Ownership, Uniqueness and Immutability

JohanOstlund, Tobias Wrigstad Dave Clarke BeatriceAkerblom
Royal Institute of Technology, Sweden CWI, Amsterdam, The Netherlands Royal Institute of Technology, Sweden
{johano, tobias}@dsv.su.se dave@cwi.nl beatrice@dsv.su.se
Abstract extension of Clarke and Wrigstadsternal uniquenesgroposal

_(Joline) [14, 32] (without inheritance), and the syntactic overhead

éjue to additional annotations is surprisingly small given the ex-
pressiveness of the language. Not only can we encode the three
forms of immutability mentioned above, but we can encode some-
hing akin to thearg mode from Flexible Alias Protectior2f],

Programming in an object-oriented language demands a fine bal
ance between high degrees of expressiveness and control. At on
level, we need to permit objects to interact freely to achieve our
implementation goals. At a higher level, we need to enforce archi-

tectural constraints so that the system can be understood by ne

developers and can evolve as requirements change. To resolve thi%ra.lCtIonaI Pllermlllstsr:ongk]];'land the cpnt?;:t-based |mml:jtab|!|ty tOf
tension, numerous explorers have ventured out into the vast land- niverses §4], all the while preserving the owners-as-dominators

scape of type systems expressing ownership and behavioural re_encapshjllatlon invariant. ngt?ermprr]e,bats our Systte".' IS bllased (t)n
strictions such as immutability. (Many have never returned.) This OWNership types, we can distinguish between outgoing aliases to

work in progress reports on our consolidation of the resulting dis- €X{€fnal, non-rep objects and aliases to internal objects and allow
coveries into a single programming language. Our langubs modification of the former (but not the latter) through a read-only
imposes little additional syntactic overhead, yet can encode power-€férence.

ful patterns such as fractional permissions, and the reference modes ©OU' s()j/stem |s”c|osest in SD'”ttto SaffeJalxa]a, put Wg a“?W afc-
of Flexible Alias Protection. tess modes on all owner parameters of a class, read-only references

and an interplay between borrowing and immutable objects that can
. encode fractional permissions.
1. Introduction

Recent years have seen a number of proposals put forward to addL.2 Why We Could Add Read-Only To Java (AImost)

more structure to object-oriented programming languages, for ex- | his paper “Why We Shouldn’t Add Read-Only To Java (Yeg] [

ample, via ownership types f], or to increase the amount of con- john Boyland criticises existing proposals for handling read-only
trol over objects by limiting how they can be accessed by other references on the following points:

objects, via notions such as read-only or immutability. Immutabil-

ity spans the following spectrun€lass immutabilityensures that 1. Read-only arguments can be silently captured when passed to

all instances of a class are immutable, for example, Java’s String ~ methods;

class objectimmutabilitensures that some instances of a class are 2 A read-only annotation cannot express whether

immutable, though other instances may remain mutable resudt S

only—or reference immutability-prevents modifications of an ob- (@) the referencedbjectis immutable, and hence the reference

ject via certain references, without precluding the co-existence of can be safely stored;

normal and read-only references to the same object. (b) a read-only reference is unique and thus immutable, as no
Immutable objects help avoid aliasing problems and data races aliases exist which could be used to mutate the object;

in multi-threaded programel] 18], and also enhance program un-

derstanding, as read-only or immutable annotations are verified to

hold at compile-time 31]. According to Zibin etal. 5], immut-

ability (including read-only references) can be used for modelling,

verification, compile- and run-time optimisations, refactoring, test

input generation, regression oracle creation, invariant detection, Joe; addresses all of these problems. Fidstes supports owner-

specification mining and program comprehension. Read-only ref- polymorphic methods, which can express that a method does not

erences have been used in proposals to strengthen object encafzapture one or all of its arguments. Second, we decorate owners

(c) mutable aliases of a read-only reference can exist, imply-
ing that the referenced object should be cloned before used,
to prevent it being modified underfoot resultingabserva-
tional exposuré

sulation and manage aliasing. Kniesel and Theigghuse read- with modes that govern how the objects owned by that owner will
only references to allow and to manage side-effects due to aliasing.be treated in a context. Together with auxiliary constructs inherited
Noble, Vitek and Potter]/] introduce ararg reference modetoal- from Joline, the modes can express immutability both in terms of

low aggregates to rely only on immutable parts of external objects. 2.a) and 2.b), and read-only which permits the existence of mutable
Hogg's Islands 19] and Muller and Poetzsch-Heffter’s Universes aliases (2.c). Moreovetjoes supports fractional permissions—
[24] use read-references to allow temporary representation expos-converting a mutable unique reference into several immutable ref-

ure in a safe fashion. erences for a certain context. This allows safe representation expos-
o ure without the risk for observational exposure (2.c).
1.1 Our Contributions Joes allows class, object and reference immutability. Unique

The programming languagépes, we propose in this paper of- references, borrowing and owner-polymorphic methods allow us to
fers ownership and uniqueness to control the alias structure of ob-
ject graphs, and lightweight effects and a mode system to encodel Observational exposure occurs when changes to state are observed through
various notions of immutability. It is a relatively straightforward a read-only reference.

19

simulate fractional permissions and staged, external initialisation of side owner. Types are formed by instantating the owner para-
immutable objects through auxiliary methods. As we base modific- meters,this:List<owner>. An object with this type belongs
ation rights on owners (in the spirit dbe;’s effects system), we to the representation of the current object and has the right to

achieve what we caltontext-basedmmutability, which is essen- reference objects owned bywner. There are two nesting re-
tially the same kind of read-only found in iler and Poetzsch- lations between owners, inside and outside. They exist in two
Heffter's UniversesZ4]. forms each, one reflexivafside/outside) and one non-reflexive

Joes allows both read-only references and true immutables in (strictly-inside/strictly-outside). Thus, going back to
the same language. This provides the safety desired by Boyland,our list example, a typehis:List<this> denotes a list object
but also allows coding patterns which do rely on observing changes beloning to the current representation, storing objects in the cur-
in an object. Apart from the fact that we do not yet consider rentrepresentation.
inheritance, which we believe to be a straightforward extension, A more detailed introduction is given in SectiBnApart from

we conclude that we could indeed add read-only to JavaZ.now ownership types, the key ingredientslises are the following:
Outline Section2 introduces theJoes language through a set of e (externally) unique types (writtemique [p] : Object), a spe-
motivating examples—different nestings of mutable and immut- cial borrowing construct for temporarily treating a unique type
able objects, context-based immutability, immutable objects, and non-uniquely, andwner castsor converting unique references
staged construction of immutables. Sect®gives a brief formal permanently into normal references.

account ofJoes. Section4 outlines a few simple but important
extensions—immutable classes and Greenhouse and Boyland style
regions [L7]—describes how they further enhance the system and
discusses how to encode the modes of Flexible Alias Protection
[27]. Section5 surveys related work not covered above. Secion e an effects revocation clause on methods which states which

e modes on owners—mutable’; read-only =’, and immutable
‘*’. These appear on every owner parameter of a class and
owner polymorphic methods, though not on types.

contains an outlook for the future, and Sectibconcludes. owners will not be modified in a method. An object’s default set
of rights is derived from the modes on the owner parameters in
2. MeetJoe; the class declaration. An additional example of a usesobke

is found at the end of Sectigh2

In this section we describdoes with the help of a couple of mo-
tivating examplesJoes is a class-based, object-oriented program- Annotating owners at the level of classes (that is, for all in-
ming language with deep ownership, owner-polymorphic methods, stances) rather than types (for each reference) is a trade-off. Rather
ownership transfer through external uniqueness, an effects (revocathan permitting distinctions to be made using modes on a per ref-
tion) system and a simple mode system which decorates ownerserence basis, we admit only per class granularity. Some potential
with permissions to indicate how references with the annotated expressiveness is lost, though the syntax of types does not need
owners can be used. Beyond the carefully designed combination ofto be extended. Nonetheless, the effects revocation clauses regain
features, the annotation of owners with modes is the main novelty some expressiveness that per reference modes would give. Another
in Joes. The modes indicate that a reference may be read or written virtue of using per class rather than per reference modes is that we
(+) or only read £), or that the reference is immutable)(Read avoid some covariance problems found in other proposals (see re-
and immutable annotations on an owner in the class header represtated work) as what you can do with a reference depends on the
ent a promise that the code in the class body will not change objectscontext and is not a property of the reference. Furthermore, our
owned by that owner. The key to preserving and respecting immut- proposal is statically checkable in a modular fashion. We also need
ability and read-only inJoes is a simple effects system, rooted no run-time representation of the modes.
in ownership types, and inspired by Clarke and Drossopoulou’s
Joe; [11]. Classes, and hence objects, have rights to read or modify
objects belonging to certain owners; only a minor extension to the
type system of Clarke and Wrigstad'sline [14, 32] is required to The following examples illustrate the range of constraints that can
ensure that these rights are not violated. be expressed itloes.

The syntax ofloes (shown in Figureb) should be understand-
able to a reader with insight into ownership types and Java-like %_1_1 A Mutable List With Immutable Contents
languages. Classes are parameterised with owners related to eac o)))
other by an inside/outside nesting relation. An owner is a permis- The code in Figurel shows parts of an implementation of a list
sion to reference the representation of another object. Class header§lass. The owner parametsta is decorated with the mode read-

2.1 Motivating Examples

have this form: only (denoted +"), indicating that the list will never cause write
effects to objects owned hiata.
class List<data outside owner> { ... } The owner of the list is calledwner and is implicitly declared.
The methogetFirst () is annotated witlhrevoke owner, which
Each class has at least two owner parametgiss andowner, means that the method will not modify the object or its transitive

which represent the representation of the current object and thestate. This means the same asifier- andthis- would have

representation of the owner of the current object, respectively. appeared in the class head. This allows the method to be called in
In the example above, theist class has an additional permis- gbjects where the list owner is read-only.

sion to reference objects owned kyta, which is nested out- This list class can be instantiated in four different ways, depend-
ing on the access rights to the owners in the type held by the current
2While the syntactic price of our proposal is no doubt steep when added context:

to Java, adding it to a language with ownership types and uniqueness, such

as Joline, is virtually for free. On a side-note, the authors believe that if e both the list and its data objects are immutable, which only

ownership types is ever to make it into mainstream languages, simple but gjjows getFirst () to be invoked, and its resulting object is
powerful extensions, such as external uniqueness, read-only references and immutable:

immutability will be crucial in convincing programmers of the virtues of
the added complexity. ¢ both are mutable, which imposes no additional restrictions;

20

class Link<data- strictly-outside owner> {
data:0bject obj = null;
owner:Link<data> next =

}

null;

class List<data- strictly-outside owner> {
this:Link<data> first = null;

void addFirst(data:0bject obj) {
this:Link<data> tmp = new this:Link<data>();
tmp.obj = obj;
tmp.next = this.first;
this.first = tmp;

}

void filter(data:Object obj) {
this:Link<data> tmp = this.first;
if (tmp == null) return;
while (tmp.next != null)
if (tmp.next.obj obj)
tmp.next = tmp.next.next;
else
tmp = tmp.next;
if (this.first != null && this.first.obj == obj)
this.first = this.first.next;

}

data:0bject getFirst() revoke owner {
return this.first.obj;
}
}

Figure 1. Fragment of a list class. As tldata owner parameter is
declared read-only (via-') in the class header, no methodlitst
may modify an object owned byata. Observe that the syntactic
overhead is minimal for an ownership types system.

class Writer<o+ outside owner, data- strictly-outside o> {
void mutateList(o:List<data> list) {
list.addFirst(new data:0bject());
}
}

class Reader<o- outside owner, data+ strictly-outside o> {
void mutateElements(o:List<data> list) {
list.elementAt (0) .mutate();
}
}

class Example {
void example() {
this:List<world> list = new this:List<world>();
this:Writer<this, world> w =
new this:Writer<this, world>();
this:Reader<this, world> r =
new this:Reader<this, world>();
w.mutateList(list);
r.mutateElements(list);
}
}

Figure 2. Different objects can have different views of the same
list at the same timer can modify the elements dfist but not
the 1ist itself, w can modify thelist object, but not the list's
contents, and instances®fample can modify both the list and its
contents.

to the context-based read-only in Universes-based sys&hia]].
In contrast, however, we do not allow representation exposure via
read-only references.

2.1.3 Borrowing Blocks and Owner-polymorphic Methods

Before moving on to the last two examples, we need to intro-
duce borrowing blocks and owner-polymorphic methotly B2,

e the listis mutable but the data objects are not, which imposes no 10], which make it easier to program using unique references and

additional restrictions, thougtetFirst () returns a read-only
reference; and

¢ the data objects are mutable, but the list not, which only allows
getFirst () to be invoked, though the resulting object is mut-
able.

The last form is interesting and relies on the fact that we can
specify, thanks to ownership types, that the data objects are not

part of the representation of the list. Most existing proposals for
read-only referencee(g., Islands [L9], JAC [20, 21], ModeJava
[28, 29], Javari B1], and IGJ B5]) cannot express this constraint in

a satisfactory way, as these proposals cannot distinguish betwee

an object’s outside and inside.

2.1.2 Context-Based Read-Only

As shown in Figure, different clients of the list can have different
views of the same list at the same time. The clssder does

ownership. (The interaction between unique references, borrowing,
and owner-polymorphic methods has been studied thoroughly by
Clarke and Wrigstadil4, 32].) A borrowing block has the follow-
ing syntax:

borrowlval as axin{s}
The borrowing operation destructively reads a unique reference
from an I-value fval) to a non-unique, stack-local variable) (for
the scope of the borrowing block)(The block also introduces
a fresh block-local owner that becomes the new owner of the
borrowed value. Every type of every variable or field that stores an
alias to the borrowed value must have this owner in its type. Clearly,
Rhis is not the case for any pre-existing field or variable. Owner-
polymorphic methods (see below) allow granting permissions to
reference the borrowed value for the duration of a method call.
This is the only way in which references to borrowed values can
be exported to outside a borrowing block. As all method calls
in the borrowing block must have returned when the block exits,

not have permission to mutate the list, but has no restrictions on clearly no residual aliasing can exist. Thus, when the borrowing

mutating the list elements. Dually, thieiter class can mutate the
list but not its elements.

As owner modes only reflect what a class is allowed to do to
objects with a certain owne¥riter can add data objects to the
list that are read-only to itself and the list, but writableBExample
andReader. This is a powerful and flexible idea. For example,
Example can pass the list tariter to filter out certain objects
in the list. Wwriter can then consume or change the list, or copy
its contents to another lisbut not modify themiwriter can then
return the list toExample, without Example losing its right to
modify the objects obtained from the returned list. This is similar

21

block exits, the borrowed value can be reinstated and is once again
unique.

Due to the strong encapsulation of external uniqueness, borrow-
ing borrows an entire unique aggregate in one single hit and makes
it stack-local.

An owner-polymorphic method is simply a method which takes
owners as parameters. The methadsandm?2 in Client in Fig-
ure 3 are examples of such. Owner-polymorphic methods can be
seen as accepting stack-local permissions to reference (and pos-
sibly mutate) objects that it otherwise may not be allowed to refer-
ence. Owner parameters+(andp- in the methods in Figur8) of

class Client { class Client<p* outside owner, data+ strictly-outside p> {

<p* inside world> void mi(p:0bject obj) { void method() {
obj.mutate(); // Error this:Factory<p, data> f = new this:Factory<p, data>();
obj.toString(); // Ok p:List<data> immutable = f.createlist();
// assign to field is not possible }
} }
<p- inside world> void m2(p:0bject obj) { class Factory<p* inside world, data+ strictly-outside p> {
obj.mutate(); // Error p:List<data> createlList() {
obj.toString(); // Ok unique[p] :List<data> list = new p:List<data>();
} borrow list as temp+ 1 in { // 2nd stage of construct.
} 1.add(new data:0bject());
}
class Fractional<o+ outside owner> { return list-—-; // unique reference returned
unique[this] :0bject obj = new this:0bject(); }
}

void example(o:Client c) {
borrow obj as p*:tmp in { // **
c.mi(tmp) ; [/ Fxx*
c.m2(tmp) ; // kkkx

3 ¥ 2.1.6 Initialisation of Immutable Objects

} An issue with immutable objects is that even such objects need

to mutate in their construction phase. Unless caution is taken the

Figure 3. An implementation of fractional permissions using bor- ~constructor might leak a referencettbis (by passingthis to a

rowing and unique references. method) or mutate other immutable objects of the same class. The
standard solution to this problem in related proposals is to limit

.) the construction phase to the constructéi, [35, 18]. Continuing

owner-polymorphic methods are not in the scope at the class level.jnjtialisation by calling auxiliary methodsfter the constructor

Thus, method arguments with such a parameter in its type cannotretyrns is simply not possibldoes, on the other hand, permits

be captured within the method body (—ittisrrowed][6]). staged constructiaras we demonstrate in Figueln this example

214 Immutability a client uses a factory to create an immu_table list. The fac_tory
creates a unique list and populates it. The list is then destructively

The example in Figur@ shows that a read-only reference to an read and returned to the caller as an immutable.

object does not preclude the existence of mutable references to

the same object elsewhere _in the system. This allows observationals_ A Formal Definition of Joes

exposure—for good and evil.

The immutability annotation*’ imposes all the restrictions a In this section, we formally present the static semanticsoef;,
read-only type has, but it also guarantees that no aliases with writeand argue how it guarantees immutability and read-only.
permission exist in the system. Our simple way of creating an
immutable object is to move mutableunique reference into a

Figure 4. Staged construction of an immutable list

3.1 Joes’s Static Semantics

variable with immutable type, just as in SafeJadi [We now describeloes’s type system, which can be seen as a
This allows us to encode fractional permissions and to do stagedsimplification ofJoline’s [14, 32] extended with effects annotations
construction of immutables, both discussed below. and modes on owners. To simplify the formal account, we omit

inheritance and constructors. Furthermore, followihgine, we

rely on destructive reads to preserve uniqueness and require that
The example in Figur@ shows an implementation of Fractional movement is performed using an explicit operation.

Permissions. We can udeline’s borrowing construct taempor- The abstract syntax dbes is shown in Figuré. For simplicity,

arily move a mutable unique reference into an immutable variable we assume that names of fields, method and classes are unique.
(line xx), freely alias the reference (while preserving read-only) ¢, m, f,x are metavariables ranging over names of classes, meth-
(lines*x* andx*xx*x), and then implicitly move the reference back ods, fields and local variables, respectivelyandp are names of

into the unique variable again and make it mutable. This is essen-owners.

tially Boyland’s Fractional Permissiong][As stated above, both Types have the syntaxc(p). We sometimes write c(o) for

the owner-polymorphic methods and the borrowing block guar- some type where is a map from the names of the owner paramet-
antee not to capture the reference. A borrowed reference can beers in the declaration of a claggo the actual owners used in the
aliased any number of times in any context to which it has been ex- type. In code, a type’s owner is connected to the class name with a
ported, without the need to keep track of “split permission$as ‘’ to make the type one syntactic unit.

we know for sure that all permissions to alias the pointer are inval- Unique types have the syntaxnique, c(p). The keyword
idated when the borrowing block exits. The price of this conveni- unique specifies that the owner of an object is really the field
ence is that the conversion from mutable to immutable and back or variable that contains the only (external) reference to it in the

2.1.5 Fractional Permissions

again must be done in the same place. system. The owner annotation on the unique type is called the
Interestinglym1 andm2 are equally safe to call frorexample. movement boundiovement bounds govern the maximal outwards
Both methods have revoked their right to cause write effects to movement of a unique, so as to preserve the owners-as-dominators
objects owned by, indicated by thex and - annotations orp, property. In code, movement bounds are denatedyue [p]. For
respectively. The difference between the two methods is that the details, see Wrigstadp].
first method knows thadbj will not change under foot (making it In systems with ownership types, an owner is a permission to
safe to, for example, ussj as a key in a hash table), whereas the reference objects with that owner. Classes, such as the canonical
second method cannot make such an assumption. list example, can be parameterised with owners to enable them to

22

P =C (program)
C = class c(aRp) {fdmd} (class)
fd =tfi=e (field)
md = (aRp)t m(t z)revokeE { s;return e} (method)
e i=lval | Ival-- | em(e) | newpc{o) | null (expr.)
s s=lvali=e | tzi=e | sis| e (statement)
| borrowlval as azin{s}
val =z | e.f (I-value)
R u==<* | »* | <t | »F (nesting relation)
t =pc(p) | unique, c(p) (type)
E =e | E,p (write right revocation clause)
T =e | Iz:t | I,aRp (environment)
o =a—p (owner substitution)
«a =p- | p+ | px (owner param.)

Figure 5. Abstract syntax ofloes. In the code examples, owner
nesting relationsK) are written asinside (<*), or strict-
ly-inside (<), etc. for clarity.

be given permission to access external objects. For example, th
list class has an owner parameter for the (external) data objects

of the list. In Joes the owner parameters of a class or owner-

polymorphic method also carry information about what effects

the current context may cause dme objects having the owner
in question. For example, if- (p is read-only) appears in some
contexte, this means that may reference objects owned pybut
not modify them directly. We refer to the part of an owner that
controls its modification rights as tmeode

In contrast with related effect systemesd.,[17, 11]), we use
effect annotations on methods to show whanhat affected by
the method—essentialtgmporarily revokingights to change. For
example getFirst () in the list in Figurel does not modify the
list object and is thus declared using@voke clause thus:

data:0Object getFirst() revoke owner { ... }

This will force the method body to type-check in an environment
whereowner (andthis) are read-only.

Notation Given o, a map from (annotated) owner parameters
to actual owners, let” meano & {owner+ — p}. For the type
this:List<owner>, 0 = {owner+ — this,data- — owner}.
We writeo (p ¢(p)) to mearv (p) c{o(p)). For simplicity, we some-
times completely disregard modes and alleyp). On the other
hand,c° denotes a mode preserving variansdaf.t.if g+ — p € o,
theng+ — p+in o°.

Let md(«) and nm(«) return the mode and owner name of
«, respectively. For example, & = p+, thenmd(a) = + and
nm(a) = p.

CT is a class table computed from a progr&mit maps class

names to type information for fields and methods in the class

body. CT(c)(f) = t means that fieldf in classc has typet.
CT(c)(m) = YaRq.t — t; E means that methoeh in class
c have formal owner-parameters declareR ¢, formal parameter
typest, return typet and revoked right#?.

Predicateisunique(t) is true iff ¢ is a unique typeowner(t)
returns the owner of a type, andners(t) returns the owner names
used in a type or a method type. Thusner(pc(p)) = p and
owners(p¢(p)) = {p} UP.

E. denotes the set of owners to which classswrite permis-
sion. For example, the list class in Figur@asFEL;s; = {owner},
whereas the writer class in FiguhasEyriter = {owner,o}. E.
is defined thus:

E _{ {p|p+ € @} U{owner} ifclassc(aR_){_-}€P
cT] L

otherwise

23

Ir'+cC Good class

T+ fd Good field

T'Fmd Good method

ks I’ Statement is wf underT” and produce$’
The:t Expressiore has typet underl

THt Good type

TFE Good write right revocation clause
T'FaRp Owner parametat is R-related top in T’
T'F a perm Good owner parameter

Tkp Good owner

Tko The environment® is well-formed

Table 1. Judgments in thdoes formalisation.

E \ E’ denotes set difference. The judgments in the type system
are summarised in Tablie

eGood Class

(cLAsS)
I" = owner+ <" world, this+ <t owner,oziRp7 this: ¢t
t = owner c(nm(a)) T owner+ <* nm(a) I'fd T' md
F class c{aRp) {fdmd}

A class is well-formed if all its owner parameters are outside
owner. This makes sure that a class can only be given permission
to reference external objects and is key to preserving the owners-
as-dominators property of deep ownership systelfis The envir-
onmentI" is constructed from the owners in the class header, their
nesting relations and modes, phigner+ andthis+ giving an ob-

ject the right to modify itself. Thus, class-wide read/write permis-
sions are encoded in, and must be respected by field declarations
and methods.

Good Field, Good Method The functionT revoke E is a key
player in our system—it revokes the write rights mentione&in
by converting them to read rightsIn It also makes sure thahis
is not writable wheneveswner is not. For example, gively =
{p}, we havep+ ¢ dom(T revoke E), so if 'revoke E - s;T”, s
does not write to objects owned by

erevoke & =

T,z :t)revoke E =
(T, & Rp) revoke E
(aRp) revoke E
p-revoke E/

€
(T'revoke E), x : t

(T revoke E), (a R prevoke F)
(arevoke E)Rp

-
p-, if p € E elsep+
this-, if owner € F elsethis+

p+revoke E/
this+revoke F/

p*xrevoke E = p*
(FIELD) (METHOD)
I'=T,aRp T"FE
F'ke:t (I"revoke E),z : ¢+ ;T T"Fe:t

I'Htf:=e TF (aRp)tm(tr)revoke E{s;returne}

A field declaration is well-formed if its initialising expression has
the appropriate type. The rules for good method is a little more
complex: any additional owner parameters in the method header
are added td", with modes and nesting. Furthermore, the effect
clause must be valid:e.,you can only revoke rights that you own.

Expressions The expression rules pretty much follow those of to a stack-local variable temporarily and introduces a fresh owner

Joline extended to cater for effects. ordered strictly inside the unique object's movement bound. The
(EXPR-LVAL) (EXPR-LVAL -DREAD) new owner is annotated with a read/wr[te permission which must
T, lval: ¢ Tk Ival: ¢t isunique(t) be respected by the body of the borrowing block. As the owner of
—isunique(t) Ial=e.f =T+ e:pc(o) AT F p+ perm the borrowed unique goes out of scope when the borrowing block
TFival:¢? TF val—:¢ exits, all fields or variables with types that can refer to the borrowed

. . . . object become inaccessible. Thus, the borrowed value can be rein-
Destructively reading a field in an object owned by some owner stated and is once again unique. As borrowing temporarily nullifies

requires thap+ is in the environment. the borrowed I-value, the same requirement¢easr-DREAD) ap-
(EXPR-VAR) (EXPR-FIELD) plies with respect to modifying the owner of the I-value.
Pke:pc(o) CT(e)(f)=t
z:tel this € owners(t) = e = this (STAT-SEQUENCE (STAT-DECL)
ISR Ihyef:oP(t) '-sI I'F s, 'te:t x¢dom()
Judgements of the forii k-, Ival : ¢ deal with I-values. Ik ssT7 F'Ftx:=elx:t

In Joline, owner arguments to owner-polymorphic methods Statements can be chained together in the obvious fashion. Local

must be passed in explicitly. Here, we assume the existence ofyariable declaration and initialisation is straightforward.
an inference algorithm to bind the names of the owner parameters

to the actual arguments at the call site. Thisjsin the rule. Good Effects Clause
(EXPR-INVOKE) (GOOD-EFFECT)
I'kFe:pclo) CT(e)(m)=VaRp.t—tE o =ocPWo, Vp e E.T'+ p+ perm
I'o'(aRp) TFo'°(@)perm T'ke:o'(t) T'ko'(t) IEE
L't o'(E\E) this € owners(CT(c)(m)) = e = this An effects clause is well-formed if it only revokes write permis-
I'k-emf(e):t sions in the current environment.

By the first clause ofexrr-iNnvokE), method invocations are notal- Good Environment

lowed on unique types. The third clause creates a substitution from

the type of the receive(o”) and the implicit mapping from owner

1o I'kgq L+t

parameter to actual ownée,). I' = o'°(a) perm makes sure dom(T _ dom(T"

that owner parameters that are writable and immutable are instan- p ¢ dom(l) € {+,-,*} @ ¢ dom(I')

tiated with writable or immutable owners respectively. Clauses six eho I,ptRqkFo Lz:tko

and seven ensure that the argument expressions have the corredhe rules for good environment require that owner variables are

types and that the return type is valid. Clause eight checks that therelated to some owner already present in the environmentiird,

method’s effects are valid in in the current context, and clause nine and that added variable bindings have types that are well-formed

makes sure that any method withis in its type (return types, ar- under the preceding environment.

gument types or owners in the owner parameters declaration) can . .

only be invoked withthis as receiver—this is the standard static ©00d Permissions and Good OwneBy (worLp), world is &

visibility constraint of ownership type<]. good owner and is always writable. Bgoobp-a), a permission is
good if it is in the environment. Bycoop-p-), a read mode of
objects owned by some owngis good ifp with any permission is

(GOOD-EMPTY) (coop-R) (GOOD-VARTYPE)

(EX;R"_’“ZLL) IEE)LPZZE(% a good permission—write or immutable implies read.
I'Fnull:t I' - new pc(p) : unique, c(p) (woRLD) (cooD-a)
T'ko o ac€dom(l)
By (ExPRr-NULL), null can have any well-formed type. RgxpPr- TF world+ perm TF a perm
NEW), object creation results in unique objects. (Without construct-
ors, it is obviously the case that the returned reference is unique—
see Wrigstad's dissertatio&]] for an explanation why adding con- e (Goob-p-) (IST_ODOWNER)
structors is not a problem.) p}pﬁrgb p;fril{J" *} %

Good Statements . . .
Good Nesting We can easily define judgemenits- p <* ¢ and

(STAT-LOCAL-ASGN) (STAT-FIELD-ASGN) ¥ . L ..
2 # this The:pelo) CT(e)(f) =t I'-p<Tqgas j[he reflexive transitive closure and the transitive
. rT D closure, respectively, of the relation generated from eaBlp €
z:tel ke :0P(t) TF p+perm gt 1 . 4 . .
. . RNy I, whereR € {<*,<"} orR™" € {<*,<"}, combined with
Pke:t this € owners(t) = e = this ~* wor1d for all
'Fxz:=¢l I'Fef:=¢€;T P b
In contrast to local variable update, assigning to a field requires ©00d Type
write permission to the object containing the field. (TYPE)
g* € a = 0°(g*) = p*, for somep
(STAT-BORROW) classc(aRp){...} € P
val=e.f =Tk e:qc{_) AT F g+ perm 't o?(aRp) Tk oP°(@) perm
I+ Ival : unique, c{0) T, <¥ p,z:nm(a)c(o) 5T T'F pclo)

' borrow val as azin{s kI’ This rule checks that the owner parameters of the type satisfy the

In our system, unique references must be borrowed before they carordering declared in the class header, as well as checking that
be used as receivers of method calls or field accesses. The borall the permissions are valid in the present context. In addition—
rowing operation moves the unique object from the source |-value and this is a subtle point—if an owner parameter in the class

24

header was declared with the mode immutable, then the ownere dom(I"), the field update is allowed. The next line follows the
that instantiates the parameter in the type must also be immutable.same pattern: reading afield is always allowed, and we have already
Without this requirement, one could pass non-immutable objects established that we are allowed to assign to fieldsnin
where immutable objects are expected. The last line of the method updates a fieldtifis. By (STAT-

On the other hand, we allow parameters with read to be instanti- FIELD-ASGN), owner+ must be indom(I"), as the type othis is
ated with write andiice versaln the latter case, only methods that owner List(data), which itis.
do not have write effects on the owners in question may be invoked = The methodtilter () type checks in a manner similar to that

on a receiver with the type in point. of addFirst (). However,getFirst () is different as it revokes
the right to modifyowner (and thus self). BymeTHoD), the only
(UNIQUE-TYPE) line in getFirst() must type check under revoke E where
'k pclo) E = {owner}. This is equivalent towner- <* world, this-
I' - unique, c(0) <% owner,data- ~T owner,this : ownerList(data)—the
By (UNIQUE-TYPE), a unique type is well-formed if a non-unique ~ context has no write permissions. The field access is still allowed
type with the movement bound as owner is well-formed. as reading fields does not require any write permissions.

To simplify the formal account, we chose to make loss of . o
uniqueness explicit using a movement operation rather than mak-3-2-2 Trapping Writes in a Read-Only Context
ing it implicit via subtyping and subsumption, as such a rule would We now show how the system would trap an unpermitted write
require a destructive read to be inserted. Instead, we require con-added to a method in theist class of Figurel. Assumedbject
version to be explicit, as in the following rule: was defined thus:

(EXPR-LOSE-UNIQUENESS class Obi
Al . ject {
MFe: unique, clo) THp=<"q this:0bject state = null;
T'F (p)e:pclo) void mutate() { this.state = null; }

This “owner-cast” expression moves the contents of a unique into a ¥
subheap of some object or block (whatevergtosvner corresponds
to). This is well-formed if the expression has a unique type and if
the movement bound of the type is outside the owner of the type
cast to.

and any of the methods st included the linethis.first.-
data.mutate() ;. I is the same as in the previous section.

The key to trapping this violation of read-only is the 8th clause
in (EXPR-INVOKE). By (ExPR-FIELD) (applied two times), the type
of this.first.data, the receiver of the mutating message, is
))) dataObject().

In this section, we take a hands-on approach to showing how E, ... — {owner} (remembetE. returns the set of names of
the system works by applying it to the example in Figure 1. For owners to which a class has write right) alid= ¢ as no rights are
simplicity, we ignore everything that is not related to preserving revoked. Consequentlgsjoct \E = Egbject-

3.2 Brief Explanation of the System

read-only. As mutate is not owner-polymorphicg, is empty and thus

The key rules of the system afi@ETHOD), (EXPR-LVAL -DREAD), 02 = {ouner — data} ando(Eopjec: \F) = {data}.
(STAT-FIELD-ASGN), (EXPR-INVOKE), aNd(STAT-BORROW). . Thus, by the 8th clause ¢fxpr-INvOKE), I' - data+ must hold.

In (MeTHOD), any write permissions revoked in the revocation By (coop-a), this amounts t@ata+ € dom(I") which it clearly
clausel’ are removed fronfr. Thus, the method body must be well- s not as we hadata- € T anddata- anddata+ cannot occur
typed under a restricteld. _ . o simultaneously il" whenT is well-formed.

Destructively reading, borrowing or assigning to a field in an Note that assignment to public fields is not allowed unless the
object,(ExPR-LVAL -DREAD), (STAT-BORROW) and(STAT-FIELD-ASGN) receiver isthis, which is why the modification had to be done

requires a write permission to the object containing the field in the through a method invocation.
current context.

Method invocation is a little trickier. If a formal owner para- 3.3 Potentially Identical Owners with Different Modes
meter requires write access, or that an object is immutable, the call-
ing context must satisfy those requirements{by o° (@) perm).
Furthermore, the current context must also have write permission
to every owner in the set of owners to which the method is allowed

The list class in Figuré requires that the owner of its data objects is
strictly outside the owner of the list itself. This allows for a clearer
separation of the objects on the heap—for example, the list cannot

; contain itself.
to write (. \ E). The downside of defining the list class in this fashion is that
3.2.1 Type Checking Figurel it becomes impossible to store representation objects in a list that

is also part of the representation. To allow that, the list class head

By (cLAss), addFirst(), filter() andgetFirst() must be must not usetrictly outside:

well-formed under an environmeRt= owner+ <* world, this+
<7 owner,data- > owner, this : owner List(data) for List class List< data- outside owner > { ... }

to be a good class. By(mMETHOD), every statement in a method

must be well-formed unddr’ equal tol" extended by the formal ~ The less constraining nesting however leads to another problem:
parameters of the method and possible revocation of write rights. data and owner may be instantiated with the same owners. As data

ForaddFirst(), I’ = T',obj : dataObject(). We now look at is read-only and owner is mutable, at face value, this might seem
the statements iaddFirst (). like a problem.

As we do not have constructorgxpr-NEw) does not care We choose to allow this situation as the context where the
about permissions and is trivially well-formed with respect to write type appears might not care, or might have additional information
effects. to determine that the actual owners of data and the list do not

By (STAT-FIELD-ASGN), the second line adddFirst () requires overlap. If no such information is available, we could simply issue
that the owner otmp is writeable undet”, i.e., it is in dom(T"). a warning. Of course, it is always possible to define different lists
By (EXPR-FIELD), the type oftmp iS this Link(owner). ASthis+ with different list heads for the two situations.

25

Forimmutables, this is actually a non-problem. The only way an not have the necessary permissions to reference the objects. As the
immutable owner can be introduced into the system is through bor- list owner and data owner are the same, modifications to the list are
rowing (or regions, see Sectidn2) where the immutable owneris indistinguishable from modification to its contents.
ordered strictly inside any other known owner. &SPE) requires To tackle this problem and make our system more expressive,
that write and immutable owner parameters are instantiated with we extendJoes with a regions system. A class declaration can
owners that are write and immutable (respectively) in the context contain any number of regions that each introduce a new owner
where the type appears, a situation whereand ¢* could refer nested strictly inside an owner in the scope. Thus, a class’ rep is
to the same owner is impossible. Asrre) allows a read owner divided into multiple, disjoint parts (except for nested regions), and
parameter to be instantiated with any mode, it is possible to have an object owned by one region cannot be referenced by another.
overlappingp- andg* in a context if a read owner was instanti- The syntax for regions isegion « { e }. Example:
ated by an immutable at some point. Since objects owned by read

owners will not be mutated, immutability holds. class Example {
this:0bject datum;
3.4 Soundness odoes region inner+ strictly-inside this {
L inner:List<this> list;
We have not formally proven soundnessloés. Modulo omitting }
inheritance, the formal description dbes is a very simple and
straightforward extension of that dbline [32]. As modes have void method() { list.add(datum); }
no run-time semantics, the crucial formal resultslofine should }

apply toJoes as well — type soundness, owners as dominators and
external uniqueness as dominating edges. Future work will extend
the Joline formalism with modes and object-based regions and do
the extra legwork to prove that the extended system is sound.

By virtue of the owner nesting, objects inside the region can be
given permission to reference representation objects, but not vice
versa as such types would not type cheelg(this is not inside
inner). Thus, representation objects outside a region cannot ref-

. . erence objects in the region and consequently, effects on objects
4. Extensions and Encodings outside a region cannot propagate to objects in inside the region. In
In this section we briefly discuss extensions to our system not our example above, as there are no references &atom to the
included in the formalism, and the encoding of the modes from 1ist, changes tdatum cannot change theist.

flexible alias protection.
Method-scoped regions The scoped regiongonstruct inJoline

4.1 Immutable Classes [32] can be added tdoes to enable the construction of method-
scoped regions, which introduces a new owner for a temporary
scope within some method body. Scoped regions allow the creation
of stack-local objects which can be mutated regardless of what
other rights exist in the context, even whehis is read-only or

In our system, an object always has permission to writewtter
andthis unless this permission is explicitly revoked in an effects
clause for a specific method. Consequently, creating an immutable

class requires every method to explicitly revoke its right to modify
self. To relieve the programmer of this burden and to make a class’ !mmutable. Such objects act as local scratch space without requir-

semantics clearer in the program text, we can introduce immutable "9 that the effects propagate outwards. The effects can be ignored.
classes through a class modifier: The following line illustrates a pattern that occurs several times
in the implementation of the Joline compiler:

immutable class String ...
)) <d- inside world> void method(d:Something arg)
The immutable class would be checked just as a regular class, revoke this {

but with the weaker permissionsmer* andthis* in . Thus, region temp+ strictly-inside this {
methods that have write effects @his or owner would not type temp:Gamma<d> t = new temp:Gamma<d>();
check. As fields may not be updated, except throubs, this t.calculationsWithSideEffectsOnTemp (arg) ;

makes the object effectively immutable. To allow initialisation of)
immutable classes, the constructor would be allowed to initialise

fields, similar to how final field initialisation is treated in Java. Several times in the Joline compiler, we create a temporary object
4.2 Regions reminiscent of the type environmerit)(to check whether certain

'] o) _addtions of owner nestings would be permitted. This object is
In order to increase the precision of effects, we introduce expli- completely temporary and its sole purpose is throwing an exception
citly declared regions, both at object-level and within method bod- on an attempt at adding invalid owner nestings.
ies. For simplicity, we have excluded regions from the formal ac-
count of the system. Object-based regions are similar to the re-4.3 Encoding Modes from Flexible Alias Protection
gions of Greenhouse and Boylarid] and the domains of Aldrich In work [27] that led to the invention of Ownership Types, Noble,

and Chambersl], but we enable an ordering between them. Gur Vitek and Potter suggested a set of modes on references to manage

rn;eitgr?gi_nstoﬁid [rgg]'ovchcigﬁsig:%t cl)sb'izscfonr%frlllt}(/aéh\?afizrrﬁeﬁgs- the effects of aliasing in object-oriented systems. The modes were
9 oline ! 4 rep, free var, arg andval. In this section, we indicate how these

sical regions 23, 30], adapted for use with ownership types. modes are (partially) encoded in our system.

Object-based regions As discussed in Sectiod.3, defining the The rep mode denotes a reference to a representation object
list class without the use dftrictly outside places the burden of that should not be leaked outside of the object. All ownership type
determining whether data objects are modified by changes to thesystems encodep; in ours, it is encoded ashis (o).

list on the client of the list. This is because the list cannot distin- Thefreeexpression holds a reference that is uncaptured by any
guish itself from its data objects, as they (potentially) have the same variable in the system. This is encodeduasque,, c(o), a unique
owner. type. Any Il-value of that type in our system is (externally) free.

By virtue of owners-as-dominators, an object that needs to keep The var mode denotes a mutable non-rep reference and is en-
rep objects in a list must include the list in the rep, or the list will coded a® ¢(c), wherethis # p.

26

The arg mode is the most interesting of the modes. It denotes o
an argumeritreference with a guarantee that the underlying object < <
will not be (observably) changed under foot: “thatasg expres- < oo
sions only provide access to the immutable interface of the objects ¥ Pl I Erf &
to which they refer. There are no restrictions upon the transfer or z 9 P~ in > S T
use ofarg expressions around a progran?7]. We supportarg & g 8 E§ § ?) 70%’ o
modes in that we can parameterise a type by an immutable owner pfeayre S § 5 5 850 5 I
in any parameter. It is also possible for a c_Ias_s to declare all its Expressiveness
owner parameters as immutable to prevent its instances from ever Staged constr. of immutables r/ v/ x x X x x X
relying on a mutable argument object that co_uld ch_ange under foot. ractional permissions vV X X x x x x x
On the other hand, we do not support passar@objects_, around Non rep fields VotV X2 x? ox x
freely—the program must still respect owners-as-dominators.

The final modevyal, is like arg, but it is attached to references ——————— Flexible Alias Protection Modes
with value semantics. These are similar to our immutable classes. arg V3 oxt o xt xt x4t x?t x

rep vV vV Vv X X X X
5. Related Work free VoV VP X x x

val® X X X X X X X X
Boyland etal’s Capabilities for sharin@][generalise the con- var vV v v v YV VY
cepts of uniqueness and immutability. The system uses capabilit- Immutabilit
ies, which are pointers combined with a set of rights. What really - » Y 6 o
distinguishes this proposal from other work is the exclusive rights gbsst'mm“t?bt')'.'ﬁ’ VXXV xP X
which allow the revocation of rights of other references. Boyland Reﬁjgc;m;quéf?ar:n)ées y ;/ \X/ ‘X/ \X/ \\f \X/ \X/
etal’s system can model uniqueness with the ownership capabil- - iovi-pased immutabilty x « x x7 x7 x7 x
ity. However, exclusive rights make the system difficult to check
statically. Confinement and AliasContral

Table 2 summarises several proposals and their supported fea- Ownership types V.oV v/ VX x XX

tures. The systems included in the table represent the state of the Owner-polymorphic methods /v v/ v/ X X X X
art of read-only and immutable. In addition toes, our own pro- Owners-as-modifiers x x3 o x o x o x o x X
posal, the table includes (in order) SafeJaijaniverses P4, 16, Unique references VoV VX X X XX
15, 28], Jimuva 18], Javari B1], 1GJ [39], JAC [21, 20] and Mod- Table 2. Brief overview of related workl) not as powerful as there

eJava P8, 29. SafeJava is probably the closest in spirit to our pro- . o e
posal, but the lack of crucial features, such as borrowing to immut- 5’ PO cl)wner trézestlngt, L\llvofrlclng S'b“ng lists gatnnott sh afble
ables, makes it less powerful. We now discuss the different features ata elemen) mutable fields can be use O, szlore a reterence
. to this and break read-only?) see Sectiord.3, *) no modes
covered in the table. ’ .
on owners, and hence no immutable parts of objettsnone

Expressiveness As discussed in Sectigh1.6 our system allows ~ of the systems deal with value semantics for complex objects;

us to_perform s_taged construction of immutable objects. This is also 6) if all methods of a class are read-only the class is effectively

possible to do in SafeJava. immutable;”) limited notion of contexts viahis-mutability; ®)

_In our example in Figur&, we show how we can encode frac- gjlows breaking of owners-as-dominators with inner classes and

tional permissions . Boyland suggests that copying rights may i js unclear how this interplays with immutable¥; support is

lead to observational exposure and proposes that the rights '”Steaqorthcoming p5.

be split. Only the one with a complete set of rights may modify

an object. SafeJava does not support borrowing to immutables and

hence cannot model fractional permissions. It is unclear how al- but onl ¢ h s of biect being | tabl

lowing borrowing to immutables in SafeJava would affect the sys- Tl; ?n y ol_ur SyS emdcaf‘ t ave Ft)aé S obarl objec ltelng'lmmu avie.

tem, especially in the presence of inner classes which can break the' €r€€aliasing mode, Interpréted as being equal to uniqueness, IS

owners-as-dominators property of deep ownership types. supported by our system and SafeJava. None of the systems handle
In order to be able to retrieve writable objects from a read-only Y2lué semantics for complex objects and thus notwlemode

list, the elements in the list cannot be part of the list's represent- (even thOl.Jgh. Javari include Java's primitive types in _thelr system).

ation. Joes, Universes, Jimuva and SafeJava can express this in | N€var aliasing mode expresses napreferences which may be

a straightforward fashion, by virtue of ownership types. However, aliased and changed freely as long as they do not interfere with the

only our system, because of owner nesting information, can have other modes, for example, in assignments.

two non-sibling lists sharing mutable data elements. Javari and 1GJ Immutability Immutability takes on three forms ilass immut-

have_ ta"‘?“ a more ad hoc course introducing mgtable f!elds. It is ability, where no instance of a specific class can be mutabiect

possible in those systems to circumvent read-only if an object Storesimmutability where no reference to a specific object can be mut-

a reference to itself (or an object that does so) in a mutable field. able andread-onlyor reference immutabilitywhere there may be

Flexible Alias Protection Modes The five alias modes proposed both mutable and read-only aliases to a specific object.

by Noble etal P7] were discussed in Sectioh3, where we also Universes and our system provide what we call context-based
describe how these can be (partially) encoded in our system. Hereimmutability. In these two systems it is possible to create a writable
we only describe how the modes have been interpreted for thelist with writable elements and pass it to some other object to

purpose of the table (Tab®. Therep mode denotes a reference Whom the elements are read-only. This other object may add new
belonging to the representation of an object and should not be elements to the list which will be writable by the original creator

present in the interface. A defensive interpretatioargfis that all of the list. The other systems in our table do not support this as
they cannot allowe.g.,a list of writeables to be subsumed into a

systems that have object or class immutability partially supgrgyt
list of read-only references. In these systems, this practice could
lead to standard covariance problems—adding a supertype to a list

3 An object external to another object.

27

containing a subtype. Javari, IGJ and ModeJava all have a notionReferences
of this-mutable fields which inherit the mode of the accessing 1] jonathan Aldrich and Craig Chambers. Ownership domains:

reference. This counts for some notion of context, albeit an ad Separating aliasing policy from mechanism. In Martin Odersky,
hoc and inflexible one. In ModeJava a read-only list cannot return editor, Proceedings of the European Conference on Object-Oriented
writable elements. In Javari and IGJ, this is only possible if the Programming (ECOOP)volume 3086 of_ecture Notes in Computer
elements are stored in mutable fields, which causes other problems Sciencepages 1-25, Oslo, Norway, Jan 2004. Springer Verlag.

as discussed above. [2] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of
Confinement and Alias Control Joes, SafeJava, Universes and aliased objects. Submitted to OOPSLA 2007.

Jimuva all support ownership types. This is what givess; and [3] Boris Bokowski and Jan Vitek. Confined Types. Rroceedings of
Universes its context-based immutability. SafeJava and Jimuva, the OOPSLA Conference on Object-Oriented Programming, Systems,
despite having ownership types, do not have context-based immut- ~ La@nguages and Application$999.

ability due to their lack of read-only references. Universes is the [4] Chandrasekhar BoyapatbafeJava: A Unified Type System for Safe
only system supporting the owners-as-mutators property, meaning Programming PhD thesis, Electrical Engineering and Computer

that representation exposure is allowed for read-only references. Science, MIT, February 2004.

Other approaches to confinement and alias control include Con- [5] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Safe
fined Types B, 34], which constrain access to objects to from runtime downcasts with ownership types. In Dave Clarke, editor,
within their package Bierhoff and Aldrich recently proposed a International Workshop on Aliasing, Confinement and Ownership in
modular protoc0| Checking approa(ﬂ] based on typestates. They Object-oriented ProgrammingyU-CS-2003-030. Utrecht University,
partly implement Boyland’s fractional permissior§ [n their ac- July 2003.
cess permissions. [6] John Boyland. Alias burying: Unique variables without destructive

. . . . reads. Software — Practice and Experienc®l(6):533-553, May
Object-Oriented Regions and Effects systemiseino [22], Green- 2001.

house and BoylandL[/] and (to some degree) Aldrich and Cham-
bers l] take a similar approach to dividing objects info regions, In R. Cousot, editorStatic Analysis: 10th International Symposium

and using mt_at_hod annotatiqns to specify wh_ich parts of an object volume 2694 ofLecture Notes in Computer Sciengages 55-72,
may be modified by a specific method. Adding effects to owner- Berlin, Heidelberg, New York, 2003. Springer.

ship, a la Clarke and Drossopoulouse; [11], gives a stronger 8
notion of encapsulation and enables more accurate description of (8]

[7] John Boyland. Checking interference with fractional permissions.

John Boyland. Why we should not add readonly to Java (yet)rnal
of Object Technologys(5):5—-29, June 2006. Special issue: ECOOP

effects. The addition of scoped regions to our systef, Gection 2005 Workshop FTfP.
4.2), combines both of these approaches. - -
Effect systems were first studied by Lucassen and Giffagjl [[9] John Boyland, James Noble, and William Retert. Capabilities

for Sharing: A Generalization of Uniqueness and Read-Only.
In Proceedings of the European Conference on Object-Oriented
Programming (ECOOR)volume 2072, June 2001.
6. Future Work . . 4 . _

[10] David Clarke. Object Ownership and ContainmenPhD thesis,
6.1 Safe Representation Exposure School of Computer Science and Engineering, University of New

Miller and Poetzsch-Heffter's Universe systeiv][allows repres- South Wales, Sydney, Australia, 2001.

entation exposure in a safe way (Boyland might disagree)—an ob- [11] David CIa_trI_(e_ and Sophia Drossopoulou. Owr]ership, encapsulation

ject's representation can be exposed outside the object, butonly via ~ 2nd the disjointness of type and effectAroceedings of the OOPSLA

read-only references. Conferen_ce on Object-Oriented Programming, Systems, Languages
Extending our system to allow rep exposure for non-mutables and ApplicationsNovember 2002.

will probably require an additional type that may only appear in [12

contexts where its owner is read-only or immutable, but allows any

valid owner in scope to be used as the owner of the type. This is a

direction for future work.

and Talpin and Jouvelo8([].

—

David Clarke, John Potter, and James Noble. Ownership types
for flexible alias protection. IrProceedings of the OOPSLA
Conference on Object-Oriented Programming, Systems, Languages
and Applications1998.

[13] David Clarke and Tobias Wrigstad. External uniqueness10in
6.2 Inheritance Workshop on Foundations of Object-Oriented Languages (FOOL)

. I New Orleans, LA, January 2003.
Extending our system with inheritance is one of the next directions v

this research will take. We believe this to be a straightforward ex- [14] eDr"]"(‘)’L‘;E'?;Efoigg;ggi:zfmeigﬁi‘g-EES;Q?]' égﬁ‘éﬁ:ﬁfg; ‘g};?éﬁ
tension. Ownership, uniqueness and owner-polymorphic methods ; : . .
are already shownF;o wo(r]k in the presence of Fi)nh){eritatg)é]e sub- Oriented Programming (ECOOPParmstadt, Germany, 2003.
typing and downcast$][33]. [15] W. Dietl, S. Drossopoulou, and P.iMer. Generic Universe

In the simplest way, for outoes-specific extensions, an over- Types. In E. Ernst, editoEuropean Conference on Object-Oriented
riding method must revoke (at least) the same rights as the method Programmln? (ECOOR)Lecture Notes in Computer Science.
it overrides, and argument and parameter types must be invariant Springer-Verlag, 2007. To appear.

and modes on owners must be preserved in subclasses. [16] Werner Dietl and Peter Mler. Universes: Lightweight Ownership
for JIML. Journal of Object Technology(8):5-32, 2005.

7. Concluding Remarks [17] Aaron Greenhouse and John Boyland. An object-oriented effects
. . . system. InNECOOP’99 — Object-Oriented Programming, 13th

We have proposedoes, an extension ofoe; andJoline with ac- European Conferenc@umber 1628 in Lecture Notes in Computer

cess modes on owners that can encode class, object and reference Science, pages 205-229, Berlin, Heidelberg, New York, 1999.

immutability, fractional permissions and context-based ownership Springer.

with surprisingly little syntactical overhead. Future work will see 1g] christian Haack, Erik Poll, Jan Safer, and Aleksy Schubert.

a complete formalisation of the system, extended with inheritance Immutable objects for a Java-like language. In Rocco De Nicola,

and regions, including a dynamic semantics, and appropriate im- editor, 16th European Symposium on Programming (ESOR’07)

mutability invariants and soundness proofs.

28

volume 4421 oLLNCS pages 347-362. Springer, March 2007. Won
the ETAPS award for the best theory paper at ETAPS.

[19] John Hogg. Islands: Aliasing protection in object-oriented languages.
In Proceedings of the OOPSLA Conference on Object-Oriented
Programming, Systems, Languages and Applicatibf@vember
1991.

[20] Giinter Kniesel and Dirk Theisen. JAC — Java with transitive readonly
access control. lintercontinental Workshop on Aliasing in Object-
Oriented System#t ECOOP’99, Lisbon, Portugal, June 1999.

[21] Gunter Kniesel and Dirk Theisen. JAC—access right based
encapsulation for Java.Software — Practice and Experience
31(6):555-576, May 2001.

[22] K. Rustan M. Leino. Data Groups: Specifying the Modification
of Extended State. IRroceedings of the OOPSLA Conference on
Object-Oriented Programming, Systems, Languages and Applica-
tions 1998.

[23] John M. Lucassen and David K. Gifford. Polymorphic effect systems.
In Proceedings of the Eighteenth Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languadasuary 1988.

[24] P. Muller and A. Poetzsch-Heffter. Universes: A type system for
controlling representation exposure. In A. Poetzsch-Heffter and
J. Meyer, editorsProgramming Languages and Fundamentals of
Programming Fernuniversit Hagen, 1999.

[25] P. Muller and A. Rudich. Ownership transfer in Universe Types. In
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA) 2007. To appear.

[26] Peter Miller. Modular Specification and Verification of Object-
Oriented ProgramsPhD thesis, FernUniversit Hagen, 2001.

[27] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
Eric Jul, editorECOOP’98—Object-Oriented Programminglume
1445 ofLecture Notes In Computer Sciengages 158-185, Berlin,
Heidelberg, New York, July 1998. Springer-Verlag.

29

[28] Mats Skoglund and Tobias Wrigstad. A mode system for read-only
references in Java. IRormal Techniques for Java Programs, in
Conjunction with ECOOP 200Budapest, Hungary, 2001.

[29] Mats Skoglund and Tobias Wrigstad. Alias control with read-
only references. IrSixth Conference on Computer Science and
Informatics March 2002.

[30] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and
effect inference Journal of Functional Programming(3):245-271,
July 1992.

[31] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference
immutability to Java. InObject-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2QQ%ges 211-230, San
Diego, CA, USA, October 18-20, 2005.

[32] Tobias Wrigstad Ownership-Based Alias ManagemefhD thesis,
Department of Computer and Systems Science, Royal Institute of
Technology, Kista, Stockholm, May 2006.

[33] Tobias Wrigstad and Dave Clarke. Existential owners for ownership
types.Journal of Object Technolog$(4):141-159, May—June 2007.
Available fromhttp://www. jot.fm/issues/issue_2007_03/
articleb.

[34] Tian Zhao, Jens Palsberg, and Jan Vitek. Type-based confinement.
In Journal of Functional Programming/olume 15(6), pages 1-46,
2005.

[35] Yoav Zibin, Alex Potanin, Shay Artzi, Adam Kiein, and Michael D.
Ernst. Object and reference immutability using Java generics.
Technical Report MIT-CSAIL-TR-2007-018, MIT Computer Science
and Atrtificial Intelligence Laboratory, Cambridge, MA, March 16,
2007.

http://www.jot.fm/issues/issue_2007_03/article5
http://www.jot.fm/issues/issue_2007_03/article5

	Introduction
	Our Contributions
	Why We Could Add Read-Only To Java (Almost)

	Meet
	Motivating Examples
	A Mutable List With Immutable Contents
	Context-Based Read-Only
	Borrowing Blocks and Owner-polymorphic Methods
	Immutability
	Fractional Permissions
	Initialisation of Immutable Objects

	A Formal Definition of
	's Static Semantics
	Brief Explanation of the System
	Type Checking Figure 1
	Trapping Writes in a Read-Only Context

	Potentially Identical Owners with Different Modes
	Soundness of

	Extensions and Encodings
	Immutable Classes
	Regions
	Encoding Modes from Flexible Alias Protection

	Related Work
	Future Work
	Safe Representation Exposure
	Inheritance

	Concluding Remarks

