
Ownership, Uniqueness and Immutability

JohanÖstlund, Tobias Wrigstad
Royal Institute of Technology, Sweden

{johano, tobias}@dsv.su.se

Dave Clarke
CWI, Amsterdam, The Netherlands

dave@cwi.nl

BeatriceÅkerblom
Royal Institute of Technology, Sweden

beatrice@dsv.su.se

Abstract
Programming in an object-oriented language demands a fine bal-
ance between high degrees of expressiveness and control. At one
level, we need to permit objects to interact freely to achieve our
implementation goals. At a higher level, we need to enforce archi-
tectural constraints so that the system can be understood by new
developers and can evolve as requirements change. To resolve this
tension, numerous explorers have ventured out into the vast land-
scape of type systems expressing ownership and behavioural re-
strictions such as immutability. (Many have never returned.) This
work in progress reports on our consolidation of the resulting dis-
coveries into a single programming language. Our language,Joe3,
imposes little additional syntactic overhead, yet can encode power-
ful patterns such as fractional permissions, and the reference modes
of Flexible Alias Protection.

1. Introduction
Recent years have seen a number of proposals put forward to add
more structure to object-oriented programming languages, for ex-
ample, via ownership types [12], or to increase the amount of con-
trol over objects by limiting how they can be accessed by other
objects, via notions such as read-only or immutability. Immutabil-
ity spans the following spectrum:Class immutabilityensures that
all instances of a class are immutable, for example, Java’s String
class;object immutabilityensures that some instances of a class are
immutable, though other instances may remain mutable; andread-
only—or reference immutability—prevents modifications of an ob-
ject via certain references, without precluding the co-existence of
normal and read-only references to the same object.

Immutable objects help avoid aliasing problems and data races
in multi-threaded programs [4, 18], and also enhance program un-
derstanding, as read-only or immutable annotations are verified to
hold at compile-time [31]. According to Zibin et al. [35], immut-
ability (including read-only references) can be used for modelling,
verification, compile- and run-time optimisations, refactoring, test
input generation, regression oracle creation, invariant detection,
specification mining and program comprehension. Read-only ref-
erences have been used in proposals to strengthen object encap-
sulation and manage aliasing. Kniesel and Theisen [21] use read-
only references to allow and to manage side-effects due to aliasing.
Noble, Vitek and Potter [27] introduce anarg reference mode to al-
low aggregates to rely only on immutable parts of external objects.
Hogg’s Islands [19] and Müller and Poetzsch-Heffter’s Universes
[24] use read-references to allow temporary representation expos-
ure in a safe fashion.

1.1 Our Contributions

The programming language,Joe3, we propose in this paper of-
fers ownership and uniqueness to control the alias structure of ob-
ject graphs, and lightweight effects and a mode system to encode
various notions of immutability. It is a relatively straightforward

extension of Clarke and Wrigstad’sexternal uniquenessproposal
(Joline) [14, 32] (without inheritance), and the syntactic overhead
due to additional annotations is surprisingly small given the ex-
pressiveness of the language. Not only can we encode the three
forms of immutability mentioned above, but we can encode some-
thing akin to thearg mode from Flexible Alias Protection [27],
Fractional Permissions [7], and the context-based immutability of
Universes [24], all the while preserving the owners-as-dominators
encapsulation invariant. Furthermore, as our system is based on
ownership types, we can distinguish between outgoing aliases to
external, non-rep objects and aliases to internal objects and allow
modification of the former (but not the latter) through a read-only
reference.

Our system is closest in spirit to SafeJava [4], but we allow ac-
cess modes on all owner parameters of a class, read-only references
and an interplay between borrowing and immutable objects that can
encode fractional permissions.

1.2 Why We Could Add Read-Only To Java (Almost)

In his paper “Why We Shouldn’t Add Read-Only To Java (Yet)” [8],
John Boyland criticises existing proposals for handling read-only
references on the following points:

1. Read-only arguments can be silently captured when passed to
methods;

2. A read-only annotation cannot express whether

(a) the referencedobjectis immutable, and hence the reference
can be safely stored;

(b) a read-only reference is unique and thus immutable, as no
aliases exist which could be used to mutate the object;

(c) mutable aliases of a read-only reference can exist, imply-
ing that the referenced object should be cloned before used,
to prevent it being modified underfoot resulting inobserva-
tional exposure.1

Joe3 addresses all of these problems. First,Joe3 supports owner-
polymorphic methods, which can express that a method does not
capture one or all of its arguments. Second, we decorate owners
with modes that govern how the objects owned by that owner will
be treated in a context. Together with auxiliary constructs inherited
from Joline, the modes can express immutability both in terms of
2.a) and 2.b), and read-only which permits the existence of mutable
aliases (2.c). Moreover,Joe3 supports fractional permissions—
converting a mutable unique reference into several immutable ref-
erences for a certain context. This allows safe representation expos-
ure without the risk for observational exposure (2.c).

Joe3 allows class, object and reference immutability. Unique
references, borrowing and owner-polymorphic methods allow us to

1 Observational exposure occurs when changes to state are observed through
a read-only reference.

19

simulate fractional permissions and staged, external initialisation of
immutable objects through auxiliary methods. As we base modific-
ation rights on owners (in the spirit ofJoe1’s effects system), we
achieve what we callcontext-basedimmutability, which is essen-
tially the same kind of read-only found in M̈uller and Poetzsch-
Heffter’s Universes [24].

Joe3 allows both read-only references and true immutables in
the same language. This provides the safety desired by Boyland,
but also allows coding patterns which do rely on observing changes
in an object. Apart from the fact that we do not yet consider
inheritance, which we believe to be a straightforward extension,
we conclude that we could indeed add read-only to Java, now2.

Outline Section2 introduces theJoe3 language through a set of
motivating examples—different nestings of mutable and immut-
able objects, context-based immutability, immutable objects, and
staged construction of immutables. Section3 gives a brief formal
account ofJoe3. Section4 outlines a few simple but important
extensions—immutable classes and Greenhouse and Boyland style
regions [17]—describes how they further enhance the system and
discusses how to encode the modes of Flexible Alias Protection
[27]. Section5 surveys related work not covered above. Section6
contains an outlook for the future, and Section7 concludes.

2. MeetJoe3

In this section we describeJoe3 with the help of a couple of mo-
tivating examples.Joe3 is a class-based, object-oriented program-
ming language with deep ownership, owner-polymorphic methods,
ownership transfer through external uniqueness, an effects (revoca-
tion) system and a simple mode system which decorates owners
with permissions to indicate how references with the annotated
owners can be used. Beyond the carefully designed combination of
features, the annotation of owners with modes is the main novelty
in Joe3. The modes indicate that a reference may be read or written
(+) or only read (-), or that the reference is immutable (*). Read
and immutable annotations on an owner in the class header repres-
ent a promise that the code in the class body will not change objects
owned by that owner. The key to preserving and respecting immut-
ability and read-only inJoe3 is a simple effects system, rooted
in ownership types, and inspired by Clarke and Drossopoulou’s
Joe1 [11]. Classes, and hence objects, have rights to read or modify
objects belonging to certain owners; only a minor extension to the
type system of Clarke and Wrigstad’sJoline [14, 32] is required to
ensure that these rights are not violated.

The syntax ofJoe3 (shown in Figure5) should be understand-
able to a reader with insight into ownership types and Java-like
languages. Classes are parameterised with owners related to each
other by an inside/outside nesting relation. An owner is a permis-
sion to reference the representation of another object. Class headers
have this form:

class List<data outside owner> { ... }

Each class has at least two owner parameters,this andowner,
which represent the representation of the current object and the
representation of the owner of the current object, respectively.
In the example above, theList class has an additional permis-
sion to reference objects owned bydata, which is nested out-

2 While the syntactic price of our proposal is no doubt steep when added
to Java, adding it to a language with ownership types and uniqueness, such
as Joline, is virtually for free. On a side-note, the authors believe that if
ownership types is ever to make it into mainstream languages, simple but
powerful extensions, such as external uniqueness, read-only references and
immutability will be crucial in convincing programmers of the virtues of
the added complexity.

side owner. Types are formed by instantating the owner para-
meters,this:List<owner>. An object with this type belongs
to the representation of the current object and has the right to
reference objects owned byowner. There are two nesting re-
lations between owners, inside and outside. They exist in two
forms each, one reflexive (inside/outside) and one non-reflexive
(strictly-inside/strictly-outside). Thus, going back to
our list example, a typethis:List<this> denotes a list object
beloning to the current representation, storing objects in the cur-
rent representation.

A more detailed introduction is given in Section3. Apart from
ownership types, the key ingredients inJoe3 are the following:

• (externally) unique types (writtenunique[p]:Object), a spe-
cial borrowingconstruct for temporarily treating a unique type
non-uniquely, andowner castsfor converting unique references
permanently into normal references.

• modes on owners—mutable ‘+’, read-only ‘-’, and immutable
‘*’. These appear on every owner parameter of a class and
owner polymorphic methods, though not on types.

• an effects revocation clause on methods which states which
owners will not be modified in a method. An object’s default set
of rights is derived from the modes on the owner parameters in
the class declaration. An additional example of a use ofrevoke
is found at the end of Section4.2.

Annotating owners at the level of classes (that is, for all in-
stances) rather than types (for each reference) is a trade-off. Rather
than permitting distinctions to be made using modes on a per ref-
erence basis, we admit only per class granularity. Some potential
expressiveness is lost, though the syntax of types does not need
to be extended. Nonetheless, the effects revocation clauses regain
some expressiveness that per reference modes would give. Another
virtue of using per class rather than per reference modes is that we
avoid some covariance problems found in other proposals (see re-
lated work) as what you can do with a reference depends on the
context and is not a property of the reference. Furthermore, our
proposal is statically checkable in a modular fashion. We also need
no run-time representation of the modes.

2.1 Motivating Examples

The following examples illustrate the range of constraints that can
be expressed inJoe3.

2.1.1 A Mutable List With Immutable Contents

The code in Figure1 shows parts of an implementation of a list
class. The owner parameterdata is decorated with the mode read-
only (denoted ‘-’), indicating that the list will never cause write
effects to objects owned bydata.

The owner of the list is calledowner and is implicitly declared.
The methodgetFirst() is annotated withrevoke owner, which
means that the method will not modify the object or its transitive
state. This means the same as ifowner- andthis- would have
appeared in the class head. This allows the method to be called in
objects where the list owner is read-only.

This list class can be instantiated in four different ways, depend-
ing on the access rights to the owners in the type held by the current
context:

• both the list and its data objects are immutable, which only
allows getFirst() to be invoked, and its resulting object is
immutable;

• both are mutable, which imposes no additional restrictions;

20

class Link<data- strictly-outside owner> {
data:Object obj = null;
owner:Link<data> next = null;

}

class List<data- strictly-outside owner> {
this:Link<data> first = null;

void addFirst(data:Object obj) {
this:Link<data> tmp = new this:Link<data>();
tmp.obj = obj;
tmp.next = this.first;
this.first = tmp;

}

void filter(data:Object obj) {
this:Link<data> tmp = this.first;
if (tmp == null) return;
while (tmp.next != null)

if (tmp.next.obj == obj)
tmp.next = tmp.next.next;

else
tmp = tmp.next;

if (this.first != null && this.first.obj == obj)
this.first = this.first.next;

}

data:Object getFirst() revoke owner {
return this.first.obj;

}
}

Figure 1. Fragment of a list class. As thedata owner parameter is
declared read-only (via ‘-’) in the class header, no method inList
may modify an object owned bydata. Observe that the syntactic
overhead is minimal for an ownership types system.

• the list is mutable but the data objects are not, which imposes no
additional restrictions, thoughgetFirst() returns a read-only
reference; and

• the data objects are mutable, but the list not, which only allows
getFirst() to be invoked, though the resulting object is mut-
able.

The last form is interesting and relies on the fact that we can
specify, thanks to ownership types, that the data objects are not
part of the representation of the list. Most existing proposals for
read-only references (e.g., Islands [19], JAC [20, 21], ModeJava
[28, 29], Javari [31], and IGJ [35]) cannot express this constraint in
a satisfactory way, as these proposals cannot distinguish between
an object’s outside and inside.

2.1.2 Context-Based Read-Only

As shown in Figure2, different clients of the list can have different
views of the same list at the same time. The classReader does
not have permission to mutate the list, but has no restrictions on
mutating the list elements. Dually, theWriter class can mutate the
list but not its elements.

As owner modes only reflect what a class is allowed to do to
objects with a certain owner,Writer can add data objects to the
list that are read-only to itself and the list, but writable byExample
and Reader. This is a powerful and flexible idea. For example,
Example can pass the list toWriter to filter out certain objects
in the list. Writer can then consume or change the list, or copy
its contents to another list,but not modify them. Writer can then
return the list toExample, without Example losing its right to
modify the objects obtained from the returned list. This is similar

class Writer<o+ outside owner, data- strictly-outside o> {
void mutateList(o:List<data> list) {

list.addFirst(new data:Object());
}

}

class Reader<o- outside owner, data+ strictly-outside o> {
void mutateElements(o:List<data> list) {

list.elementAt(0).mutate();
}

}

class Example {
void example() {

this:List<world> list = new this:List<world>();
this:Writer<this, world> w =

new this:Writer<this, world>();
this:Reader<this, world> r =

new this:Reader<this, world>();
w.mutateList(list);
r.mutateElements(list);

}
}

Figure 2. Different objects can have different views of the same
list at the same time.r can modify the elements oflist but not
the list itself, w can modify thelist object, but not the list’s
contents, and instances ofExample can modify both the list and its
contents.

to the context-based read-only in Universes-based systems [24, 26].
In contrast, however, we do not allow representation exposure via
read-only references.

2.1.3 Borrowing Blocks and Owner-polymorphic Methods

Before moving on to the last two examples, we need to intro-
duce borrowing blocks and owner-polymorphic methods [13, 32,
10], which make it easier to program using unique references and
ownership. (The interaction between unique references, borrowing,
and owner-polymorphic methods has been studied thoroughly by
Clarke and Wrigstad [14, 32].) A borrowing block has the follow-
ing syntax:

borrow lval as α x in { s }

The borrowing operation destructively reads a unique reference
from an l-value (lval) to a non-unique, stack-local variable (x) for
the scope of the borrowing block (s). The block also introduces
a fresh block-local owner that becomes the new owner of the
borrowed value. Every type of every variable or field that stores an
alias to the borrowed value must have this owner in its type. Clearly,
this is not the case for any pre-existing field or variable. Owner-
polymorphic methods (see below) allow granting permissions to
reference the borrowed value for the duration of a method call.
This is the only way in which references to borrowed values can
be exported to outside a borrowing block. As all method calls
in the borrowing block must have returned when the block exits,
clearly no residual aliasing can exist. Thus, when the borrowing
block exits, the borrowed value can be reinstated and is once again
unique.

Due to the strong encapsulation of external uniqueness, borrow-
ing borrows an entire unique aggregate in one single hit and makes
it stack-local.

An owner-polymorphic method is simply a method which takes
owners as parameters. The methodsm1 andm2 in Client in Fig-
ure 3 are examples of such. Owner-polymorphic methods can be
seen as accepting stack-local permissions to reference (and pos-
sibly mutate) objects that it otherwise may not be allowed to refer-
ence. Owner parameters (p* andp- in the methods in Figure3) of

21

class Client {
<p* inside world> void m1(p:Object obj) {

obj.mutate(); // Error
obj.toString(); // Ok
// assign to field is not possible

}

<p- inside world> void m2(p:Object obj) {
obj.mutate(); // Error
obj.toString(); // Ok

}
}

class Fractional<o+ outside owner> {
unique[this]:Object obj = new this:Object();

void example(o:Client c) {
borrow obj as p*:tmp in { // **

c.m1(tmp); // ***
c.m2(tmp); // ****

}
}

}

Figure 3. An implementation of fractional permissions using bor-
rowing and unique references.

owner-polymorphic methods are not in the scope at the class level.
Thus, method arguments with such a parameter in its type cannot
be captured within the method body (—it isborrowed[6]).

2.1.4 Immutability

The example in Figure2 shows that a read-only reference to an
object does not preclude the existence of mutable references to
the same object elsewhere in the system. This allows observational
exposure—for good and evil.

The immutability annotation ‘*’ imposes all the restrictions a
read-only type has, but it also guarantees that no aliases with write
permission exist in the system. Our simple way of creating an
immutable object is to move amutableunique reference into a
variable with immutable type, just as in SafeJava [4].

This allows us to encode fractional permissions and to do staged
construction of immutables, both discussed below.

2.1.5 Fractional Permissions

The example in Figure3 shows an implementation of Fractional
Permissions. We can useJoline’s borrowing construct totempor-
arily move a mutable unique reference into an immutable variable
(line **), freely alias the reference (while preserving read-only)
(lines*** and****), and then implicitly move the reference back
into the unique variable again and make it mutable. This is essen-
tially Boyland’s Fractional Permissions [7]. As stated above, both
the owner-polymorphic methods and the borrowing block guar-
antee not to capture the reference. A borrowed reference can be
aliased any number of times in any context to which it has been ex-
ported, without the need to keep track of “split permissions” [7] as
we know for sure that all permissions to alias the pointer are inval-
idated when the borrowing block exits. The price of this conveni-
ence is that the conversion from mutable to immutable and back
again must be done in the same place.

Interestingly,m1 andm2 are equally safe to call fromexample.
Both methods have revoked their right to cause write effects to
objects owned byp, indicated by the* and - annotations onp,
respectively. The difference between the two methods is that the
first method knows thatobj will not change under foot (making it
safe to, for example, useobj as a key in a hash table), whereas the
second method cannot make such an assumption.

class Client<p* outside owner, data+ strictly-outside p> {
void method() {

this:Factory<p, data> f = new this:Factory<p, data>();
p:List<data> immutable = f.createList();

}
}

class Factory<p* inside world, data+ strictly-outside p> {
p:List<data> createList() {

unique[p]:List<data> list = new p:List<data>();
borrow list as temp+ l in { // 2nd stage of construct.

l.add(new data:Object());
}
return list--; // unique reference returned

}
}

Figure 4. Staged construction of an immutable list

2.1.6 Initialisation of Immutable Objects

An issue with immutable objects is that even such objects need
to mutate in their construction phase. Unless caution is taken the
constructor might leak a reference tothis (by passingthis to a
method) or mutate other immutable objects of the same class. The
standard solution to this problem in related proposals is to limit
the construction phase to the constructor [31, 35, 18]. Continuing
initialisation by calling auxiliary methodsafter the constructor
returns is simply not possible.Joe3, on the other hand, permits
staged construction, as we demonstrate in Figure4. In this example
a client uses a factory to create an immutable list. The factory
creates a unique list and populates it. The list is then destructively
read and returned to the caller as an immutable.

3. A Formal Definition of Joe3

In this section, we formally present the static semantics ofJoe3,
and argue how it guarantees immutability and read-only.

3.1 Joe3’s Static Semantics

We now describeJoe3’s type system, which can be seen as a
simplification ofJoline’s [14, 32] extended with effects annotations
and modes on owners. To simplify the formal account, we omit
inheritance and constructors. Furthermore, followingJoline, we
rely on destructive reads to preserve uniqueness and require that
movement is performed using an explicit operation.

The abstract syntax ofJoe3 is shown in Figure5. For simplicity,
we assume that names of fields, method and classes are unique.
c, m, f, x are metavariables ranging over names of classes, meth-
ods, fields and local variables, respectively.q andp are names of
owners.

Types have the syntaxp c〈p〉. We sometimes writep c〈σ〉 for
some type whereσ is a map from the names of the owner paramet-
ers in the declaration of a classc to the actual owners used in the
type. In code, a type’s owner is connected to the class name with a
‘:’ to make the type one syntactic unit.

Unique types have the syntaxuniquep c〈p〉. The keyword
unique specifies that the owner of an object is really the field
or variable that contains the only (external) reference to it in the
system. The owner annotation on the unique type is called the
movement bound. Movement bounds govern the maximal outwards
movement of a unique, so as to preserve the owners-as-dominators
property. In code, movement bounds are denotedunique[p]. For
details, see Wrigstad [32].

In systems with ownership types, an owner is a permission to
reference objects with that owner. Classes, such as the canonical
list example, can be parameterised with owners to enable them to

22

P ::= C (program)
C ::= class c〈α R p〉 { fd md} (class)
fd ::= t f := e; (field)
md ::= 〈α R p〉 t m(t x) revokeE { s; return e } (method)
e ::= lval | lval-- | e.m(e) | new p c〈σ〉 | null (expr.)
s ::= lval := e | t x := e | s;s | e (statement)

| borrow lval as α x in { s }
lval ::= x | e.f (l-value)
R ::= ≺∗ | �∗ | ≺+ | �+ (nesting relation)
t ::= p c〈p〉 | uniquep c〈p〉 (type)
E ::= ε | E, p (write right revocation clause)
Γ ::= ε | Γ, x : t | Γ, α R p (environment)
σ ::= α 7→ p (owner substitution)
α ::= p- | p+ | p* (owner param.)

Figure 5. Abstract syntax ofJoe3. In the code examples, owner
nesting relations (R) are written asinside (≺∗), or strict-
ly-inside (≺+), etc. for clarity.

be given permission to access external objects. For example, the
list class has an owner parameter for the (external) data objects
of the list. In Joe3 the owner parameters of a class or owner-
polymorphic method also carry information about what effects
the current context may cause onthe objects having the owner
in question. For example, ifp- (p is read-only) appears in some
contextc, this means thatc may reference objects owned byp, but
not modify them directly. We refer to the part of an owner that
controls its modification rights as themode.

In contrast with related effect systems (e.g., [17, 11]), we use
effect annotations on methods to show what isnot affected by
the method—essentiallytemporarily revokingrights to change. For
example,getFirst() in the list in Figure1 does not modify the
list object and is thus declared using arevoke clause thus:

data:Object getFirst() revoke owner { ... }

This will force the method body to type-check in an environment
whereowner (andthis) are read-only.

Notation Given σ, a map from (annotated) owner parameters
to actual owners, letσp meanσ] {owner+ 7→ p}. For the type
this:List<owner>, σ = {owner+ 7→ this, data- 7→ owner}.
We writeσ(p c〈p〉) to meanσ(p) c〈σ(p)〉. For simplicity, we some-
times completely disregard modes and allowσ(p). On the other
hand,σ◦ denotes a mode preserving variant ofσ s.t.if q+ 7→ p ∈ σ,
thenq+ 7→ p+ in σ◦.

Let md(α) and nm(α) return the mode and owner name of
α, respectively. For example, ifα = p+, thenmd(α) = + and
nm(α) = p.

CT is a class table computed from a programP . It maps class
names to type information for fields and methods in the class
body. CT(c)(f) = t means that fieldf in classc has typet.
CT(c)(m) = ∀α R q. t → t; E means that methodm in class
c have formal owner-parameters declaredα R q, formal parameter
typest, return typet and revoked rightsE.

Predicateisunique(t) is true iff t is a unique type.owner(t)
returns the owner of a type, andowners(t) returns the owner names
used in a type or a method type. Thus,owner(p c〈p〉) = p and
owners(p c〈p〉) = {p} ∪ p.

Ec denotes the set of owners to which classc haswrite permis-
sion. For example, the list class in Figure1 hasEList = {owner},
whereas the writer class in Figure2 hasEWriter = {owner, o}. Ec

is defined thus:

Ec =


{p | p+ ∈ α} ∪ {owner} if class c〈α R 〉 { } ∈ P
⊥ otherwise

Γ ` C Good class
Γ ` fd Good field
Γ ` md Good method
Γ ` s; Γ′ Statements is wf underΓ and producesΓ′

Γ ` e : t Expressione has typet underΓ
Γ ` t Good type
Γ ` E Good write right revocation clause
Γ ` α R p Owner parameterα is R-related top in Γ
Γ ` α perm Good owner parameterα
Γ ` p Good owner
Γ ` � The environmentΓ is well-formed

Table 1. Judgments in theJoe3 formalisation.

E \ E′ denotes set difference. The judgments in the type system
are summarised in Table1.

Good Class

(CLASS)

Γ = owner+ ≺∗ world, this+ ≺+ owner, α R p, this : t

t = owner c〈nm(α)〉 Γ` owner+ ≺∗ nm(α) Γ` fd Γ` md
` class c〈α R p〉 { fd md}

A class is well-formed if all its owner parameters are outside
owner. This makes sure that a class can only be given permission
to reference external objects and is key to preserving the owners-
as-dominators property of deep ownership systems [10]. The envir-
onmentΓ is constructed from the owners in the class header, their
nesting relations and modes, plusowner+ andthis+ giving an ob-
ject the right to modify itself. Thus, class-wide read/write permis-
sions are encoded inΓ, and must be respected by field declarations
and methods.

Good Field, Good Method The functionΓ revoke E is a key
player in our system—it revokes the write rights mentioned inE,
by converting them to read rights inΓ. It also makes sure thatthis
is not writable wheneverowner is not. For example, givenE =
{p}, we havep+ /∈ dom(Γ revoke E), so if Γ revoke E ` s; Γ′, s
does not write to objects owned byp.

ε revoke E = ε

(Γ, x : t) revoke E = (Γ revoke E), x : t

(Γ, α R p) revoke E = (Γ revoke E), (α R p revoke E)

(α R p) revoke E = (α revoke E) R p

p- revoke E = p-

p+ revoke E = p-, if p ∈ E elsep+

this+ revoke E = this-, if owner ∈ E elsethis+

p* revoke E = p*

(FIELD)

Γ ` e : t
Γ ` t f := e

(METHOD)

Γ′ = Γ, α R p Γ′ ` E
(Γ′ revoke E), x : t ` s; Γ′′ Γ′′ ` e : t

Γ ` 〈α R p〉 t m(t x) revoke E { s; return e }

A field declaration is well-formed if its initialising expression has
the appropriate type. The rules for good method is a little more
complex: any additional owner parameters in the method header
are added toΓ, with modes and nesting. Furthermore, the effect
clause must be valid:i.e.,you can only revoke rights that you own.

23

Expressions The expression rules pretty much follow those of
Joline extended to cater for effects.

(EXPR-LVAL)

Γ `lv lval : t
¬isunique(t)
Γ ` lval : t

(EXPR-LVAL -DREAD)

Γ `lv lval : t isunique(t)
lval ≡ e.f ⇒ Γ ` e :p c〈σ〉 ∧ Γ ` p+ perm

Γ ` lval-- : t

Destructively reading a field in an object owned by some ownerp
requires thatp+ is in the environment.

(EXPR-VAR)

x : t ∈ Γ
Γ `lv x : t

(EXPR-FIELD)

Γ ` e : p c〈σ〉 CT(c)(f) = t
this ∈ owners(t) ⇒ e ≡ this

Γ `lv e.f : σp(t)

Judgements of the formΓ `lv lval : t deal with l-values.
In Joline, owner arguments to owner-polymorphic methods

must be passed in explicitly. Here, we assume the existence of
an inference algorithm to bind the names of the owner parameters
to the actual arguments at the call site. This isσa in the rule.

(EXPR-INVOKE)

Γ ` e : p c〈σ〉 CT(c)(m) = ∀α R p. t → t; E σ′ = σp] σa

Γ ` σ′(α R p) Γ ` σ′
◦
(α) perm Γ ` e : σ′(t) Γ ` σ′(t)

Γ ` σ′(Ec\E) this ∈ owners(CT(c)(m)) ⇒ e ≡ this
Γ ` e.m(e) : t

By the first clause of(EXPR-INVOKE), method invocations are not al-
lowed on unique types. The third clause creates a substitution from
the type of the receiver(σp) and the implicit mapping from owner
parameter to actual owner(σa). Γ ` σ′

◦
(α) perm makes sure

that owner parameters that are writable and immutable are instan-
tiated with writable or immutable owners respectively. Clauses six
and seven ensure that the argument expressions have the correct
types and that the return type is valid. Clause eight checks that the
method’s effects are valid in in the current context, and clause nine
makes sure that any method withthis in its type (return types, ar-
gument types or owners in the owner parameters declaration) can
only be invoked withthis as receiver—this is the standard static
visibility constraint of ownership types [12].

(EXPR-NULL)

Γ ` t
Γ ` null : t

(EXPR-NEW)

Γ ` p c〈p〉
Γ ` new p c〈p〉 : uniquep c〈p〉

By (EXPR-NULL), null can have any well-formed type. By(EXPR-
NEW), object creation results in unique objects. (Without construct-
ors, it is obviously the case that the returned reference is unique—
see Wrigstad’s dissertation [32] for an explanation why adding con-
structors is not a problem.)

Good Statements
(STAT-LOCAL-ASGN)

x 6= this
x : t ∈ Γ
Γ ` e : t

Γ ` x := e; Γ

(STAT-FIELD-ASGN)

Γ ` e : p c〈σ〉 CT(c)(f) = t
Γ ` e′ : σp(t) Γ ` p+ perm
this ∈ owners(t) ⇒ e ≡ this

Γ ` e.f := e′; Γ

In contrast to local variable update, assigning to a field requires
write permission to the object containing the field.

(STAT-BORROW)

lval ≡ e.f ⇒ Γ ` e :q c′〈 〉 ∧ Γ ` q+ perm
Γ ` lval : uniquep c〈σ〉 Γ, α ≺+ p, x : nm(α) c〈σ〉 ` s; Γ

Γ ` borrow lval as α x in { s }; Γ

In our system, unique references must be borrowed before they can
be used as receivers of method calls or field accesses. The bor-
rowing operation moves the unique object from the source l-value

to a stack-local variable temporarily and introduces a fresh owner
ordered strictly inside the unique object’s movement bound. The
new owner is annotated with a read/write permission which must
be respected by the body of the borrowing block. As the owner of
the borrowed unique goes out of scope when the borrowing block
exits, all fields or variables with types that can refer to the borrowed
object become inaccessible. Thus, the borrowed value can be rein-
stated and is once again unique. As borrowing temporarily nullifies
the borrowed l-value, the same requirements as(EXPR-DREAD) ap-
plies with respect to modifying the owner of the l-value.

(STAT-SEQUENCE)

Γ ` s; Γ′ Γ′ ` s′; Γ′′

Γ ` s; s′; Γ′′

(STAT-DECL)

Γ ` e : t x 6∈ dom(Γ)
Γ ` t x := e; Γ, x : t

Statements can be chained together in the obvious fashion. Local
variable declaration and initialisation is straightforward.

Good Effects Clause

(GOOD-EFFECT)

∀p ∈ E. Γ ` p+ perm
Γ ` E

An effects clause is well-formed if it only revokes write permis-
sions in the current environment.

Good Environment
(GOOD-EMPTY)

ε ` �

(GOOD-R)

Γ ` q
p 6∈ dom(Γ) † ∈ {+, -, *}

Γ, p†R q ` �

(GOOD-VARTYPE)

Γ ` t
x 6∈ dom(Γ)
Γ, x : t ` �

The rules for good environment require that owner variables are
related to some owner already present in the environment orworld,
and that added variable bindings have types that are well-formed
under the preceding environment.

Good Permissions and Good OwnerBy (WORLD), world is a
good owner and is always writable. By(GOOD-α), a permission is
good if it is in the environment. By(GOOD-p-), a read mode of
objects owned by some ownerp is good ifp with any permission is
a good permission—write or immutable implies read.

(WORLD)

Γ ` �
Γ ` world+ perm

(GOOD-α)

Γ ` � α ∈ dom(Γ)
Γ ` α perm

(GOOD-p-)

Γ ` p† perm † ∈ {+, *}
Γ ` p- perm

(GOOD-OWNER)

Γ ` α perm
Γ ` nm(α)

Good Nesting We can easily define judgementsΓ ` p ≺∗ q and
Γ ` p ≺+ q as the reflexive transitive closure and the transitive
closure, respectively, of the relation generated from eachα R p ∈
Γ, whereR ∈ {≺∗,≺+} or R−1 ∈ {≺∗,≺+}, combined with
p ≺∗ world for all p.

Good Type

(TYPE)

q* ∈ α ⇒ σ◦(q*) = p*, for somep
class c〈α R p〉 { . . . } ∈ P

Γ ` σp(α R p) Γ ` σp◦(α) perm
Γ ` p c〈σ〉

This rule checks that the owner parameters of the type satisfy the
ordering declared in the class header, as well as checking that
all the permissions are valid in the present context. In addition—
and this is a subtle point—if an owner parameter in the class

24

header was declared with the mode immutable, then the owner
that instantiates the parameter in the type must also be immutable.
Without this requirement, one could pass non-immutable objects
where immutable objects are expected.

On the other hand, we allow parameters with read to be instanti-
ated with write andvice versa. In the latter case, only methods that
do not have write effects on the owners in question may be invoked
on a receiver with the type in point.

(UNIQUE-TYPE)

Γ ` p c〈σ〉
Γ ` uniquep c〈σ〉

By (UNIQUE-TYPE), a unique type is well-formed if a non-unique
type with the movement bound as owner is well-formed.

To simplify the formal account, we chose to make loss of
uniqueness explicit using a movement operation rather than mak-
ing it implicit via subtyping and subsumption, as such a rule would
require a destructive read to be inserted. Instead, we require con-
version to be explicit, as in the following rule:

(EXPR-LOSE-UNIQUENESS)

Γ ` e : uniqueq c〈σ〉 Γ ` p ≺∗ q
Γ ` (p) e : p c〈σ〉

This “owner-cast” expression moves the contents of a unique into a
subheap of some object or block (whatever thep owner corresponds
to). This is well-formed if the expression has a unique type and if
the movement bound of the type is outside the owner of the type
cast to.

3.2 Brief Explanation of the System

In this section, we take a hands-on approach to showing how
the system works by applying it to the example in Figure 1. For
simplicity, we ignore everything that is not related to preserving
read-only.

The key rules of the system are(METHOD), (EXPR-LVAL -DREAD),
(STAT-FIELD-ASGN), (EXPR-INVOKE), and(STAT-BORROW).

In (METHOD), any write permissions revoked in the revocation
clauseE are removed fromΓ. Thus, the method body must be well-
typed under a restrictedΓ.

Destructively reading, borrowing or assigning to a field in an
object,(EXPR-LVAL -DREAD), (STAT-BORROW) and(STAT-FIELD-ASGN)
requires a write permission to the object containing the field in the
current context.

Method invocation is a little trickier. If a formal owner para-
meter requires write access, or that an object is immutable, the call-
ing context must satisfy those requirements (byΓ ` σ◦(α) perm).
Furthermore, the current context must also have write permission
to every owner in the set of owners to which the method is allowed
to write (Ec \ E).

3.2.1 Type Checking Figure1

By (CLASS), addFirst(), filter() and getFirst() must be
well-formed under an environmentΓ = owner+ ≺∗ world, this+
≺+ owner, data-�+ owner, this : owner List〈data〉 for List
to be a good class. By(METHOD), every statement in a method
must be well-formed underΓ′ equal toΓ extended by the formal
parameters of the method and possible revocation of write rights.
For addFirst(), Γ′ = Γ, obj : data Object〈〉. We now look at
the statements inaddFirst().

As we do not have constructors,(EXPR-NEW) does not care
about permissions and is trivially well-formed with respect to write
effects.

By (STAT-FIELD-ASGN), the second line ofaddFirst() requires
that the owner oftmp is writeable underΓ′, i.e., it is in dom(Γ′).
By (EXPR-FIELD), the type oftmp is this Link〈owner〉. As this+

∈ dom(Γ′), the field update is allowed. The next line follows the
same pattern: reading a field is always allowed, and we have already
established that we are allowed to assign to fields intmp.

The last line of the method updates a field inthis. By (STAT-
FIELD-ASGN), owner+ must be indom(Γ′), as the type ofthis is
owner List〈data〉, which it is.

The methodfilter() type checks in a manner similar to that
of addFirst(). However,getFirst() is different as it revokes
the right to modifyowner (and thus self). By(METHOD), the only
line in getFirst() must type check underΓ revoke E where
E = {owner}. This is equivalent toowner- ≺∗ world, this-
≺+ owner, data- �+ owner, this : owner List〈data〉—the
context has no write permissions. The field access is still allowed
as reading fields does not require any write permissions.

3.2.2 Trapping Writes in a Read-Only Context

We now show how the system would trap an unpermitted write
added to a method in theList class of Figure1. AssumeObject
was defined thus:

class Object {
this:Object state = null;
void mutate() { this.state = null; }

}

and any of the methods inList included the linethis.first.-
data.mutate();. Γ is the same as in the previous section.

The key to trapping this violation of read-only is the 8th clause
in (EXPR-INVOKE). By (EXPR-FIELD) (applied two times), the type
of this.first.data, the receiver of the mutating message, is
data Object〈〉.

EObject = {owner} (rememberEc returns the set of names of
owners to which a class has write right) andE = ε as no rights are
revoked. ConsequentlyEObject\E = EObject.

As mutate is not owner-polymorphic,σa is empty and thus
σ2 = {owner 7→ data} andσ2(EObject\E) = {data}.

Thus, by the 8th clause of(EXPR-INVOKE), Γ` data+ must hold.
By (GOOD-α), this amounts todata+ ∈ dom(Γ) which it clearly
is not as we haddata- ∈ Γ anddata- anddata+ cannot occur
simultaneously inΓ whenΓ is well-formed.

Note that assignment to public fields is not allowed unless the
receiver isthis, which is why the modification had to be done
through a method invocation.

3.3 Potentially Identical Owners with Different Modes

The list class in Figure1 requires that the owner of its data objects is
strictly outside the owner of the list itself. This allows for a clearer
separation of the objects on the heap—for example, the list cannot
contain itself.

The downside of defining the list class in this fashion is that
it becomes impossible to store representation objects in a list that
is also part of the representation. To allow that, the list class head
must not usestrictly outside:

class List< data- outside owner > { ... }

The less constraining nesting however leads to another problem:
data and owner may be instantiated with the same owners. As data
is read-only and owner is mutable, at face value, this might seem
like a problem.

We choose to allow this situation as the context where the
type appears might not care, or might have additional information
to determine that the actual owners of data and the list do not
overlap. If no such information is available, we could simply issue
a warning. Of course, it is always possible to define different lists
with different list heads for the two situations.

25

For immutables, this is actually a non-problem. The only way an
immutable owner can be introduced into the system is through bor-
rowing (or regions, see Section4.2) where the immutable owner is
ordered strictly inside any other known owner. As(TYPE) requires
that write and immutable owner parameters are instantiated with
owners that are write and immutable (respectively) in the context
where the type appears, a situation wherep+ and q* could refer
to the same owner is impossible. As(TYPE) allows a read owner
parameter to be instantiated with any mode, it is possible to have
overlappingp- andq* in a context if a read owner was instanti-
ated by an immutable at some point. Since objects owned by read
owners will not be mutated, immutability holds.

3.4 Soundness ofJoe3

We have not formally proven soundness ofJoe3. Modulo omitting
inheritance, the formal description ofJoe3 is a very simple and
straightforward extension of that ofJoline [32]. As modes have
no run-time semantics, the crucial formal results ofJoline should
apply toJoe3 as well — type soundness, owners as dominators and
external uniqueness as dominating edges. Future work will extend
theJoline formalism with modes and object-based regions and do
the extra legwork to prove that the extended system is sound.

4. Extensions and Encodings
In this section we briefly discuss extensions to our system not
included in the formalism, and the encoding of the modes from
flexible alias protection.

4.1 Immutable Classes

In our system, an object always has permission to write toowner
andthis unless this permission is explicitly revoked in an effects
clause for a specific method. Consequently, creating an immutable
class requires every method to explicitly revoke its right to modify
self. To relieve the programmer of this burden and to make a class’
semantics clearer in the program text, we can introduce immutable
classes through a class modifier:

immutable class String ...

The immutable class would be checked just as a regular class,
but with the weaker permissionsowner* andthis* in Γ. Thus,
methods that have write effects onthis or owner would not type
check. As fields may not be updated, except throughthis, this
makes the object effectively immutable. To allow initialisation of
immutable classes, the constructor would be allowed to initialise
fields, similar to how final field initialisation is treated in Java.

4.2 Regions

In order to increase the precision of effects, we introduce expli-
citly declared regions, both at object-level and within method bod-
ies. For simplicity, we have excluded regions from the formal ac-
count of the system. Object-based regions are similar to the re-
gions of Greenhouse and Boyland [17] and the domains of Aldrich
and Chambers [1], but we enable an ordering between them. Our
method-scoped region construct is essentially the same asscoped
regionsin Joline [32], which is an object-oriented variant of clas-
sical regions [23, 30], adapted for use with ownership types.

Object-based regions As discussed in Section3.3, defining the
list class without the use ofstrictly outside places the burden of
determining whether data objects are modified by changes to the
list on the client of the list. This is because the list cannot distin-
guish itself from its data objects, as they (potentially) have the same
owner.

By virtue of owners-as-dominators, an object that needs to keep
rep objects in a list must include the list in the rep, or the list will

not have the necessary permissions to reference the objects. As the
list owner and data owner are the same, modifications to the list are
indistinguishable from modification to its contents.

To tackle this problem and make our system more expressive,
we extendJoe3 with a regions system. A class declaration can
contain any number of regions that each introduce a new owner
nested strictly inside an owner in the scope. Thus, a class’ rep is
divided into multiple, disjoint parts (except for nested regions), and
an object owned by one region cannot be referenced by another.
The syntax for regions isregion α { e }. Example:

class Example {
this:Object datum;
region inner+ strictly-inside this {

inner:List<this> list;
}

void method() { list.add(datum); }
}

By virtue of the owner nesting, objects inside the region can be
given permission to reference representation objects, but not vice
versa as such types would not type check (e.g.,this is not inside
inner). Thus, representation objects outside a region cannot ref-
erence objects in the region and consequently, effects on objects
outside a region cannot propagate to objects in inside the region. In
our example above, as there are no references fromdatum to the
list, changes todatum cannot change thelist.

Method-scoped regions The scoped regionsconstruct inJoline
[32] can be added toJoe3 to enable the construction of method-
scoped regions, which introduces a new owner for a temporary
scope within some method body. Scoped regions allow the creation
of stack-local objects which can be mutated regardless of what
other rights exist in the context, even whenthis is read-only or
immutable. Such objects act as local scratch space without requir-
ing that the effects propagate outwards. The effects can be ignored.

The following line illustrates a pattern that occurs several times
in the implementation of the Joline compiler:

<d- inside world> void method(d:Something arg)
revoke this {
region temp+ strictly-inside this {

temp:Gamma<d> t = new temp:Gamma<d>();
t.calculationsWithSideEffectsOnTemp(arg);

}
}

Several times in the Joline compiler, we create a temporary object
reminiscent of the type environment (Γ) to check whether certain
addtions of owner nestings would be permitted. This object is
completely temporary and its sole purpose is throwing an exception
on an attempt at adding invalid owner nestings.

4.3 Encoding Modes from Flexible Alias Protection

In work [27] that led to the invention of Ownership Types, Noble,
Vitek and Potter suggested a set of modes on references to manage
the effects of aliasing in object-oriented systems. The modes were
rep, free, var, arg andval. In this section, we indicate how these
modes are (partially) encoded in our system.

The rep mode denotes a reference to a representation object
that should not be leaked outside of the object. All ownership type
systems encoderep; in ours, it is encoded asthis c〈σ〉.

The freeexpression holds a reference that is uncaptured by any
variable in the system. This is encoded asuniquep c〈σ〉, a unique
type. Any l-value of that type in our system is (externally) free.

The var mode denotes a mutable non-rep reference and is en-
coded asp c〈σ〉, wherethis 6= p.

26

The arg mode is the most interesting of the modes. It denotes
an argument3 reference with a guarantee that the underlying object
will not be (observably) changed under foot: “that is,arg expres-
sions only provide access to the immutable interface of the objects
to which they refer. There are no restrictions upon the transfer or
use ofarg expressions around a program” [27]. We supportarg
modes in that we can parameterise a type by an immutable owner
in any parameter. It is also possible for a class to declare all its
owner parameters as immutable to prevent its instances from ever
relying on a mutable argument object that could change under foot.
On the other hand, we do not support passingarg objects around
freely—the program must still respect owners-as-dominators.

The final mode,val, is like arg, but it is attached to references
with value semantics. These are similar to our immutable classes.

5. Related Work
Boyland et al.’s Capabilities for sharing [9] generalise the con-
cepts of uniqueness and immutability. The system uses capabilit-
ies, which are pointers combined with a set of rights. What really
distinguishes this proposal from other work is the exclusive rights
which allow the revocation of rights of other references. Boyland
et al.’s system can model uniqueness with the ownership capabil-
ity. However, exclusive rights make the system difficult to check
statically.

Table2 summarises several proposals and their supported fea-
tures. The systems included in the table represent the state of the
art of read-only and immutable. In addition toJoe3, our own pro-
posal, the table includes (in order) SafeJava [4], Universes [24, 16,
15, 25], Jimuva [18], Javari [31], IGJ [35], JAC [21, 20] and Mod-
eJava [28, 29]. SafeJava is probably the closest in spirit to our pro-
posal, but the lack of crucial features, such as borrowing to immut-
ables, makes it less powerful. We now discuss the different features
covered in the table.

Expressiveness As discussed in Section2.1.6, our system allows
us to perform staged construction of immutable objects. This is also
possible to do in SafeJava.

In our example in Figure3, we show how we can encode frac-
tional permissions [7]. Boyland suggests that copying rights may
lead to observational exposure and proposes that the rights instead
be split. Only the one with a complete set of rights may modify
an object. SafeJava does not support borrowing to immutables and
hence cannot model fractional permissions. It is unclear how al-
lowing borrowing to immutables in SafeJava would affect the sys-
tem, especially in the presence of inner classes which can break the
owners-as-dominators property of deep ownership types.

In order to be able to retrieve writable objects from a read-only
list, the elements in the list cannot be part of the list’s represent-
ation. Joe3, Universes, Jimuva and SafeJava can express this in
a straightforward fashion, by virtue of ownership types. However,
only our system, because of owner nesting information, can have
two non-sibling lists sharing mutable data elements. Javari and IGJ
have taken a more ad hoc course introducing mutable fields. It is
possible in those systems to circumvent read-only if an object stores
a reference to itself (or an object that does so) in a mutable field.

Flexible Alias Protection Modes The five alias modes proposed
by Noble et al [27] were discussed in Section4.3, where we also
describe how these can be (partially) encoded in our system. Here
we only describe how the modes have been interpreted for the
purpose of the table (Table2). The rep mode denotes a reference
belonging to the representation of an object and should not be
present in the interface. A defensive interpretation ofarg is that all
systems that have object or class immutability partially supportarg,

3 An object external to another object.

Feature Jo
e 3

S
af

eJ
av

a
[4]

U
ni

ve
rs

es
[24

, 1
6,

15
]

Ji
m

uv
a

[1
8]

Ja
va

ri
[3

1]

IG
J

[3
5]

M
od

eJ
av

a
[28

, 2
9]

JA
C

[2
1,

20
]

Expressiveness
Staged constr. of immutables

√ √
× × × × × ×

Fractional permissions
√

× × × × × × ×
Non rep fields

√ √1 √1 √1 ×2 ×2 × ×

Flexible Alias Protection Modes

arg
√3 ×4 × ×4 ×4 ×4 ×4 ×

rep
√ √ √ √

× × × ×
free

√ √ √9 × × × × ×
val 5 × × × × × × × ×
var

√ √ √ √ √ √ √ √

Immutability

Class immutability
√

× ×
√ √ √

×6 ×6

Object immutability
√ √

×
√

×
√

× ×
Read-only references

√
×

√
×

√ √ √ √

Context-based immutability
√

×
√

× ×7 ×7 ×7 ×

Confinement and Alias Control
Ownership types

√ √ √ √
× × × ×

Owner-polymorphic methods
√ √ √ √

× × × ×
Owners-as-modifiers × ×8 √

× × × × ×
Unique references

√ √ √
× × × × ×

Table 2. Brief overview of related work.1) not as powerful as there
is no owner nesting; two non sibling lists cannot sharemutable
data elements;2) mutable fields can be used to store a reference
to this and break read-only;3) see Section4.3; 4) no modes
on owners, and hence no immutable parts of objects;5) none
of the systems deal with value semantics for complex objects;
6) if all methods of a class are read-only the class is effectively
immutable;7) limited notion of contexts viathis-mutability; 8)
allows breaking of owners-as-dominators with inner classes and
it is unclear how this interplays with immutables;9) support is
forthcoming [25].

but only our system can have parts of an object being immutable.
Thefreealiasing mode, interpreted as being equal to uniqueness, is
supported by our system and SafeJava. None of the systems handle
value semantics for complex objects and thus not theval mode
(even though Javari include Java’s primitive types in their system).
Thevar aliasing mode expresses non-rep references which may be
aliased and changed freely as long as they do not interfere with the
other modes, for example, in assignments.

Immutability Immutability takes on three forms inclass immut-
ability, where no instance of a specific class can be mutable,object
immutability, where no reference to a specific object can be mut-
able andread-onlyor reference immutability, where there may be
both mutable and read-only aliases to a specific object.

Universes and our system provide what we call context-based
immutability. In these two systems it is possible to create a writable
list with writable elements and pass it to some other object to
whom the elements are read-only. This other object may add new
elements to the list which will be writable by the original creator
of the list. The other systems in our table do not support this as
they cannot allowe.g.,a list of writeables to be subsumed into a
list of read-only references. In these systems, this practice could
lead to standard covariance problems—adding a supertype to a list

27

containing a subtype. Javari, IGJ and ModeJava all have a notion
of this-mutable fields which inherit the mode of the accessing
reference. This counts for some notion of context, albeit an ad
hoc and inflexible one. In ModeJava a read-only list cannot return
writable elements. In Javari and IGJ, this is only possible if the
elements are stored in mutable fields, which causes other problems
as discussed above.

Confinement and Alias Control Joe3, SafeJava, Universes and
Jimuva all support ownership types. This is what givesJoe3 and
Universes its context-based immutability. SafeJava and Jimuva,
despite having ownership types, do not have context-based immut-
ability due to their lack of read-only references. Universes is the
only system supporting the owners-as-mutators property, meaning
that representation exposure is allowed for read-only references.

Other approaches to confinement and alias control include Con-
fined Types [3, 34], which constrain access to objects to from
within their package. Bierhoff and Aldrich recently proposed a
modular protocol checking approach [2] based on typestates. They
partly implement Boyland’s fractional permissions [7] in their ac-
cess permissions.

Object-Oriented Regions and Effects systemsLeino [22], Green-
house and Boyland [17] and (to some degree) Aldrich and Cham-
bers [1] take a similar approach to dividing objects into regions,
and using method annotations to specify which parts of an object
may be modified by a specific method. Adding effects to owner-
ship, a la Clarke and Drossopoulou’sJoe1 [11], gives a stronger
notion of encapsulation and enables more accurate description of
effects. The addition of scoped regions to our system (c.f.,Section
4.2), combines both of these approaches.

Effect systems were first studied by Lucassen and Gifford [23]
and Talpin and Jouvelot [30].

6. Future Work
6.1 Safe Representation Exposure

Müller and Poetzsch-Heffter’s Universe system [24] allows repres-
entation exposure in a safe way (Boyland might disagree)—an ob-
ject’s representation can be exposed outside the object, but only via
read-only references.

Extending our system to allow rep exposure for non-mutables
will probably require an additional type that may only appear in
contexts where its owner is read-only or immutable, but allows any
valid owner in scope to be used as the owner of the type. This is a
direction for future work.

6.2 Inheritance

Extending our system with inheritance is one of the next directions
this research will take. We believe this to be a straightforward ex-
tension. Ownership, uniqueness and owner-polymorphic methods
are already shown to work in the presence of inheritance [32], sub-
typing and downcasts [5, 33].

In the simplest way, for ourJoe3-specific extensions, an over-
riding method must revoke (at least) the same rights as the method
it overrides, and argument and parameter types must be invariant
and modes on owners must be preserved in subclasses.

7. Concluding Remarks
We have proposedJoe3, an extension ofJoe1 andJoline with ac-
cess modes on owners that can encode class, object and reference
immutability, fractional permissions and context-based ownership
with surprisingly little syntactical overhead. Future work will see
a complete formalisation of the system, extended with inheritance
and regions, including a dynamic semantics, and appropriate im-
mutability invariants and soundness proofs.

References
[1] Jonathan Aldrich and Craig Chambers. Ownership domains:

Separating aliasing policy from mechanism. In Martin Odersky,
editor,Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 3086 ofLecture Notes in Computer
Science, pages 1–25, Oslo, Norway, Jan 2004. Springer Verlag.

[2] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of
aliased objects. Submitted to OOPSLA 2007.

[3] Boris Bokowski and Jan Vitek. Confined Types. InProceedings of
the OOPSLA Conference on Object-Oriented Programming, Systems,
Languages and Applications, 1999.

[4] Chandrasekhar Boyapati.SafeJava: A Unified Type System for Safe
Programming. PhD thesis, Electrical Engineering and Computer
Science, MIT, February 2004.

[5] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Safe
runtime downcasts with ownership types. In Dave Clarke, editor,
International Workshop on Aliasing, Confinement and Ownership in
Object-oriented Programming, UU-CS-2003-030. Utrecht University,
July 2003.

[6] John Boyland. Alias burying: Unique variables without destructive
reads. Software — Practice and Experience, 31(6):533–553, May
2001.

[7] John Boyland. Checking interference with fractional permissions.
In R. Cousot, editor,Static Analysis: 10th International Symposium,
volume 2694 ofLecture Notes in Computer Science, pages 55–72,
Berlin, Heidelberg, New York, 2003. Springer.

[8] John Boyland. Why we should not add readonly to Java (yet).Journal
of Object Technology, 5(5):5–29, June 2006. Special issue: ECOOP
2005 Workshop FTfJP.

[9] John Boyland, James Noble, and William Retert. Capabilities
for Sharing: A Generalization of Uniqueness and Read-Only.
In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 2072, June 2001.

[10] David Clarke. Object Ownership and Containment. PhD thesis,
School of Computer Science and Engineering, University of New
South Wales, Sydney, Australia, 2001.

[11] David Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. InProceedings of the OOPSLA
Conference on Object-Oriented Programming, Systems, Languages
and Applications, November 2002.

[12] David Clarke, John Potter, and James Noble. Ownership types
for flexible alias protection. InProceedings of the OOPSLA
Conference on Object-Oriented Programming, Systems, Languages
and Applications, 1998.

[13] David Clarke and Tobias Wrigstad. External uniqueness. In10th
Workshop on Foundations of Object-Oriented Languages (FOOL),
New Orleans, LA, January 2003.

[14] David Clarke and Tobias Wrigstad. External uniqueness is unique
enough. InProceedings of the 17th European Conference on Object-
Oriented Programming (ECOOP), Darmstadt, Germany, 2003.

[15] W. Dietl, S. Drossopoulou, and P. M̈uller. Generic Universe
Types. In E. Ernst, editor,European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Science.
Springer-Verlag, 2007. To appear.

[16] Werner Dietl and Peter M̈uller. Universes: Lightweight Ownership
for JML. Journal of Object Technology, 4(8):5–32, 2005.

[17] Aaron Greenhouse and John Boyland. An object-oriented effects
system. InECOOP’99 — Object-Oriented Programming, 13th
European Conference, number 1628 in Lecture Notes in Computer
Science, pages 205–229, Berlin, Heidelberg, New York, 1999.
Springer.

[18] Christian Haack, Erik Poll, Jan Schäfer, and Aleksy Schubert.
Immutable objects for a Java-like language. In Rocco De Nicola,
editor, 16th European Symposium on Programming (ESOP’07),

28

volume 4421 ofLNCS, pages 347–362. Springer, March 2007. Won
the ETAPS award for the best theory paper at ETAPS.

[19] John Hogg. Islands: Aliasing protection in object-oriented languages.
In Proceedings of the OOPSLA Conference on Object-Oriented
Programming, Systems, Languages and Applications, November
1991.

[20] Günter Kniesel and Dirk Theisen. JAC – Java with transitive readonly
access control. InIntercontinental Workshop on Aliasing in Object-
Oriented Systems, At ECOOP’99, Lisbon, Portugal, June 1999.

[21] Günter Kniesel and Dirk Theisen. JAC—access right based
encapsulation for Java.Software — Practice and Experience,
31(6):555–576, May 2001.

[22] K. Rustan M. Leino. Data Groups: Specifying the Modification
of Extended State. InProceedings of the OOPSLA Conference on
Object-Oriented Programming, Systems, Languages and Applica-
tions, 1998.

[23] John M. Lucassen and David K. Gifford. Polymorphic effect systems.
In Proceedings of the Eighteenth Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, January 1988.

[24] P. Müller and A. Poetzsch-Heffter. Universes: A type system for
controlling representation exposure. In A. Poetzsch-Heffter and
J. Meyer, editors,Programming Languages and Fundamentals of
Programming. Fernuniversiẗat Hagen, 1999.

[25] P. Müller and A. Rudich. Ownership transfer in Universe Types. In
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), 2007. To appear.

[26] Peter M̈uller. Modular Specification and Verification of Object-
Oriented Programs. PhD thesis, FernUniversität Hagen, 2001.

[27] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
Eric Jul, editor,ECOOP’98—Object-Oriented Programming, volume
1445 ofLecture Notes In Computer Science, pages 158–185, Berlin,
Heidelberg, New York, July 1998. Springer-Verlag.

[28] Mats Skoglund and Tobias Wrigstad. A mode system for read-only
references in Java. InFormal Techniques for Java Programs, in
Conjunction with ECOOP 2001, Budapest, Hungary, 2001.

[29] Mats Skoglund and Tobias Wrigstad. Alias control with read-
only references. InSixth Conference on Computer Science and
Informatics, March 2002.

[30] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and
effect inference.Journal of Functional Programming, 2(3):245–271,
July 1992.

[31] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference
immutability to Java. InObject-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2005), pages 211–230, San
Diego, CA, USA, October 18–20, 2005.

[32] Tobias Wrigstad.Ownership-Based Alias Management. PhD thesis,
Department of Computer and Systems Science, Royal Institute of
Technology, Kista, Stockholm, May 2006.

[33] Tobias Wrigstad and Dave Clarke. Existential owners for ownership
types.Journal of Object Technology, 6(4):141–159, May–June 2007.
Available fromhttp://www.jot.fm/issues/issue 2007 03/
article5.

[34] Tian Zhao, Jens Palsberg, and Jan Vitek. Type-based confinement.
In Journal of Functional Programming, volume 15(6), pages 1–46,
2005.

[35] Yoav Zibin, Alex Potanin, Shay Artzi, Adam Kieżun, and Michael D.
Ernst. Object and reference immutability using Java generics.
Technical Report MIT-CSAIL-TR-2007-018, MIT Computer Science
and Artificial Intelligence Laboratory, Cambridge, MA, March 16,
2007.

29

http://www.jot.fm/issues/issue_2007_03/article5
http://www.jot.fm/issues/issue_2007_03/article5

	Introduction
	Our Contributions
	Why We Could Add Read-Only To Java (Almost)

	Meet
	Motivating Examples
	A Mutable List With Immutable Contents
	Context-Based Read-Only
	Borrowing Blocks and Owner-polymorphic Methods
	Immutability
	Fractional Permissions
	Initialisation of Immutable Objects

	A Formal Definition of
	's Static Semantics
	Brief Explanation of the System
	Type Checking Figure 1
	Trapping Writes in a Read-Only Context

	Potentially Identical Owners with Different Modes
	Soundness of

	Extensions and Encodings
	Immutable Classes
	Regions
	Encoding Modes from Flexible Alias Protection

	Related Work
	Future Work
	Safe Representation Exposure
	Inheritance

	Concluding Remarks

