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Abstract
Typed intermediate languages and typed assembly languages for
optimizing compilers require types to describe stack-allocated data.
Previous type systems for stack data were either undecidable or
did not treat arguments passed by reference. This paper presents a
simple, sound, decidable type system expressive enough to support
the Micro-CLI source language, including by-reference arguments.
This type system safely expresses operations on aliased stack loca-
tions by using singleton pointers and a small subset of linear logic.

1. Introduction
Java and C# are safe, high-level languages. The safety of Java
and C# protects one program from another: safe applets cannot
crash a browser, safe servlets cannot crash a server, and so on.
The high level of abstraction makes programming easier, but makes
compilation more challenging. Java and C# require sophisticated
optimizing compilation to achieve performance competitive with
programs written directly in C or assembly language.

Unfortunately, a large, complex compiler is likely to have bugs,
and these bugs may cause the compiler to produce unsafe assembly
language code. Proof-carrying code (PCC) [14] and typed assembly
language (TAL) [13] solve this problem by verifying the safety of
the assembly language code generated by the compiler, thus remov-
ing the compiler from the trusted computing base. Because the be-
havior of an assembly language program is undecidable in general,
PCC and TAL require machine-checkable evidence to verify a pro-
gram’s safety. A type-preserving compiler generates this evidence
by transforming a well-typed source program into a well-typed as-
sembly language program, preserving the well-typedness of the
program during each compilation phase in between the source and
assembly language levels [13]. To do this, the compiler must define
type systems for each intermediate language in the compilation.
Java bytecode [11] and CIL [4] are well-known typed intermediate
languages, but these still contain many high-level abstractions, such
as single instructions for invoking virtual methods and platform-
independent storage slots for local data. Below the Java bytecode
and CIL levels, these abstractions break down into smaller pieces.
A virtual method invocation turns into a method table lookup, in-
structions for pushing arguments onto a stack, a call instruction,
plus prologue and epilogue code in the called method. Local data
storage slots turn into machine-specific registers and stack slots.
These lower-level concepts need lower-level types.

This paper describes SST (Simple StackTypes), a type system
that is appropriate for type-checking stack operations in the lowest
levels of a type-preserving compiler, including the final typed as-
sembly language generated by the compiler. Previous type systems
for stacks were either undecidable without explicit proof annota-
tions [2, 9] or could not represent arguments passed and returned
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by reference [12]. By contrast, SST has a simple decision proced-
ure, making it easy to use in an intermediate language. It expresses
by-reference arguments, even when multiple references point to the
same aliased location. It is provably type-safe, via standard pre-
servation and progress lemmas. Finally, SST is simple and elegant
enough to be a trustworthy component of a typed assembly lan-
guage.

To represent stacks in the presence of aliasing, SST builds on
ideas from stack-based TAL [12], alias types [18], and linear lo-
gic [6, 19]. Section 2 discusses these systems and related systems in
more detail. Sections 3 and 4 introduce SST’s types and instructions
formally. Section 5 describes a translation from the Micro-CLI [9]
source language to SST, demonstrating SST’s expressiveness. Sec-
tion 6 concludes.

2. Background and Related Work
Stack-based TAL (STAL) was the first TAL to support stacks. Its
central idea, shared by SST, was astack type, which specifies the
known types of values on the stack at any point in a TAL program.
For example, the STAL stack type “int:: int :: ρ” specifies that two
integers live at the top of the stack, but all types deeper in the stack
are unknown, specified only by the stack type variableρ. Code
blocks in STAL may be polymorphic over stack type variables.

In addition to the concatenation operator “:: ”, STAL con-
tains a compound stack type that can express some pointers into
the middle of the stack. Unfortunately, STAL cannot express the
possibly aliased pointers that C# compilers use to implement by-
reference arguments. Consider the three C# methods below. The
swap method takes two integer references and swaps the integers.
Thef method instantiates argumentsx andy with pointers to local
variablesa andb, while g instantiatesx andy with pointers toc:

void f() {
int a = 10, b = 20;
swap(ref a, ref b); }

void g() {
int c = 30;
swap(ref c, ref c); }

void swap(ref int x, ref int y) {
int t = x;
x = y;
y = t; }

STAL cannot give a useful type to theswap method: even with
compound types, STAL stack types must list the types of stack
slots in precisely the order that they appear in memory. The STAL
type for swap must reserve one particular stack slot forx and
another fory, making it impossible for a caller to instantiatex
and y with aliased pointers (asg does), with heap pointers (as
is allowed by C#), or with two stack pointers in the opposite
order. Regarding these limitations, Morrisettet al. say that, “it
appears that this limitation could be removed by introducing a
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ς ⇒ ς s-imp-eq
ς ⇒ ς ′

` : τ :: ς ⇒ ` : τ :: ς ′
s-imp-concat ` : σ ⇒ ` : σ′

` : (σ ∧ {`t : τ})⇒ ` : (σ′ ∧ {`t : τ})
s-imp-alias

ς1 ⇒ ς2 ς2 ⇒ ς3
ς1 ⇒ ς3

s-imp-trans ` : (τ :: ς)⇒ ` : (τ :: ς ∧ {` : τ})
s-imp-add-alias

` : (σ ∧ {`t : τ})⇒ ` : σ
s-imp-drop-alias

` : (τ1 :: `q : (σ ∧ {`2 : τ2}))⇒ ` : ((τ1 :: `q : σ) ∧ {`2 : τ2})
s-imp-expand-alias

ς ⇒ ` : (σ ∧ {`1 : τ1}) ς ⇒ ` : (σ ∧ {`2 : τ2})
ς ⇒ ` : (σ ∧ {`1 : τ1} ∧ {`2 : τ2})

s-imp-merge-alias

Figure 1. Logical Stack Implication Rules

limited form of intersection type, but we have not yet explored
the ramifications of this enhancement.” (In fact, one subsequent
TAL [2] did add intersection types, but did not explore its use
for stacks. Furthermore, this type system was undecidable [2].)
SST uses a form of intersection type, rather than using STAL’s
compound types.

A key advantage of stack allocation is the ease of stack deal-
location: a program simply pops data from the top of the stack to
deallocate the data. In general, popping may leave dangling point-
ers to popped data. STAL deals with this safely but awkwardly, ap-
plying a special validation rule before each use of any potentially
dangling pointer. SST follows a more direct and flexible approach
introduced by alias types [18] (although alias types handled heaps
objects, not stack data). Alias types split a pointer type into two
parts: the locatioǹ of the data, and the type of the data at loca-
tion `. The pointer to the data has a singleton type Ptr(`), which
indicates that the pointer points exactly to the location`, but delib-
erately does not specify the type of the data at location`. Instead,
a separatecapability specifies the current type at`. For example,
the capability{` 7→ int} specifies that̀ currently holds an integer.
Because of the separation between singleton pointer types and cap-
abilities, the capabilities can evolve, independently of the pointer
types, to track updates and deallocation.

To ensure that no two capabilities specify contradictory inform-
ation about a single location, alias types impose a linearity discip-
line on the program’s treatment of capabilities, prohibiting arbitrary
duplication of the information contained in a capability. In partic-
ular, the capability{` 7→ int} is not equivalent to the capability
{` 7→ int, ` 7→ int}. However, alias types (and the similar cap-
ability calculus [3]) use non-standard operators and rules for con-
trolling linearity. Following recent advice [20, 7, 5], SST uses op-
erators and rules directly inspired by standard linear logic [6, 19]
and separation logic [17, 8]. Linear logic and separation logic share
a core of basic operators. Two are of particular interest for stacks:
multiplicative conjunction “⊗” (written as “∗” in separation logic)
and additive conjunction “&” (written as “∧” in separation logic).
For example, to have “coffee⊗ tea” is to have both coffee and tea.
To have “coffee&tea” is to have a choice between coffee and tea,
but not both. Ahmed and Walker observe that additive conjunction
“allows us to specify different ‘views’ of the stack” [1] (though [1]
did not explore applications of this observation); we take this obser-
vation as a starting point for representing by-reference arguments.

Jia, Spalding, Walker and Glew [9] used linear logic as the basis
for a typed low-level language of stacks and heaps (we refer to
this low-level language as “JSWG”). In contrast to STAL, JSWG
expressed by-reference arguments. To demonstrate this, the au-
thors also introduced the high-level “Micro-CLI” source language
(modeled on the CLI intermediate format targeted by C# com-
pilers [4]) and provided a translation from Micro-CLI programs
to JSWG programs. In contrast to SST’s decidable logic, JSWG’s

linear logic (which includes the standard linear operators⊗, &,
⊕,(, and!) is undecidable [10], making SST more practical than
JSWG’s system for a compiler intermediate language. Furthermore,
JSWG expresses pointers using a heavyweight notion of “frozen”
capabilities (with version numbers and “tag trees” for pointers into
the stack) while SST relies solely on singleton pointer types and
a minimal linear logic. Despite its smaller set of features, SST is
still powerful enough to express Micro-CLI; Section 5 describes a
translation of Micro-CLI programs to SST programs.

3. Simple Stack Types
Consider the STAL stack type int:: int :: ρ from the Section 2.
In alias type notation, each integer on the stack would have a
capability {` 7→ int}. In linear logic notation, the⊗ operator
would glue capabilities together to form a complete stack capabil-
ity: {`2 7→ int}⊗{`1 7→ int}⊗ρ, wherè 2 and`1 are the locations
of each of the two integers on the stack. SST takes this notation as
a starting point, but makes two modifications. First, to simplify the
type checking algorithm, SST replaces the commutative, associat-
ive⊗ operator with the non-commutative, non-associative:: oper-
ator, resulting in a stack capability{`2 7→ int} :: {`1 7→ int} :: ρ.
Second, rather than showing one location per stack slot, SST’s
notation puts stack slots in between locations, writing`2 : int ::
`1 : int :: `0 : ρ to indicate that one integer falls between locations
`2 and `1, and the other falls between locations`1 and `0. Note
that this adds the extra location`0 to the example — for instance,
the stack pointer might have type Ptr(`2), pointing to the top of the
stack, while the frame pointer might have type Ptr(`0), pointing to
the bottom of the frame.

The following grammar generates labeled stack typesς and
unlabeled stack typesσ (whereτ indicates a single-word type, such
as int):

labeled stack type ς ::= ` : σ
unlabeled stack type σ ::= ρ | Empty | τ :: ς | σ ∧ {` : τ}

The unlabeled stack type variablesρ, empty stack Empty, and stack
concatenation operator:: give SST the same expressiveness as the
core of STAL, but little else. The real power of SST comes from the
∧ operator, indicating aliasing. The stack typeσ ∧ {` : τ} implies
three things. First,σ holds. Second, the locatioǹresides either in
the heap or in the part of the stack described byσ. Third,` currently
contains a word of typeτ . Figure 1 shows the rules governing stack
types; “ς ⇒ ς ′” means that ifς holds, thenς ′ also holds. Some
rules (s-imp-concat, s-imp-alias, s-imp-eq, s-imp-trans) are basic
structural rules. The s-imp-add-alias and s-imp-merge-alias rules
allow a program to add one or more aliases to a stack type. The
s-imp-drop-alias rule lets a program drop unneeded aliases. The s-
imp-expand-alias rule expands the scope of an alias, as described
in more detail below.
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As an example, consider theswap function from Section 2.
Suppose that the compiler pushes arguments toswap onto the stack
from right-to-left, and stores the return address in a register. Upon
entry toswap, the stack will hold the argumentsx andy, each of
which is a pointer to some location insideρ:

`2 : Ptr(`x) :: `1 : Ptr(`y) :: `0 : (ρ ∧ {`x : int} ∧ {`y : int})
Note that locations̀x and`y may appear anywhere inρ, in any or-
der. In fact,̀ x and`y may be the same location. For example, sup-
pose that just before callingswap, the stack has typè0 : int :: ς.
Figure 1’s s-imp-add-alias and s-imp-merge-alias rules prove:

`0 : int :: ς
⇒ `0 : ((int :: ς) ∧ {`0 : int} ∧ {`0 : int})

Using this, the program can chooseρ = (int :: ς), choosè x =
`y = `0, push two pointers tò0 onto the stack, and callswap.

Figure 1’s rules also allow reordering of aliases. For example,
the s-imp-drop-alias, s-imp-alias, and s-imp-merge-alias rules
prove:

`0 : (ρ ∧ {`y : int} ∧ {`x : int})
⇒ `0 : (ρ ∧ {`x : int} ∧ {`y : int})

Section 2 mentioned the danger of pointers left dangling after
the program pops a word from the stack. The syntaxσ ∧ {` : τ}
expresses a clear scope in which` remains safe to use:` definitely
contains typeτ as long asσ remains unmodified. If the program
pops a word fromσ, for example, then the alias{` : τ}must be dis-
carded (see section 4.1 for details). The rules governing this scope
are simple: s-imp-expand-alias expands the scope of an alias, but
there is no rule to contract the scope. Expansion is safe, and allows
a caller to pass a reference on to another method. Theh method
shown below expands the scope ofc before callingswap. Contrac-
tion, on the other hand, could leave unsafe dangling pointers, as
shown by the illegal and unsafe C# methodillegalMethod:

void h(ref int c) { swap(ref c, ref c); }
ref int illegalMethod() { int c; return ref c; }

Relation to linear logic. Just as :: is a limited version of the
linear logic⊗ operator, the∧ operator is a limited version of the
linear logic& operator. More specifically, the notationσ ∧ {` : τ}
corresponds to the linear logic formulaσ&({` 7→ τ} ⊗ >), where
> is the linear logic notation to indicate any resource. Intuitively,
knowingσ&({` 7→ τ} ⊗ >) means that you can choose to look at
the stack in one of two ways: either consider the stack to have type
σ, or consider the stack to have type{` 7→ τ} ⊗>. The latter case
tells you that the stack holds typeτ at location`, plus some other
data represented by>.

The s-imp-expand-alias rule and lack of a contraction rule also
correspond to linear logic, whereA ⊗ (B&(C ⊗ >)) implies
(A ⊗ B)&(C ⊗ >), but (A ⊗ B)&(C ⊗ >) does not imply
A ⊗ (B&(C ⊗ >)); linear logic can expand, but not contract,
the scope of “&(C ⊗>)”. Unlike JSWG [9]’s scoping via version
numbers and tag trees, SST’s scoping follows naturally from linear
logic rules.

Decidability. Deciding whether one linear logic formula im-
plies another is undecidable in general [10], but is decidable for
formulas consisting only of atoms, the⊗ operator, and the& oper-
ator [10]. Since SST’s :: and∧ operators are limited versions of
linear logic’s⊗ and& operators, it is not surprising that SST’s lo-
gic is also decidable. The companion technical report [15] presents
a simple and efficient (near linear-time) algorithm to decideς ⇒ ς ′,
based on a syntax-directed reformulation of Figure 1’s rules. The
existence of such a decision algorithm is the key to the decidability
of type checking in SST (stated formally in Section 4).

Locations. A location ` may be a location variable “η”, the
location of the bottom of the stack “base”, the next location towards

the top of the stack “next(`)”, or a heap location “p” (assuming an
infinite supply of locationsp for heap allocation):

location ` ::= η | base| next(`) | p
For example, the STAL type int:: int :: ρ may be written in SST
as “next2(η) : int :: next(η) : int :: η : ρ”, where next2(η) is an
abbreviation for next(next(η)). For convenience, we frequently use
the following abbreviation:

(τn . . . τ1)@(` : σ) = nextn(`) : τn :: . . . :: next1(`) : τ1 :: ` : σ

With this, the STAL type int :: int :: ρ may be written in as
(int; int)@(η : ρ).

4. Formalization
Types.SST supports integer type “int”, nonsense type “Nonsense”
for uninitialized stack slots, heap pointer type “HeapPtr(τ)” for
pointers to heap values of typeτ , singleton type “Ptr(`)”, and code
type “∀[∆](Γ, ς)” for code blocks.

type τ ::= int | Nonsense| HeapPtr(τ)
| Ptr(`) | ∀[∆](Γ, ς)

Type∀[∆](Γ, ς) describes preconditions for code blocks. The loc-
ation environment∆ is a sequence of location variables and stack
type variables. The register fileΓ is a partial function from registers
to types.Γ andς describe the initial register and stack state for the
blocks. They may refer to the variables in∆.

Values and Operands.A stack locationd is either “base” or
the next stack location “next(d)”.

A word-sized valuew may be an integer “i”, the “nonsense”
value for uninitialized stack slots, a heap location “p”, a stack
location “d”, or instantiated values “w[`]” and “w[σ]” where w
points to code blocks polymorphic over location variables and stack
type variables. Contents of registers and stack slots are word-sized.
As in STAL [12], word-sized values are separated from operands
to prevent registers from containing registers.

stack loc d ::= base| next(d)
word value w ::= i | nonsense| p | d | w[`] | w[σ]

operand o ::= r | w | o[`] | o[σ]

An operando may be a register “r”, a word-sized value “w”,
or instantiated operands “o[`]” and “o[σ]”. A special register sp is
used for the stack pointer.

Instructions. Most instructions are standard. Values on the heap
or stack are accessed through explicit load and store instructions.

instr ins ::= movr, o | addr, o | subr, o | laddr, i
| loadr1, [r2 + i] | store[r1 + i], r2

| jumpif0 r, o | heapallocr = 〈o〉
| (η, r) = unpack(o)

SST uses “ladd” instructions for stack location arithmetic. The
first operand points to a stack location. The second operand is a
constant integer (positive or negative). A “ladd” instruction moves
the stack pointer along the stack according to the integer value.
The standard add and subtract instructions deal with only integer
arithmetic.

The heap allocation instruction “heapallocr = 〈o〉” allocates
a word on the heap with initial valueo and assigns the new heap
location tor.

The unpack instruction “(η, r) = unpack(o)” coerces a heap
pointero to a heap location. It introduces a fresh location variable
η for o and assignsη to r.

4.1 Type Checking Instructions

The type checker maintains a few environments. The location en-
vironment∆ and the register fileΓ were explained previously. The
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heap environmentΨ is a partial function from heap locations to
heap pointer types. Stack-related rules are shown here. Appendix B
contains all rules.

Operand Typing Rules.The judgment∆;Ψ; Γ ` o : τ means
that operando has typeτ under the environments. Note that a heap
location can be typed in two ways: the type in the heap environment
(o-p-H) or a singleton type (o-p). A stack location has a singleton
type (o-d).

If an operando has a polymorphic type∀[∆](Γ, ς), o[`] and
o[σ] instantiate the first variable in∆ with ` andσ respectively. The
judgments∆ ` ` and∆ ` σ mean that̀ andσ are well-formed
under∆ respectively.

∆;Ψ; Γ ` r : Γ(r)
o-reg

∆;Ψ; Γ ` i : int
o-int

∆;Ψ; Γ ` nonsense: Nonsense
o-ns

∆;Ψ; Γ ` d : Ptr(d)
o-d

∆;Ψ; Γ ` p : Ψ(p)
o-p-H

∆;Ψ; Γ ` p : Ptr(p)
o-p

∆;Ψ; Γ ` o : ∀[η, ∆′](Γ′, ς) ∆ ` `

∆;Ψ; Γ ` o[`] : ∀[∆′](Γ′[`/η], ς[`/η])
o-inst-l

∆;Ψ; Γ ` o : ∀[ρ, ∆′](Γ′, ς) ∆ ` σ

∆;Ψ; Γ ` o[σ] : ∀[∆′](Γ′[σ/ρ], ς[σ/ρ])
o-inst-Q

The judgment̀ (Γ, ς){r ← τ}(Γ′, ς ′) means that assigning
a value of typeτ to registerr results in new environmentsΓ′ and
ς ′. Only Γ is changed ifr is not sp. Otherwise the stack grows or
shrinks according to the new value of sp.

r 6= sp Γ′ = Γ[r 7→ τ ]

` (Γ, ς){r ← τ}(Γ′, ς)
a-not-esp

` Resize(`, ς) = ς ′ Γ′ = Γ[sp 7→ Ptr(`)]

` (Γ, ς){sp← Ptr(`)}(Γ′, ς ′)
a-esp

Stack Rules.Resize. When the stack grows or shrinks, SST
uses the judgment̀ Resize(`, ς) = ς ′ to get the new stack type.
The judgment means that resizing stackς to location` results in
stackς ′. The location` will be the top ofς ′. The stack shrinks
if ` is insideς (s-shrink) and grows if̀ is beyond the top ofς (s-
grow). The stack drops all aliases beyond` when shrinking to avoid
dangling pointers.

ς ⇒→
τ @(` : σ)

` Resize(`, ς) = ` : σ
s-shrink

ς ′ = (Nonsensen; . . . ; Nonsense1)@(` : σ)

` Resize(nextn(`), ` : σ) = ς ′
s-grow

Location Lookup.The judgmentς ` ` + i = `′ means that in
stackς goingi slots from locatioǹ leads to locatioǹ′. A positive
i means going toward the stack top and negative means toward
the stack bottom. The notionn represents natural numbers. (The
requirementς ⇒→

τ @(` : σ) ensures that̀ is a stack location, not
a heap location.)

ς ⇒→
τ @(` : σ)

ς ` ` + n = nextn(`)
s-offset-next

ς ⇒→
τ @(` : σ)

ς ` nextn(`) + (−n) = `
s-offset-prev

Type Lookup.The judgmentς ` ` : τ means that the locatioǹ
in stackς has typeτ . The locatioǹ can be either an alias inς, or
be on the spine ofς (the stack type obtained by dropping all aliases
from ς).

ς ⇒ `′ : (σ ∧ {` : τ})
ς ` ` : τ

s-lookup

Stack Update.The judgmentς ` ` ← τ  ς ′ means that
updating the locatioǹ in stackς with type τ results in stackς ′.
Weak updates do not change the stack type (s-update-weak). Strong
updates change the type of` and drop all aliases beyond` because
they may refer to the old type of` (s-update-strong).

ς ` ` : τ

ς ` `← τ  ς
s-update-weak

ς ⇒→
τ @(` : τ :: ς ′)

ς ` `← τ ′  
→
τ @(` : τ ′ :: ς ′)

s-update-strong

Instruction Typing Rules. Figure 2 lists instruction typing
rules.∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′) means that checking instruction
“ins” changes the environmentsΓ and ς to new environmentsΓ′

andς ′.
The location arithmetic instruction “laddr, i” requires thatr

point to a locatioǹ and i be a multiple of 4. The stack grows
toward lower addresses. Ifi is negative, the result location is further
outward from`.

Loads and stores can operate on heap locations (i-load-p and
i-store-p), stack locations on the spine (i-load-concat and i-store-
concat), and aliases (i-load-aliased and i-store-aliased). SST sup-
ports weak updates on heap locations and aliases, and both strong
and weak updates on stack locations on the spine.

The rule for heap allocation assigns a heap pointer type to
the register that holds the pointer, instead of a singleton type,
because the new heap location is statically unknown. The heap
environment does not change after heap allocation because the rest
of the program does not refer to the new heap location by name.

When control transfers, the type checker matches the current
environments with those of the target. The location environment of
the target should have been fully instantiated.Γ⇒ Γ′ requires that
Γ′ be a subset ofΓ.

4.2 Blocks and Programs

A heap valuev is either a code block “block” or a heap word “〈w〉”.
A code block “∀[∆](Γ, ς) b” describes the precondition∀[∆](Γ, ς)
and its bodyb. The block body is a sequence of instructions that
ends with a jump instruction. Only variables in∆ can appear free
in Γ, ς, and the block body.

A program consists of a heapH, a register bankR, a stacks,
and a block body as the entry point.H is a partial function from
heap locations to heap values.R is a partial function from registers
to word-sized values. The stacks records values on the spine. It is
either the empty stack “empty” or a concatenation of a word-sized
value with a stack “w :: s”.

heap value v ::= block | 〈w〉
block block ::= ∀[∆](Γ, ς) b

block body b ::= ins; b | jumpo
heap H ::= p1 7→ v1, . . . , pn 7→ vn

reg bank R ::= r1 7→ w1, . . . , rn 7→ wn

stack value s ::= empty | w :: s
program P ::= (H, R, s, b)

A programP = (H, R, s, b) is well-formed (illustrated by the
judgment̀ P ) if H matches a heap environmentΨ, R matches a
register fileΓ, s matches a stack typeς, andb is well-formed under
Ψ, Γ, andς. The notion “•” means empty environments.
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∆;Ψ; Γ ` o : τ ` (Γ, ς){r ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){movr, o}(Γ′; ς ′)

i-mov

Γ(r) = Ptr(`) ς ` ` + i = `′

` (Γ, ς){r ← Ptr(`′)}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){laddr,−4 ∗ i}(Γ′; ς ′) i-ladd

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){addr, o}(Γ; ς)
i-add

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){subr, o}(Γ; ς)
i-sub

Γ(r2) = HeapPtr(τ)
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′)
i-load-p

Γ(r2) = τ
Γ(r1) = HeapPtr(τ)

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-p

Γ(r2) = Ptr(`) ς ` ` + i = `′

ς ` `′ : τ ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){loadr1, [r2 + (−4 ∗ i)]}(Γ′; ς ′) i-load-concat

Γ(r1) = Ptr(`) Γ(r2) = τ
ς ` ` + i = `′ ς ` `′ ← τ  ς ′

∆;Ψ ` (Γ; ς){store[r1 + (−4 ∗ i)], r2}(Γ; ς ′)
i-store-concat

Γ(r2) = Ptr(`) ς ` ` : τ
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′) i-load-aliased

Γ(r1) = Ptr(`)
ς ` ` : τ Γ(r2) = τ

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-alised

∆;Ψ; Γ ` o : τ
` (Γ, ς){r ← HeapPtr(τ)}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){heapallocr = 〈o〉}(Γ′; ς ′)
i-heapalloc

Γ(r) = int ∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′)
Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ ` (Γ; ς){jumpif0 r, o}(Γ; ς)
i-jump0

Figure 2. Instruction Typing Rules

` H : Ψ •; Ψ ` s : ς •; Ψ ` R : Γ •; Ψ; Γ; ς ` b

` (H, R, s, b)
m-tp

A heapH matches a heap environmentΨ if they have the same
domain and each heap value inH has the corresponding type in
Ψ (h-tp). Matching a register bank with a register file is defined
similarly (g-tp).

Ψ = {. . . , p 7→ τ, . . .} H = {. . . , p 7→ v, . . .}
. . . •; Ψ ` v : τ . . .

` H : Ψ
h-tp

Γ = {. . . , r 7→ τ, . . .} R = {. . . , r 7→ w, . . .}
. . . ∆;Ψ; • ` w : τ . . .

∆;Ψ ` R : Γ
g-tp

A stack values matches a stack typeς if all the locations on the
spine have the corresponding type inς (s-base and s-concat) and
ς contains only aliased locations to heap pointers (s-alias) and to
stack locations on the spine (s-imp).

∆;Ψ ` empty: (base: Empty)
s-base

∆;Ψ ` s : (` : ς) ∆;Ψ; • ` w : τ

∆;Ψ ` w :: s : (next(`) : τ :: ` : σ)
s-concat

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : σ)

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : (σ ∧ {p : τ})) s-alias

∆;Ψ ` s : ς ς ⇒ ς ′

∆;Ψ ` s : ς ′
s-imp

To type check a block body, the checker checks the instructions
in order (b-ins) until it reaches the jump instruction (b-jump).

The unpack instruction “(η, r) = unpack(o)” requireso have a
heap pointer type (b-unpack). The rule introduces a fresh location

variableη to ∆, assignsr a singleton type Ptr(η), and updates the
stack type to containη.

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′)
∆;Ψ; Γ′; ς ′ ` b

∆;Ψ; Γ; ς ` ins; b
b-ins

∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′)
Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ; Γ; ς ` jumpo
b-jump

∆;Ψ; Γ ` o : HeapPtr(τ) r 6= sp η 6∈ ∆
(∆; η);Ψ; Γ[r 7→ Ptr(η)]; ` : (σ ∧ {η : τ}) ` b

∆;Ψ; Γ; ` : σ ` (η, r) = unpack(o)
b-unpack

A block is well-formed if under the heap environment and the
specified precondition, the block body type-checks.

∆;Ψ; Γ; ς ` b

Ψ ` ∀[∆](Γ, ς) b
block-tp

The judgmentP → P ′ means that programP evaluates to
programP ′. Evaluation rules are listed in Appendix B.3.

We proved soundness and decidability of SST. The proofs can
be found online [16].

THEOREM 1 (Preservation).If ` P andP → P ′, then` P ′.

THEOREM 2 (Progress).If ` P , then∃P ′ such thatP → P ′.

THEOREM 3 (Decidability).Given Ψ and block, there is an al-
gorithm to decide whether “Ψ ` block” holds.

5. Source Language and Translation
As mentioned in Section 2, we translate JSWG’s Micro-CLI [9]
to SST. Micro-CLI supports both heap and stack allocation. A
managed pointer can point to either a heap-allocated or a stack-
allocated value. Managed pointers have the same constraints as
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those in CLI, such as they cannot be stored in objects nor returned
from functions.

The syntax of Micro-CLI is restated here.

qualifiers q ::= S | H
types τ ::= int | τ ∗q

values v ::= n | x

program p ::= fds rb

function decls fds ::= · | fd fds
function decl fd ::= τ f(τ1 x1, . . . , τn xn) rb

return block rb ::= {lds; ss; returnv}

local decls lds ::= · | ld; lds
local decl ld ::= τ x = v | τ x = newq v

statement list ss ::= · | s; ss
statement s ::= if v thenss elsess | x = v

| x = v1 + v2 | x = v1 − v2

| x = f(v1, . . . , vn)
| x = !v | v1 := v2

Micro-CLI supports only the integer type and pointer types.
Each pointer type is qualified by “S” (stack pointer) or “H” (heap
pointer). Heap pointer types are subtypes of stack pointer types
with the same referent types, that is,τ ∗H is a subtype ofτ ∗S .

A Micro-CLI program consists of a sequence of function de-
clarations and a return block. A function declaration specifies the
return type, the function name, the parameters, and the body (a re-
turn block). A return block contains a sequence of local variable
declarations and a sequence of statements. A local variable declar-
ation declares the type and the initial value of a local variable that
can be used in subsequent declarations and statements.

The detailed translation from Micro-CLI to SST is described
in the companion technical report. Because SST deals with ali-
asing differently from JSWG, the two translations differ in rules
around managed pointers which introduce aliasing. For example,
if a source function has a parameter with type “pointer-to-pointer-
to-int”, the translation to SST creates two aliases for the pointers
while the translation to JSWG uses existential types to abstract the
locations and version numbers to relate the scopes. The precon-
dition of the function in SST would have a stack type “next(η) :
Ptr(η1) :: η : (ρ∧{η1 : Ptr(η2)}∧{η2 : int})” where the function
is polymorphic overη1 andη2.

We use the following example to show the result of translation.
The “swap” function in Section 2 is rewritten into Micro-CLI
syntax as follows:

int swap(int ∗S x, int ∗S y){
int t = 0;
int t′ = 0;
t = !x;
t′ = !y;
x := t′;
y := t;
return0;

}

Micro-CLI does not allow such syntax as “x := !y”. A new
variable “t′” holds the value of “!y” and is then assigned tox. Local
variables can be initialized only by values. The local variablest
and t′ are initialized to 0 first and then assigned “!x” and “!y”
respectively. Micro-CLI does not allow functions with no return
values. The “swap” function simply returns an integer value.

The function is translated to the following SST function:

∀[ηx, ηy, η0, ρ](Γ, ς)
movrfp, sp
movr1, 0 ; r1 = 0;
ladd sp,−4
store[sp+ 0], r1 ; pushr1 (for t′)
movr1, 0 ; r1 = 0;
ladd sp,−4
store[sp+ 0], r1 ; pushr1 (for t)
loadr1, [rfp + 0] ; r1 = x
loadr1, [r1 + 0] ; r1 = [r1]
store[rfp + (−8)], r1 ; t = r1 (t =!x)
loadr1, [rfp + 4] ; r1 = y
loadr1, [r1 + 0] ; r1 = [r1]
store[rfp + (−4)], r1 ; t′ = r1 (t′ =!y)
loadr1, [rfp + 0] ; r1 = x
loadr2, [rfp + (−4)] ; r2 = t′

store[r1 + 0], r2 ; [r1] = r2 (x := t′)
loadr1, [rfp + 4] ; r1 = y
loadr2, [rfp + (−8)] ; r2 = t
store[r1 + 0], r2 ; [r1] = r2 (y := t)
ladd sp, 16 ; popt, t′, x, y
movr1, 0 ; r1 = 0
ladd sp,−4
store[sp+ 0], r1 ; pushr1

jumprra ; jumprra

whereΓ = sp 7→ Ptr(next2(η0)),
rra 7→ ∀[ ](sp 7→ Ptr(next(η0)), next(η0) : int :: η0 : ρ)

andς = next2(η0) : Ptr(ηx) :: next(η0) : Ptr(ηy) ::
η0 : (ρ ∧ {ηx : int} ∧ {ηy : int})

The translation is straightforward. Many optimizations can be
applied to improve the SST code, which is beyond the scope of this
paper. The translation reserves register sp for the stack pointer,rfp

for the frame pointer, andrra for the return address. Two temporary
registersr1 and r2 are used to hold intermediate values during
the translation of a Micro-CLI instruction. Parameters and return
values are passed through the stack. Local variables are allocated
on the stack.

The SST function is polymorphic over four variables:ηx, ηy,
η0, andρ. The first two represent the values ofx andy. The third
represents the location of the rest of the stack (abstracted by the
stack type variableρ). The parametersx andy are on the stack upon
entry to the function. Section 3 explained the initial stack state. The
parameters and the local variables are accessed through the frame
pointer:t, t′, x, andy have addressesrfp − 8, rfp − 4, rfp, and
rfp + 4 respectively.

At the beginning of the function, the frame pointerrfp is as-
signed sp and the initial values fort and t′ are pushed onto the
stack. At the end, the local variables and the parameters are popped
from the stack, the return value is pushed onto the stack, and the
control transfers to the return address, which is kept in registerrra.

We proved the type-preservation theorem of the translation:

THEOREM 4 (Type-preserving Translation).Well-typed Micro-CLI
programs translate to well-typed SST programs.

6. Conclusions
With a simple stack typeς, SST safely supports many low-level
idioms: stack pointers, frame pointers, by-value arguments, and by-
reference arguments, where by-reference arguments may point to
both stack data and heap data.

This paper presented one particular type system built around
the stack typeς, but many variations are possible. For example, we
treated the stack pointer register as a special register to safely ac-
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comodate kernel-mode code in the presence of interrupts, but some
other settings could treat the stack pointer as an ordinary register.
For GC safety, we allowed pointer arithmetic on stack pointers but
disallowed pointer arithmetic on heap pointers. For simplicity, we
assumed infinite stack space to grow in, but a type checker based
on SST could also verify stack overflow checks (perhaps in co-
operation with virtual-memory-based overflow checks). Also for
simplicity, our heap consisted of one-word objects, but this extends
naturally to objects with multiple fields. Finally, to ensure simple,
efficient type checking, we used a small, restricted linear logic, but
we could trade efficiency for expressiveness by varying the linear
logic, without abandoning the basic SST approach.
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A. SST Syntax

location ` ::= η | base| next(`) | p
labeled stack type ς ::= ` : σ

unlabeled stack type σ ::= ρ | Empty | τ :: ς
| σ ∧ {` : τ}

type τ ::= int | Nonsense| Ptr(`)
| HeapPtr(τ) | ∀[∆](Γ, ς)

stack loc d ::= base| next(d)
word value w ::= i | nonsense| p | d

| w[`] | w[σ]
operand o ::= r | w | o[`] | o[σ]

instr ins ::= movr, o | addr, o
| subr, o | laddr, i
| loadr1, [r2 + i]
| store[r1 + i], r2

| jumpif0 r, o
| heapallocr = 〈o〉
| (η, r) = unpack(o)

heap value v ::= block | 〈w〉
block block ::= ∀[∆](Γ, ς) b

block body b ::= ins; b | jumpo
loc env ∆ ::= • | η;∆ | ρ;∆

heap H ::= p1 7→ v1, . . . , pn 7→ vn

heap env Ψ ::= p1 7→ τ1, . . . , pn 7→ τn

reg bank R ::= r1 7→ w1, . . . , rn 7→ wn

reg file Γ ::= r1 7→ τ1, . . . , rn 7→ τn

stack value s ::= empty | w :: s
program P ::= (H, R, s, b)

We use the following abbreviation:

(τn . . . τ1)@(` : σ) = nextn(`) : τn :: . . . :: next1(`) : τ1 :: ` : σ

B. SST Semantics
B.1 Well-formedness

∆ ` `

{. . . , η, . . .} ` η
wf-l-var

∆ ` base
wf-l-base

∆ ` `
∆ ` next(`)

wf-l-next
∆ ` p

wf-l-p

∆ ` ς

∆ ` `
∆ ` ` : Empty

wf-S-empty
∆ ` ` ρ ∈ ∆

∆ ` ` : ρ
wf-S-P

∆ ` ` ∆ ` τ ∆ ` `q : σ
∀ `′q, τ

′, σ′ : τ = τ ′ if `q : σ ⇒ `′q : (σ′ ∧ {` : τ ′})
∆ ` `q : (σ ∧ {` : τ}) wf-S-alias

∆ ` ` ∆ ` τ ∆ ` ς
∀ `′q, `

′, τ ′, σ′ : ` 6= `′ if ς ⇒ `′q : (σ′ ∧ {`′ : τ ′})
∆ ` ` : (τ :: ς)

wf-S-concat
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∆ ` τ

∆ ` int
wf-t-int

∆ ` Nonsense
wf-t-ns

∆ ` τ
∆ ` HeapPtr(τ)

wf-t-hp ∆ ` `
∆ ` Ptr(`)

wf-t-single

∆, ∆′ ` Γ′ ∆, ∆′ ` ς ′ ∆ ∩∆′ = {}
∆ ` ∀[∆′](Γ′, ς ′)

wf-t-code

∆ ` Γ

. . . ∆ ` τ . . .
∆ ` {. . . , r 7→ τ, . . .} wf-G

B.2 Static Semantics

∆;Ψ; Γ ` o : τ

∆;Ψ; Γ ` r : Γ(r)
o-reg

∆;Ψ; Γ ` i : int
o-int

∆;Ψ; Γ ` nonsense: Nonsense
o-ns

∆;Ψ; Γ ` p : Ψ(p)
o-p-H

∆;Ψ; Γ ` p : Ptr(p)
o-p

∆;Ψ; Γ ` d : Ptr(d)
o-d

∆;Ψ; Γ ` o : ∀[η, ∆′](Γ′, ς) ∆ ` `

∆;Ψ; Γ ` o[`] : ∀[∆′](Γ′[`/η], ς[`/η])
o-inst-l

∆;Ψ; Γ ` o : ∀[ρ, ∆′](Γ′, ς) ∆ ` σ

∆;Ψ; Γ ` o[σ] : ∀[∆′](Γ′[σ/ρ], ς[σ/ρ])
o-inst-Q

` (Γ, ς){r ← τ}(Γ′, ς ′)

r 6= sp Γ′ = Γ[r 7→ τ ]

` (Γ, ς){r ← τ}(Γ′, ς)
a-not-esp

` Resize(`, ς) = ς ′ Γ′ = Γ[sp 7→ Ptr(`)]

` (Γ, ς){sp← Ptr(`)}(Γ′, ς ′)
a-esp

` Resize(`, ς) = ς ′

ς ⇒→
τ @(` : σ)

` Resize(`, ς) = ` : σ
s-shrink

ς ′ = (Nonsensen; . . . ; Nonsense1)@(` : σ)

` Resize(nextn(`), ` : σ) = ς ′
s-grow

ς ` ` + i = `′

ς ⇒→
τ @(` : σ)

ς ` ` + n = nextn(`)
s-offset-next

ς ⇒→
τ @(` : σ)

ς ` nextn(`) + (−n) = `
s-offset-prev

ς ` ` : τ

ς ⇒ `′ : (σ ∧ {` : τ})
ς ` ` : τ

s-lookup

ς ` `← τ  ς ′

ς ` ` : τ

ς ` `← τ  ς
s-update-weak

ς ⇒→
τ @(` : τ :: ς ′)

ς ` `← τ ′  
→
τ @(` : τ ′ :: ς ′)

s-update-strong

Γ⇒ Γ′

Γ′ ⊆ Γ

Γ⇒ Γ′
G-imp

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′)

∆;Ψ; Γ ` o : τ ` (Γ, ς){r ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){movr, o}(Γ′; ς ′)

i-mov

Γ(r) = Ptr(`) ς ` ` + i = `′

` (Γ, ς){r ← Ptr(`′)}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){laddr,−4 ∗ i}(Γ′; ς ′) i-ladd

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){addr, o}(Γ; ς)
i-add

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){subr, o}(Γ; ς)
i-sub

Γ(r2) = HeapPtr(τ) ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′)

i-load-p

Γ(r2) = τ Γ(r1) = HeapPtr(τ)

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-p

Γ(r2) = Ptr(`) ς ` ` + i = `′

ς ` `′ : τ ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){loadr1, [r2 + (−4 ∗ i)]}(Γ′; ς ′) i-load-concat

Γ(r1) = Ptr(`) Γ(r2) = τ
ς ` ` + i = `′ ς ` `′ ← τ  ς ′

∆;Ψ ` (Γ; ς){store[r1 + (−4 ∗ i)], r2}(Γ; ς ′)
i-store-concat

Γ(r2) = Ptr(`) ς ` ` : τ
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′) i-load-aliased

Γ(r1) = Ptr(`) ς ` ` : τ Γ(r2) = τ

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-aliased

∆;Ψ; Γ ` o : τ
` (Γ, ς){r ← HeapPtr(τ)}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){heapallocr = 〈o〉}(Γ′; ς ′)
i-heapalloc

Γ(r) = int ∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′)
Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ ` (Γ; ς){jumpif0 r, o}(Γ; ς)
i-jump0

` P

` H : Ψ •; Ψ ` s : ς •; Ψ ` R : Γ •; Ψ; Γ; ς ` b

` (H, R, s, b)
m-tp
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ς ⇒ ς ′

ς ⇒ ς ′

` : τ :: ς ⇒ ` : τ :: ς ′
s-imp-concat ` : σ ⇒ ` : σ′

` : (σ ∧ {`t : τ})⇒ ` : (σ′ ∧ {`t : τ})
s-imp-alias

ς ⇒ ς s-imp-eq ` : (τ :: ς)⇒ ` : (τ :: ς ∧ {` : τ})
s-imp-add-alias

ς1 ⇒ ς2 ς2 ⇒ ς3
ς1 ⇒ ς3

s-imp-trans ` : (σ ∧ {`t : τ})⇒ ` : σ
s-imp-drop-alias

` : (τ1 :: `q : (σ ∧ {`2 : τ2}))⇒ ` : ((τ1 :: `q : σ) ∧ {`2 : τ2})
s-imp-expand-alias

ς ⇒ ` : (σ ∧ {`1 : τ1}) ς ⇒ ` : (σ ∧ {`2 : τ2})
ς ⇒ ` : (σ ∧ {`1 : τ1} ∧ {`2 : τ2})

s-imp-merge-alias

Figure 3. Stack Implication Rules

` H : Ψ

Ψ = {. . . , p 7→ τ, . . .} H = {. . . , p 7→ v, . . .}
. . . •; Ψ ` v : τ . . .

` H : Ψ
h-tp

∆;Ψ ` R : Γ

Γ = {. . . , r 7→ τ, . . .} R = {. . . , r 7→ w, . . .}
. . . ∆;Ψ; • ` w : τ . . .

∆;Ψ ` R : Γ
g-tp

∆;Ψ ` s : ς

∆;Ψ ` empty: (base: Empty)
s-base

∆;Ψ ` s : (` : σ) ∆; Ψ; • ` w : τ

∆;Ψ ` w :: s : (next(`) : τ :: ` : σ)
s-concat

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : σ)

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : (σ ∧ {p : τ})) s-alias

∆;Ψ ` s : ς ς ⇒ ς ′

∆;Ψ ` s : ς ′
s-imp

∆;Ψ; Γ; ς ` b

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′) ∆;Ψ; Γ′; ς ′ ` b

∆;Ψ; Γ; ς ` ins; b
b-ins

∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′) Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ; Γ; ς ` jumpo
b-jump

∆;Ψ; Γ ` o : HeapPtr(τ) r 6= sp η 6∈ ∆
(∆; η);Ψ; Γ[r 7→ Ptr(η)]; ` : (σ ∧ {η : τ}) ` b

∆;Ψ; Γ; ` : σ ` (η, r) = unpack(o)
b-unpack

Ψ ` block

∆;Ψ; Γ; ς ` b

Ψ ` ∀[∆](Γ, ς) b
block-tp

∆;Ψ ` v : τ

Ψ ` ∀[∆′](Γ′, ς ′) b ∆ ` ∀[∆′](Γ′, ς ′)

∆;Ψ ` ∀[∆′](Γ′, ς ′) b : ∀[∆′](Γ′, ς ′)
v-code

∆;Ψ; • ` w : τ

∆;Ψ ` 〈w〉 : HeapPtr(τ)
v-hp

B.3 Dynamic Semantics

d + i = d′

d + 0 = d
d + (n + 1) = next(d) + n
base+ (−(n + 1)) = base
next(d) + (−(n + 1)) = d + (−n)

size(s) = d

size(empty) = base
size(w :: s) = next(size(s))

resize(d, s) = s′

resize(size(s), s) = s
resize(size(s) + (n + 1), s) = nonsense:: resize(size(s) + n, s)
resize(size(s) + (−(n + 1)), w :: s) = resize(size(s) + (−n), s)

s(d) = w

(w :: s)(size(w :: s)) = w
s-lookup-top

s(d) = w

(w′ :: s)(d) = w
s-lookup

s′ = s[d← w]

d = size(w :: s)

w′ :: s = (w :: s)[d← w′]
s-assign-top

s′ = s[d← w]

w′ :: s′ = (w′ :: s)[d← w]
s-assign
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R ` o 7→ w

R ` r 7→ R(r)
eo-r

R ` w 7→ w
eo-w R ` o 7→ w

R ` o[`] 7→ w[`]
eo-inst-l

R ` o 7→ w
R ` o[σ] 7→ w[σ]

eo-inst-Q

(R, s){r ← w}(R′, s′)

r 6= sp R′ = R[r 7→ w]

(R, s){r ← w}(R′, s)
u-not-esp

R′ = R[sp 7→ d]

(R, s){sp← d}(R′, resize(d, s))
u-esp

P → P ′

R ` o 7→ w (R, s){r ← w}(R′, s′)

(H, R, s, (movr, o; b))→ (H, R′, s′, b)
e-mov

R ` r 7→ d (R, s){r ← d + i}(R′, s′)

(H, R, s, (laddr,−4 ∗ i; b))→ (H, R′, s′, b)
e-ladd

R ` r 7→ i1 R ` o 7→ i2 (R, s){r ← i1 + i2}(R′, s′)

(H, R, s, (addr, o; b))→ (H, R′, s′, b)
e-add

R ` r 7→ i1 R ` o 7→ i2 (R, s){r ← i1 − i2}(R′, s′)

(H, R, s, (subr, o; b))→ (H, R′, s′, b)
e-sub

R ` r2 7→ p H(p) = 〈w〉 (R, s){r1 ← w}(R′, s′)

(H, R, s, (loadr1, [r2 + 0]; b))→ (H, R′, s′, b)
e-load-p

R ` r2 7→ d s(d + i) = w (R, s){r1 ← w}(R′, s′)

(H, R, s, (loadr1, [r2 + (−4 ∗ i)]; b))→ (H, R′, s′, b)
e-load-d

R ` r1 7→ p H(p) = 〈w〉 R ` r2 7→ w′

(H, R, s, (store[r1 + 0], r2; b))→ (H[p← 〈w′〉], R, s, b)
e-store-p

R ` r1 7→ d R ` r2 7→ w s′ = s[d + i← w]

(H, R, s, (store[r1 + (−4 ∗ i)], r2; b))→ (H, R, s′, b)
e-store-d

R ` o 7→ w p 6∈ domain(H) H ′ = H, p 7→ 〈w〉 (R, s){r ← p}(R′, s′)

(H, R, s, (heapallocr = 〈o〉; b))→ (H ′, R′, s′, b)
e-heapalloc

R ` r 7→ i i 6= 0

(H, R, s, (jumpif0 r, o; b))→ (H, R, s, b)
e-jump0-false

R ` r 7→ 0 R ` o 7→ p[subst] H(p) = ∀[∆](Γ, ς) b2

(H, R, s, (jumpif0 r, o; b1))→ (H, R, s, b2[subst/∆])
e-jump0-true

R ` o 7→ p (R, s){r ← p}(R′, s′)

(H, R, s, ((η, r) = unpack(o); b))→ (H, R′, s′, b[p/η])
e-unpack

R ` o 7→ p[subst] H(p) = ∀[∆](Γ, ς) b

(H, R, s, jumpo)→ (H, R, s, b[subst/∆])
e-jump

Figure 4. Instruction Evaluation Rules
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