols whosepropertiescanbe formally analysed
(s
0

ometimes borrowing techniquessuch as mechanism design from gametheory [48]),
b
�
y adopting rigid and preset organisational structures, and/or by limiting the nature

and� the scope of the agent interplay. In all of these cases, the aim is to reducethe
s� ystem’s unpredictability. However these restrictions also limit the power of the agent-
bas
�

ed approach;thus, in order to realise its full potential somelongerterm solutionsare
required.In particular, a betterunderstandingis neededof the impactof sociality and
or� ganisationalcontext on an individual’sbehaviourandof thesymbiotic link betweenthe
beha
�

viourof the individualagentsand thatof theoverall system.
O

R
ne meansof tackling these fundamental issues is to follow an approachthat proved

s� uccessful in elucidating thefoundationalprinciples and structuresof individual(asocial)
agent� s. Newell’s [40] knowledgelevel analysisprovidedtheseminalcharacterisationof in-
tellig
�

ent agents—it stripped away implementation and application specificdetails to reveal
t
�
hecoreof asocial problemsolvers. Sincetheaim hereis to do thesamefor social agents,
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N
+

ewell’sbasic approachappearsan obviouspoint of departure.Thusanew computerlevel
needsto be defined(see [28] for detailsof themain arguments). This level canbecalled
th
�

e s) ocial level [32]. It should sit immediately above the knowledgelevel and should pro-
vic dethesocial principlesandfoundationsfor agent-basedsystems. Theprimarybenefit of
de
�

veloping a social level description is that it enablesthe overall system’s behaviour and
key conceptual structuresto bestudiedwithoutthe needto delve into theimplementation
det
�

ails of the individualagents or thespecifics of particular interaction protocols [28,32].
Thuspredictionof thebehaviourof thesocial agentsandof theoverall systemcanbemade
moreeasily. To thisend, thenext section presentsapreliminary vision of thesocial level.

6.
k

A social level view

Thissectionpresentstheoutlineof aproposal for asocial level characterisationof agent-
bas
�

ed systems (Table 1). This characterisation follows Newell’s basic nomenclature for
s� pecifyingcomputersystemlevels.

Thesy) stem is the entity to be described at that computer level. For the knowledge level
it is an(asocial) agent. For the social level it is anagent organisation; that is, a collection
(or
0

grouping)of agents thatarearrangedin variousrelationshipsto oneanother.
Thecoml ponents ar� e the primitive elements from which the system is built up. For the

knowledgelevel, an agentis conceived of in termsof the goals it has to achieve and
th
�

e actions that it canperform in their pursuit. For the social level, anagent organisation
cons� ists of four main components that together represent theobjective basis uponwhich
th
�

e organisation functions. Firstly, there are the agents that go together to constitute
t
�
he organisation. Secondly, there are the various channels through which these agents
can� communicate and interact with one another. These encompass both the underlying

Ta



ble1
Summary of theknowledgeandsocial levels

Dimension Description Knowledgelevel Social level

System Entity to bedescribed (asocial) Agent Agentorganisation

Components Thesystem’s primitive
elements

Goals,
Actions

Agents,
Interactionchannels,
Dependencies

m
,

Organisational relationships

Compositional law How thecomponentsare
assembled

V
n

arious Roles,
Organisation’s rules

Beha
o

viour law How thesystem’s
beha

b
viour dependsuponits

composition & components

Pri
�

nciple of
rationality

Pri
�

nciple of
organisational rationality

Medium
p

Theelements to be
procesK sed to obtainthe
desiredbehaviour

Knowledge Organisation and social obligations,
Meansof influencingothers,
Meansof changingorganisational
structures
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mechanism (e.g., message passing structures, blackboardsystems or the environment)
as� well as the content (e.g.,agentcommunication languagesand the associated domain
ont� ologies). Thethird componentis thedependenciesthatexist betweentheagents.

S
(

uch dependencies can be betweenthe objectives that the agents wish to achieve or
t
�
hroughtheenvironment’ssharedresources. In eithercase, it is theconceptof dependence
t
�
hat drives the agents to interactwith one another [9,29]. Finally, thereare the various
or� ganisationalrelationshipsthat exist betweenthe agents. For example, theagentsmaybe
p� eers,competitorsor situatedin a variety of authority relationships.

Thecoml positional laws defi
�

ne how the componentsare assembled to form thesystem.
For the knowledgelevel, Newell simply statesthat an agent’s goalsandactionscanbe
arranged� in multifariousways. For thesocial level, theprimitivecomponentsareassembled
according� to their roles within the system and the organisation’s rules. Roles can be
undertak� enby individual or multiple agentsandtheir purpose is to definethe achievable
objecti� ves, to indicatethe ensuing organisationalrelationships betweenthe participants,
t
�
o set the channels through which interaction should occur, and to dictate the patterns
of� interchangethat areappropriate [19,23,38].Accompanying the role definitionsarethe
or� ganisation’srulesthatdefinetheconcomitantproceduresor theemergentnormsin which
role5 enactmenttakes place.Thus, therulesspecify, amongotherthings, which agentscan
adopt� which rolesandunderwhat termsandconditions, whatshouldhappenif rolesare
updat� ed/modified andhow conflictsbetweenrolesshould behandled.

The
�

behavi
q

our law s� pecifieshow thesystem’s behaviour dependsuponits composition
and� its components. For the knowledge level, the behaviour law is the principle of
r5 ationality which simply statesthat if an agent has knowledge that one of its actions
will� lead to one of its goals, then the agent will selectthat action [40]. For the social
level, the behaviour of the organisation dependsupon the ways in which the roles are
enact� ed and the degree to which the organisation’s rules are adheredto. Thus, this
o� rganisational rationality indicateshow the collective will actual behave in practice.For
e� xample, the agents may well decide to follow their designated/assigned role in the
or� ganisation and also to adhereto the organisation’s rules. However, theremay equally
b
�
e situations in which these constraints are deliberately violated. Thus the notion of

or� ganisationalrationalityindicatesto whatdegreeandunderwhatcircumstancestheagents
will� follow their organisational obligations. Since social interchange is an integral part
o� f a role’s specification, organisational rationality alsocovers social obligations between
th
�

e participating agents. Thus it definesthe situations in which agents may make social
commi� tments, when they can violate them, and what compensating actions should be
performed� in suchcircumstances.

The
�

m/ edium repres5 ents the elements that are processed in order to obtain the desired
beha
�

viour. For the knowledgelevel, an agentprocesses knowledgein orderto attain its
goalN s. At thesocial level, organisationsprocess threemain typesof elements. Firstly, the
vc ariousorganisationaland social obligationsthat the agents enter into: either asa result
of� their organisationalroles/relationshipsor asa consequenceof thesocial interactionsin
w� hich they engage.Secondly, thevariousmechanismsandstructuresthatareavailable for
t
�
he organisation’scomponents to influencethebehaviourof oneanother(enactedthrough
t
�
he interaction channels). These include,for example,negotiation techniques, cooperation
prot� ocols, andcoordinationmodels. All of theseinteractionscanbecharacterisedasmeans
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by
�

which agents influenceoneanother’sbehaviour(in orderto managetheir respectivede-
pendenci� es). Thefinal elementto be processed is thevariousmeansthatare available for
changi� ngor modifying theorganisationalstructure.Thatis, theelementsthatareprocessed
in order to createnew roles,to changeorganisational rulesor to modify the prevailing or-
gN anisational rationality.

At
�

this stage, the aim of the social level characterisation is to provide a meansof
t
�
ackling the aforementionedfundamental drawbacksof the agent-based approach.While
i
-
t is highly likely that this description will undergo modification and refinementin the
lig
Y

ht of experience,it neverthelessprovidesa line of attackto theseissues.Moreover, the
core� conceptscan be viewed as being relatively stable (see the evolution from [28] to
[32] andonto thecurrentproposal). To this end,the social level aidsthe scienceof agent-
bas
�

ed computing by providing a comprehensive modelfor specifying and understanding
beha
�

viour in agent-based systems. This contrasts with the majority of the extant work
in
-

this areathat typically concentrateson a small fragmentof the overall picture.For
e� xample, the BDI models typically fail to incorporate the influenceof organisational
s� tructures on an agent’s behaviour and the organisational models tend to neglect the
autonomy� of the constituent agents. A social level perspective also aids the engineering
as� pectsof agent-basedsystems. By identifying thekey constituentcomponentsand their
interrelationships, the social level providesa sound basis for developing tools that can
s� upportthedevelopmentof agent-basedsystems. Moreover, social level modelsprovidea
bas
�

is for agent-orientedanalysis anddesign. Indeed[62] follows precisely this approach;
pres� enting a methodology in which agent-based systems are viewed as computational
or� ganisationsthataredefinedin termsof roles, interactionsandobligations.

7. Discussion

Thi
�

spaperhassoughtto justify theclaim thatagent-basedcomputinghasthepotential to
sig� nificantly improveour ability to model, design and build complex, distributedsoftware
sy� stems.Inmakingthis claim, aseriesof qualitativeargumentsweredevelopedto highlight
t
�
he high degree of match between the requirements of complex system development
paradi� gmson the onehandandthe key concepts andnotionsof agent-based computing
on� the other. The secondclaim contained herein is that the agent-based approachwill
s� ucceedasa mainstreamsoftware engineeringparadigm.The basis for this belief is that
agent� -based computing is a logical evolution of a numberof contemporaryapproachesto
s� oftware engineeringand also because it is ideally suited to developingsoftware in truly
open� systems. Against thispromise,theinherentunpredictabilityof agentinteractionsand
th
�

estrong possibility of emergent behaviour wereidentified asinherent drawbacks.To help
pro� videa long-term meansof addressing theseproblems, a social level characterisation of
agent� -based systemswasadvocatedasa promisingpoint of departure.

Althoughthis paperhasconcentratedpredominantly on the perspective of developing
compl� ex systems, agent-basedcomputing should not beviewedmerely asa goodsolution
t
�
echnology. Rather, it should be seenin its broadercontext as a general-purposemodelof
comput� ation thatnaturally encompasses themajor trendsin software. In particular, there
is an inexorable move towards regarding distributed and concurrentsystemsas thenorm
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rather than the exception, towards placing greater onuson flexible interactionsbetween
(i
0

ndependently developed)software systems, and towardsreflecting real-world relation-
s� hips(i.e.,organisationalcontext) in computersystems. In short, theagent-basedapproach
s� hould be regardedas thefoundation of thenetworked generation of computersystems.
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