
Ownership Meets Java

Christo Fogelberg
Victoria University of Wellington

cgf.vicmail@syntilect.com

Alex Potanin
Victoria University of Wellington

alex@mcs.vuw.ac.nz

James Noble
Victoria University of Wellington

kjx@mcs.vuw.ac.nz

Abstract
Ownership Generic Java (OGJ) is a language with ownership types
as an extension to Java. In this position paper we outline the state
of OGJ. We hope that the other aliasing and ownership researchers
would benefit from the discussion around how to add ownership
into a modern generic and annotation-capable typed object-oriented
language like Java.

1. Introduction
With the lively state of ownership research [1, 3, 4, 8] a question
comes up: “What stops us from adding ownership to Java today?”
This position paper claims that there is nothing substantial which
stops us from starting to use ownership today. The only problem is
how it can be presented to the programming community to promote
its usefulness.

OGJ [7] is a language with deep, reference-based ownership
support. Over the recent months we have been working on resolv-
ing the remaining issues which arise when ownership and Java meet
in an actual language implementation. Section 2 outlines these by
dealing with statics, exceptions [5], arrays, equals and clone meth-
ods, and wildcards. The problem of arrays is a consequence of Java
language design. The other problems are deeper issues which face
many ownership systems, and we discuss them in the context of
OGJ in this paper. Section 3 wonders what else we need to do be-
fore we could propose an ownership extension to Java (ultimately
as a JSR).

The solutions described in this paper are in no way designed to
be definitive, rather we pose a question to the community as to what
could be the best alternatives to solving these issues.

2. Ownership Meets Java
2.1 Statics
Because static members cannot be owned by any instances or
instance-associated ownership types it means that the possible own-
ers are limited to World, Package, and Class. We propose that
public static members be implicitly owned by World, that package-
private static members be implicitly owned by Package and that
protected and private static members be implicitly owned by Class.

Each of these approaches is, superficially, fairly straightforward,
however, in the case of inheritance complexities can arise. This is
because a public or protected static member of some class C which
is owned by <Class> is not visible to any subclass of C, according
to the original definition of OGJ.

We propose to modify the visibility rules in OGJ to take into
account the inheritance hierarchy, in exactly the same way as
the object typing rules do. For example, if D extends C, then
C.foo<Class> would be visible and could be referred to by any
instance of type D.

class Super <SuperOwner extends World > {
public static Integer pub = 1; // assumes World
static Integer pac = 2; // assumes Package
protected static Integer pro = 3; // assumes Class
private static Integer pri = 4; // assumes Class

// Cannot use the instance type parameters or This
// static String<SuperOwner> s = "illegal!";

}

class Sub<SubOwner extends World >
extends Super <SubOwner > {

public static String <Class >
weird1 = "legal , but strange!";

private static String <World >
weird2 = "legal , but strange!";

void DoFoo() {
// Legal, because we made Class visible
// to subclasses
Sub.pro = 99;

}
}

Figure 1. Static members and ownership.

Additionally, the presence of owner generic methods in OGJ
allows for static methods to have additional owners supplied via
generic parameters.

Figure 1 shows an example of statics in OGJ. The static fields
gain an implicit owner based on their visibility. An explicit owner
can be used as long as it doesn’t contradict the name visibility of
the static field.

2.2 Exceptions
Incorporating exceptions into an ownership type system raises two
main problems: (1) the ownership of the exception itself, (2) and the
possibility of leaking references. Ownership and exceptions were
also addressed by Werner Dietl and Peter Müller [5].

An object throwing an exception could specify either that its
owner was a global type like World, or that it was owned by one of
the ownership types which were in scope. Specifying World would
mean that non-World objects could not be assigned as fields to the
reference. Similarly, using one of the other visible ownership types
would mean that exceptions could not propagate very far. Thus
exceptions would be either greatly weakened or method calls would
be unduly restricted by static type checking. This would mean that
many design idioms could not be expressed.

For OGJ we have chosen to introduce a special owner Exception
(that is a subtype of World) to resolve this problem. All exceptions
are owned by Exception. Exception is just like World, in that any
object can refer to or create an object of type Exception. Using

30



class FooException <EOwner extends Exception >
extends Throwable {

public Foo<EOwner > causeOfException;

public FooException(
Foo <EOwner > causeOfException) {

this.causeOfException = causeOfException;
}

}

class A<Owner extends World >() {
private Foo<This > f;

public void SomeMethod() {
throw new FooException <Exception >(f);

}
}

class B<Owner extends World > {
public static Foo<World > globalF;
private Foo<This > myF;

public void <AnotherOwner extends World >
DoSomething(A<AnotherOwner > a) {

Foo <This > localF;
try {

a.SomeMethod();
} catch(FooException <Exception > e) {

e.causeOfException.fix();

// These lines cause compile-time errors:
// B.globalF = e.causeOfException;
// this.myF = e.causeOfException;
// localF = e.causeOfException;

}
}

}

Figure 2. Exception handling and ownership.

a subtype of World marks off the relevant subset of global objects
and allows them to be treated slightly differently.

In particular, we adopt the following conditions for Exception.
Firstly, an object owned by Exception can only be created as part
of a throw statement. Secondly we allow the ownership typing
rules to be briefly broken during the exception throwing, so long
as all other typing rules are not. This means that any object can
be passed as a parameter to and used in the constructor of an
Exception. In this situation the language implementation will only
emit a warning saying that ownership will have been temporarily
and locally broken.

The key advantages of this approach are as follows. Firstly,
borrowing or uniqueness[6, 2] do not need to be introduced into
OGJ just so that exceptions can be used. This minimises the
learning curve for users of the language. Secondly, some excep-
tions in the API already expose references. An example of this is
omg.org.CORBA.portable.ApplicationException. Rewriting
exceptions like this to work in an ownership environment could also
mean that the underlying architecture would need to be redesigned.
Our approach maximises legacy interoperability and minimises
code conversion costs.

Figure 2 shows an example of exception handling in OGJ. Inside
method SomeMethod we can pass a field f owned by This to a
publicly owned exception only because we are doing as part of the
throw statement. Inside the catch block, the exception’s fields can

class Foo<Owner > {}

class MyArrays <Owner extends World > {
// What the specification claims is allowed:
public Foo<Owner >[] myOtherArray = new Foo <?>[20];

// What javac actually allows, they are equivalent:
public Foo<Owner >[] myArray = new Foo[20];

}

Figure 3. Java arrays and ownership.

be referenced and modified via method calls, however copying the
exception fields to variable not local to the catch block will generate
a compile-time error.

2.3 Arrays
In general, arrays are not a problem for ownership, however, some
design decisions do need to be made. Although much of the discus-
sion in this subsection is concerned with the details of implement-
ing owned arrays with type erasure in Java, it generalises nicely to
typed languages with generics.

We propose that arrays not have an owner [9]. Their one owner
parameter refers to both the objects in the array and to the array
itself. Although it is possible to give arrays their own owner, and
while arrays have some minimal functionality added to them in
Java there is very little that can be done with an array that does not
directly involve its elements. This is not the case with collections.
In our experience the added complexity of giving each array its own
owner distinct from its elements’ was not justified by the changes
that would be required in Java. In the very rare cases of separate
owner being useful, the use of a collection (e.g., ArrayList with
appropriate owners) was more appropriate.

We consider compatibility with old Java virtual machines to be
crucial. This means that, just like generics, ownership-checked pro-
grams must run on pre-ownership and pre-generic virtual machines.
At the point of array creation, due to the restrictions imposed by
Java’s type erasure, there are really only two options: (1) allow
ownership (but not generics) to be specified in the allocation state-
ment and the type of the reference, or (2) only allow ownership in
the type of the reference. Currently, if an approach like the second
were used the language implementation would raise an “unchecked
warning”. We would recommend not raising a warning in the case
of ownership types. This is because OGJ guarantees that the refer-
ences will be properly type-checked.

These approaches work because of the way in which the Java
type checks its programs. Aside from checking the type of the
allocation statement at the time of construction against the type of
the reference, Java otherwise type checks references against each
other, not against the type of the underlying object. Because all
references to array objects will include owner information as part
of their type, ownership remains sound with arrays.

This means that if we can just get past the hurdle of object cre-
ation, owned arrays will be handled automatically by Java’s type
checking rules, just as existing generic arrays are handled. Even
though these parameters will be erased by the language implemen-
tation, they are always type checked first.

Figure 3 shows an example of arrays in OGJ. These approaches
work because although the object itself is unowned the only refer-
ence to the object is through its reference, which is properly type
checked and which is forbidden by OGJ from having its owner cast
away. In addition, the implementation still does the type substitu-
tion into the class.

31



class A<EO1 extends World , EO2 extends World ,
Owner extends World > {

Foo<EO1, This > f1;

boolean <O> equals(OObject <O> o) {
if (o == this) return true;
if (!(o instanceof List))

return false; // compare to raw type

A<OtherEO1 , OtherEO2 , O> oA =
(A<OtherEO1 , OtherEO2 , O>) o;

if(!this.f1.equals(oA.f1)) return false;
else return true;

}
}

Figure 4. Object comparison and ownership.

2.4 Equals
Equals and clone methods in OGJ suffer from the problem of not
being able to have the same signature (and thus be overridden in the
subclasses) due to a varying set of owners required by the method to
perform equals or clone operation on various objects having access
to many owners [8].

Since each object only has one “main” owner and the rest are
simply those additional “outside” owners that it has access to,
existential owners [8] shows why it is safe to sometimes lose track
of the non-main owners and then gain them back by downcasting
and introducing existential ownership types distinct from any other
ownership types which are visible.

For example, this allows us to implement an equals method
in OGJ as shown in Figure 4. Notice that downcasting introduces
new owner type variables (e.g. OtherEO1 and OtherEO2) following
the existential ownership proposal [8]. The downcast uses owner O
(coming via the method parameter o) which is not necessarily the
same as the owner of the class A (Owner).

In Figure 4 class A has additional owners EO1 and EO2 in ad-
dition to the main owner Owner. Its equals method is a generic
method that accepts the owner parameter O of the object being
compared to (which maybe This for the other object). The equals
method thus has access to two (potentially unrelated and private)
objects in the object graph only for the duration of the method it-
self. Note that the equals method has the same signature for every
class even though there may be multiple owners involved.

2.5 Clone
Figure 5 illustrates cloning in OGJ. For cloning, a method call to
the assignee (which may have a new owner if one would like to
change ownership of the clone) is required as shown in Figure 5.
We call this assisted cloning. A C++-like copy constructor could be
used in place of the special assistant method assignClone. For the
sake of exposition we have omitted null and self-reference checks.
The code as written would fail because of this but it illustrates the
assistant method approach.

2.6 Wildcard bounds in OGJ
In this section we will discuss how wildcards and bounded wild-
cards are taken into account in OGJ. The Java type system makes
this relatively easy.

An unbounded ? can only be used as a wildcard in limited
situations. This is because it is entirely anonymous. Although at
compilation the static types of actual instances will be substituted
in place of this wildcard and can be checked it cannot be referred

class A<Owner extends World > {
A<This > f; int i;

<NewOwner > OObject <NewOwner > clone() {
A<NewOwner > temp = new A<NewOwner >();
temp.i = this.i;
temp.f.<This >assignClone(this.f);
return temp;

}

<NewOwner > void assignClone(A<NewOwner > a) {
this = (A<Owner >) a.<Owner >clone();

}
}

Figure 5. Object cloning and ownership, other version

to or used by the code. For example, a class specified with ? as
its owner could not use that owner in any of its method or field
definitions.

Named bounded wildcards (e.g. Owner super Package) sim-
ply act as statically checkable restrictions on owner types which are
valid for that method parameter, class or generic method. Note that
an anonymous bounded wildcard (e.g. ? extends Package) also
faces the same restrictions as an unbounded anonymous wildcard
and cannot be referred to in the code.

Because only World, Package, Class and This are ownership
types known to exist, only a few bounds can be specified for a
class which is not an inner class. For example, usefully. a class
could have its owner specified as Owner extends Package or
Owner super Package. In the first case it would mean that no
instance of the class could be accessible outside the Package. In the
latter it would mean that all instances of this class must be either
Package-visible or World-visible. In both cases the valid owners
are restricted to one of the globally defined types. This provides
region-like capabilities.

In addition, because Thisl is a subtype of the owner of the
object l, inner classes can be bound to have owners which are sub
or super types of their enclosing classes owners. In relationships
between unnested classes which are siblings in the class hierarchy
it is impossible to express bounds like “the owner of Foo must be
a subtype of the owner of Bar”. This is because the owner variable
of Bar is only visible to Foo if Bar is a supertype of Foo or if Foo
is an inner class of Bar.

3. What Next?
In this position paper we presented our design choices for five cor-
ner cases in ownership language design: static ownership matching
static visibility, global Exception owners for exceptions, owner-
ship of array being the same as that of array’s elements, existential
owners for equals, and assisted clone implementation. We also dis-
cussed bounds on ownership types.

For ownership to be successful a large number of issues still
remain to be resolved in a consistend and agreed upon manner in
collaboration with other aliasing language researchers. These in-
clude formalising interaction between owned and unowned code,
the choice between effective and reference-based ownership, us-
ing implicit or explicit owner parameters, adding additional fea-
tures such as immutability or external uniqueness, developing a col-
lection of language implementations, and writing fully ownership-
aware collections and libraries.

An agreed upon compromise and implementation support
would attract more users to the ownership-enabled languages and
help resolve any issues stopping the ownership research proposal
becoming a JSR reality.

32



Acknowledgments
This work is supported by the Victoria University of Wellington
URF Grant Number 26214.

References
[1] CAMERON, N., DROSSOPOULOU, S., NOBLE, J., AND SMITH,

M. Multiple ownership. In Proceedings of ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA) (2007).

[2] CLARKE, D., AND WRIGSTAD, T. External Uniqueness is Unique
Enough. In Proceedings of European Conference on Object-Oriented
Programming (ECOOP) (Darmstadt, Germany, July 2003), vol. 2473
of Lecture Notes in Computer Science (LNCS), Springer-Verlag,
Berlin, Heidelberg, Germany, pp. 176–200.

[3] CLIFTON, C., LEAVENS, G. T., AND NOBLE, J. MAO: Ownership
and effects for more effective reasoning about aspects. In Proceedings
of European Conference on Object-Oriented Programming (ECOOP)
(2007).

[4] DIETL, W., DROSSOPOULOU, S., AND MÜLLER, P. Generic universe
types. In Proceedings of European Conference on Object-Oriented
Programming (ECOOP) (2007).

[5] DIETL, W., AND MÜLLER, P. Exceptions in ownership type systems.
In Proceedings of the Workshop on Formal Techniques for Java-like
Programs in European Conference on Object-Oriented Programming
(FTfJP) (2004).

[6] MÜLLER, P., AND POETZSCH-HEFFTER, A. Programming Lan-
guages and Fundamentals of Programming. Fernuniversität Hagen,
1999, ch. Universes: a Type System for Controlling Representation
Exposure. Poetzsch-Heffter, A. and Meyer, J. (editors).

[7] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Generic
ownership. In Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA)
(2006).

[8] WRIGSTAD, T., AND CLARKE, D. Existential owners for ownership
types. Journal of Object Technology (May 2007). Accepted for
publication.

[9] ZHAO, T., PALSBERG, J., AND VITEK, J. Type-Based Confinement.
Journal of Functional Programming 16, 1 (2006), 83–128.

33




