
Using ownership types to support library aliasing boundaries

Luke Wagner Jaakko Järvi Bjarne Stroustrup
Texas A&M University

{lw,jarvi,bs}@cs.tamu.edu

Abstract
This paper describes a library for concurrency used in a 10-
developer videogame project. The developers were inexperienced,
yet there were no problems with data races in the multi-threaded
application. We credit this to the explicit representation of own-
ership in the design of the library. Correct library usage implies
aliasing boundaries which bear a strong resemblance to the owners-
as-dominators property enforced by ownership types. We explore
other situations where analogous aliasing boundaries exist and dis-
cuss a family of related libraries that could benefit from a design
explicitly representing ownership. The ownership relations in the
library currently have no support from the type system. We exam-
ine approaches to embed static checking of the aliasing boundaries
in our implementation language, C++.

Categories and Subject DescriptorsD.1.3 [Software]: Program-
ming Techniques—Concurrent Programming; D.3.3 [Software]:
Language Constructs and Features—Control structures

General Terms Design

Keywords Ownership types, C++, Data Races, Concurrency

1. Introduction
In research on type systems for object-oriented languages, an im-
portant property of interest is local reasoning. The challenge lies in
the fact that an object’s state is comprised not only of its immedi-
ate data members, but also the transitive closure of all the states of
the objects on which it depends [1]. To provide a “deeper” form of
encapsulation than directly supported by current languages, own-
ership types [2, 3] allow a class to identify its dependencies on
other objects and then prevent outsiders from acquiring references
to those dependencies. With these limitations on aliasing, it is pos-
sible to reason about the correctness of a class by looking only at
the code for that class and its dependencies.

However, local reasoning for the programmer is not the only
benefit from using aliasing boundaries. Researchers have demon-
strated that higher-level program guarantees can be made by build-
ing on ownership type systems [4–8]. This paper presents an ad-
ditional example where aliasing boundaries in a program can be
beneficial: a library for concurrency developed and successfully
used in a large student videogame project. We show that the ali-
asing boundaries required for correct library usage strongly re-
semble the owners-as-dominators property enforced on an object
graph by ownership types [2]. Based on this, the paper presents a
method by which code using the library could be checked using
ownership types.

Based on the positive experience with the concurrency library,
this paper considers a family of related libraries that could benefit
from a similar approach. Together, these libraries can be seen as
the decomposition of the separation facilities built into a traditional
process, so that each individual separation facility may be applied
at the sub-process level.

In sum, this paper is an experience report and a position pa-
per that (1) describes a set of library abstractions and program-
ming conventions that restrict aliasing in order to guarantee the ab-
sence of data-races; (2) identifies the correspondence of the aliasing
boundaries required by the library with those expressed with own-
ership types; (3) describes the type system extensions necessary to
move from a documented usage rule to statically ensuring that ali-
asing boundaries are respected; (4) outlines an economical imple-
mentation approach to embed those extensions into standard C++,
by inspecting the program’s AST with an extended type checker;
and (5) identifies the aliasing boundaries discussed as a general pat-
tern for a related class of libraries, justifying the effort to develop
the checking mechanisms.

This paper is organized as follows. Section 2 describes the
concurrency library and Section 3 how ownership types can be used
to check its correct use. Section 5 discusses the C++ embedding,
and the other libraries that could benefit from the same technique.
Section 6 mentions related work. Section 7 concludes and discusses
future plans.

2. The Library
This section describes a simple concurrency library that was de-
veloped for a videogame project written in C++. The game is called
“...and then the World was Consumed by Monsters” and can be
downloaded from the development team’s website [9]. The project,
organized by the Texas Aggie Game Developers, included 10 un-
dergraduate student developers over a period of 6 months with no
other experienced oversight. Thus, simplicity and understandability
were key to the success of the project.

In the videogame development community, amateurs are often
strongly discouraged from using concurrency by the more experi-
enced because of the difficult class of bugs it can introduce. How-
ever, several game constraints made it necessary to offload com-
putation and blocking API calls to other threads. First, as with
most interactive videogames, there is an underlying rendering loop
which repaints the screen. To maintain a visually smooth anima-
tion, each frame should take less than 30 ms. Second, the game
allows the user to control a character that roams around a virtual
world. The representation of the virtual world can be much larger
than what fits in memory. This requires the world to be cut into
smaller chunks which contain all the geometry, collision data, and
creatures for a small area of the world. As the user moves into new
areas, chunks get loaded and dropped, which requires I/O oper-
ations to load the memory, OS, and graphics resources for those
chunks. Since some of these operations do not provide an asyn-
chronous option and can have a high latency, most videogames
either try to perform them all at once before the game starts or
batch the operations and stall the user at chosen points when ex-
ecuting the batch. Such stalls did not fit nicely into the gameplay,
so a separate thread was needed to handle concurrent world load-
ing.

63



Figure 1. Travelling object with a tether, demonstrating the three
states 1–3 of the Job object.

The same mechanism used for loading was later expanded to
simplify AI programming. Here, the problem is a possibly expens-
ive algorithm to find a path between two points. While the al-
gorithm could be extended to moderate its execution time, a simpler
approach is sending requests for computation to another thread with
a lower priority. Thus, for slower machines where rendering takes
a greater percentage of the time, enemies will simply take longer
to decide where to go instead of hurting the framerate. An obvious
additional benefit is the ability to utilize multiple hardware threads.

To avoid requiring the rest of the program to deal with shared
mutable data and locking, the model for concurrency was based on
the communicating sequential processes (CSP) metaphor (where
CSP processes are just threads and the shared address space is not
explicitly used). When extended to object-oriented programming,
all objects are understood to belong to a single thread and mes-
sages between threads take the form of objects that can dynamic-
ally change membership. Objects that are allowed to change mem-
bership are calledtravelling objectsand all others are calledlocal
objects.

A common need in the project was for a travelling object to
create a reference to a local object, travel to a different thread
to do some work, and then return to the original thread to use
the reference. The synchronization implied by travelling prevents
such behavior from being a data race. However, the situation is
complicated by the fact that the local object may be destroyed
while the travelling object is away. In a single-threaded scenario,
a weak pointerlibrary primitive comparable, e.g., to Boost weak
pointer [10], is used when the pointee is allowed to be destroyed
while another objects points to it. Although, the weak pointer
implementation could have been extended to be made thread-safe,
at the expense of synchronization overhead for all operations, this
is more powerful than is necessary: a weak pointer maintains the
liveness of the local object while the travelling object is in other
threads. All a travelling object needs is to discover, when it returns,
if the pointee has been destroyed in the interim.

To address the need for a simplified cross-thread weak pointer,
the thread library provides a new, thread-aware smart pointer called
a tether. Taking advantage of a tether’s restricted semantics, the
library is able to use the synchronization points already in place for
transferring travelling objects between threads to keep the tethers
coherent when they change threads.

Figure 1 demonstrates a typical usage scenario for a tether. In
the figure: labels 1-3 show three steps in execution, the solid ar-
rows represent normal references, and the dashed arrows represent
tethers. In this scenario, aMonster local object needs a path in or-
der to attack the player. Since the path finding algorithm should not

be run in the rendering thread, theMonster creates aJob object (1)
and ships it off to do the work in another thread. Before leaving, the
Job creates a tether to theMonster. Next, theJob arrives (2) and is
given a temporary local reference to theData object which it can
use to do the path finding computation. While in a different thread
than theMonster, the tether held by theJob cannot be dereferenced.
After Job finishes and returns to the original thread (3), it uses the
tether to check whether the tetheredMonster is still alive, and if so,
theJob hands over the computation results.

Although more general usage of travelling objects could be
supported using these library metaphors, the functionality required
by the project only needed threads to act like assembly lines which
processed jobs FIFO in the manner just described. Accordingly,
AssemblyLine is the library primitive for creating such threads:

template <class GenericHost>
class AssemblyLine {

GenericHost ∗host;
public:

...
void send(typename GenericHost::Guest ∗);
void receive returning();

};

SinceAssemblyLine does not know what to do with travelling
objects, it is parametrized by aGenericHost. The host’s responsib-
ility is to receive incoming travelling objects and to provide them
access to the necessary local data structures. Additionally, the type
of travelling objects is determined by theGuest associated type of
GenericHost. After starting a new OS thread in its constructor, an
AssemblyLine will create an instance ofGenericHost, which will be
the first client object local to the new thread. To allow returning
travelling objects to reenter the thread, the main thread synchron-
izes withAssemblyLine by callingreceive returning().

To give a better idea of the library’s use, we now walk through
some skeleton code using the library in the path finding scenario.
At the top-level of the application, aGame is created which, in turn,
creates anAssemblyLine:

class Game {
AssemblyLine<Host> ai thread;
...

public:
void run() {

while (!quit) {
...
ai thread.receive returning();

}
}

};
int main() {

Game g;
g.run();

}

Whenai thread is destroyed byGame, job processing will be
stopped, all pending jobs will be deleted, and the OS thread will
be released.Host parametrizesAssemblyLine and holds the path
finding data that is needed byJobs:

class Host {
Data data;

public:
typedef Job Guest;
void arrived(Job &guest) {

guest.do work(data);
}

};

When a travelling object is sent from the main thread and gets
pulled off the queue byAssemblyLine’s thread, it is handed over

64



to Host by callingarrived(). Whenarrived() returns,AssemblyLine
will send the travelling object back to the main thread. In addition
to being compatible withHost::Guest, a travelling object’s class
must inherit from theTravellerBase library base class:

class Job : public TravellerBase {
Tether<Monster> tether;
...

public:
Job(Monster &m, ...) : tether(create tether(m)) { ... }
void do work(Data &);
void welcome back() {

if (tether)
tether−>found path(...);

}
};

Travelling objects can choose to have any number of tethers
to local objects using theTether template class, parametrized
by the type of the pointee.Tether follows the C++ smart pointer
idiom and guards access to the pointee throughoperator−>(). For
AssemblyLine andTether to cooperate in keeping the tether coher-
ent when it changes threads, construction ofTether is abstracted
by the create tether() protected member function inherited from
TravellerBase. When a travelling object is accepted back into the
main thread,welcome back() is called.Job can then safely use its
Tether after testing that theMonster object it was pointing to has
not been destroyed.

Finally, usingJob in Monster is fairly simple:

class Monster {
AssemblyLine<Host> &ai thread;
...

public:
...
void think() {

if (... I want to attack ...)
ai thread.send(new Job(∗this, ...));

}
void found path(...);

};

The project did not needJob objects after they returned to the
main thread, so theAssemblyLine takes the liberty of deleting them.
Altogether, the end-to-end order of function calls corresponding
to Figure 1 is:Monster::think(), Job::Job(), AssemblyLine::send(),
Host::arrived(), Job::do work(), AssemblyLine::receive returning(),
Job::welcome back(), Monster::found path(), Job::˜Job().

Although message-based schemes are often viewed as more
complex than shared-memory schemes when used for low level
parallel programming, as used in the videogame project for simple
task-level parallelism, we found the message-passing approach to
be a clear mental model of concurrent execution for the program-
mer compared to shared memory with locking. Programming with
this model, we did not experience data races. This could be attrib-
uted to the smaller scale of the student project, or the fear of con-
currency imbued in the team by horror stories, but we believe the
library design was an important part.

3. Checking Usage
The library described in Section 2 helps programmers by providing
a simple mental model and set of tools for programming concur-
rency. This section describes how the type system could be enlisted
to help as well. What is described is a correspondence between
ownership typing judgements and aliasing restrictions in the con-
currency library. The code shown is what the ownership type sys-
tem needs to see, not what needs to be written in the actual C++
code. A lightweight embedding in C++ is discussed in Section 4.
The syntax used to express the ownership typing concepts is based

on Joline [11] and Ownership Generic Java (OGJ) [3]. In some
places, features of C++ will be mixed in where they are needed
by the library.

Another point to clarify is the meaning ofownership. Owner-
ship types are traditionally presented in the context of a language
with garbage collection and so the main issue is accessibility. How-
ever, in the context of C++, ownership can also refer to the respons-
ibility of an object to manage the lifetime of the resources it owns.
This paper limits its discussion of ownership to issues of accessib-
ility; static guarantees involving object lifetimes are not addressed.

This section first discusses the basics of ownership types and
then describes how they can be used by each piece of the library.

3.1 Background

Ownership types can be used to statically limit what references
are allowed between objects. Considering objects and their refer-
ences as a graph, ownership types allow the user to draw boundaries
around parts of the graph, limiting incoming references. What fol-
lows is a brief explanation of how this is accomplished. Although it
sounds like extra runtime state and checking is being added, none
of it is needed after type checking; the runtime behavior of the pro-
gram is not modified.

First, every object is given a uniqueownership context. An own-
ership context can be thought of as a value of an opaque type. The
only purpose of an ownership context is to be part of the type of an
object. An object’s class is augmented to take, as a generic para-
meter, the ownership context of some other object, which becomes
its owner. Because ownership contexts are values, this creates a
relation between objects, not types. Additionally, there is an om-
nipresent, disembodiedworld ownership context which is not as-
sociated with any object. Because an owner has to be constructed
before the objects it owns, ownership is acyclic. Furthermore, all
objects have exactly one owner, so the ownership relation forms a
tree rooted atworld.

For an object to hold or use a reference to another object, static
type checking demands that the reference have a type. Ownership
types limit aliasing by controlling what types can be constructed:
if a type cannot be named, the reference cannot be held. Because
ownership contexts have been embedded in types, controlling ali-
asing reduces to controlling what objects have access to what own-
ership contexts.

Ownership contexts are accessible in a few ways. As the base
case: every object can access its own ownership context using the
overloadedthis keyword; theworld ownership context can be ac-
cessed usingworld keyword; and an object can access its owner’s
ownership context using theowner keyword. Next, ownership types
allow an arbitrary number of extra ownership contexts to be passed
to an object, as type parameters, with the restriction that all para-
meters are ancestors of theowner in the ownership tree.

The following code snippet shows an example of these concepts
in the syntax of the Joline language [11]:

class Bar {}
class Foo<P1 outside owner> {

this:Bar owned by me;
owner:Bar owned by my owner;
owner:Foo<P1> same type as me;
this:Foo<owner> can access my siblings;

}

Because every class must take an owner parameter, Joline makes
the owner parameter implicit. Other ownership parameters are de-
clared between angle brackets, like type parameters. Ownership
parameters are bounded to beoutsideother parameters (meaning
an ancestor in the ownership tree), withowner as the most general
bound. When supplying the actual parameters to a class, the owner

65



Figure 2. Examples of aliases allowed and not allowed by ownership types

is also distinguished from the other parameters by placing it before
the type, separated by a colon.

Figure 2 illustrates the effect of ownership typing on the object
graph. Diagram 1 shows the use of onlythis, owner, andworld.
Nodes represent objects and are labelled with the object’s class.
Arrows represent references between objects and are labeled with
the type of the reference. Thus, the arrow labeledthis:C indicates
that the object of classC is owned by the object of classA.

The second diagram shows how additional ownership paramet-
ers can allow objects to access the ownership contexts of owners
higher up in the ownership tree. For example,E can referenceD
becauseE has access to the ownership context ofD’s owner,B.
The identifier in parenthesis is the name of the formal parameter.

The third diagram shows references that are not allowed based
on the ownership tree. Looking at the pattern of what references
are and are not allowed, we can see one-way boundaries emerge
on the object graph (drawn by the dotted lines). Visualizing these
boundaries can help in understanding ownership types. A more
formal statement is that ownership types guarantee theowners-as-
dominatorsproperty on the object graph: an owner is a dominator
on the path fromworld to all objects it transitively owns [2].

This forms the core of ownership types. On top of this, there
are three additional extensions that need to be discussed. The first
is the ability to parametrize a class by another class. OGJ allows
type parameters and ownership parameters to be mixed compactly
as follows:

class Box<Node extends Object<NodeO>> {
Node held in box;

}

In this code,NodeO is the owner ofNode and can be used to
instantiate new classes. However, a subtle result of OGJ’s treat-
ment of ownership parameters and Java’s type erasure semantics
for generics is thatNode represents a class that has already been
instantiated with an owner. This means it is an error to try to give it
a new type because:

class Outside<Inside extends Object<O>> {
this:Inside mine; // wrong

}

really means (swapping the formal parameterInside with the actual
parameterSomeType):

class Outside<Inside extends Object<O>> {
this:O:SomeType mine; // wrong: two owners

}

and supplying two owners is obviously wrong. What is needed is to
pass an uninstantiated class that can be instantiated with arbitrary
ownership parameters. This would be analogous to the “template
template parameter” mechanisms in C++ and will be denoted in the
parameter list by using theclass keyword:

class Outside<class Inside> {
this:Inside mine; // OK: Inside not already instantiated

}

Uninstantiated class parameters will be used extensively by the
library types in the next section.

Another extension, which is also part of OGJ ismanifest owner-
ship. This allows a class to hard-code its owner by inheriting from
a class instantiated with an owner:

class Foo extends world:Object { ... }

Written this way,Foo cannot be given an owner and will be the
sibling of allFoos in the ownership tree.

The last extension is owner polymorphic methods, which are
part of Joline. This feature is one of several extensions which offer
“principled violations of the ownership type system” (e.g., as de-
scribed in [12]). Generally, such extensions are included to support
common constructs such as iterators [13]. An owner polymorphic
method lets the caller give the callee access to an ownership context
for the duration of the call:

class Person {
<You inside world> void lend(You:Gold yours) {

You:Gold local ref = yours;
// mine = yours; (error)

}
this:Gold mine;
// You:Gold stolen; (error)

}

This example shows howYou is only available for the duration
of the call, so references to theYou:Gold cannot live past the
call. This gives the concurrency library a tool to allowtemporary
aliasing between two objects dynamically determined to be in the
same thread without the possibility that a reference will escape.

66



The height of the ownership tree described in this section is at
most three. This might suggest a lighter-weight type system, like
Universes [14], to achieve the same static guarantees. However, (1)
the extensions used are based on an ownership type system, and (2)
using this library in combination with similar libraries, as described
in Section 5, involves nesting, which creates more complicated
ownership trees requiring the full owners-as-dominators guarantee.

3.2 Typing

This section describes how the concurrency library can use own-
ership types as a tool to prevent data races, analogous to how a
library can useconst or accessibility modifiers to prevent clients
from modifying returned references or accessing implementation
details. The facility that ownership types add is statically enforced
aliasing boundaries. By creating aliasing boundaries around threads
and travelling objects, the concurrency library can guarantee to the
library user:if you can hold a reference to an object, it is safe to
access it.

The first step is to disallow client usage ofworld, which would
allow allows client code to make and reference objects that are not
local to any thread. The library types that are roots of the various
ownership subtrees can then use the manifest ownership feature
described in Section 3.1 to allow creation by library users without
mentioningworld. We can now revisit the parts of the ownership
library that were introduced in Section 2. First, we consider the
modifiedAssemblyLine:

class AssemblyLine<class GenericHost> extends world:Object {
this:GenericHost host;

public:
void send(Traveller<GenericHost::Guest>);
void receive returning();

}

AssemblyLine takes an uninstantiatedGenericHost parameter
and instantiates it withthis. Without theworld ownership context
available, all objects created byhost will necessarily be owned
by theAssemblyLine. To guarantee that only travelling objects get
moved between threads,send() only accepts theTraveller wrapper
type, which is shown next:

class Traveller<class TravObjT> extends world:Object {
this:TravObjT obj;

public:
<O inside world> Traveller(O:TravObjT::InitArgs a) {

obj = new<O> this:TravObjT(this, a);
}
<O inside world, class LocObjT>
this:Tether<LocObjT> create tether(O:LocObjT);

}

Traveller uses the same technique asAssemblyLine for owning
a generic object. However,TravObjT cannot be default constructed
like GenericHost, so Traveller takes in generic initialization data
to pass toTravObjT’s constructor. Sincecreate tether() returns a
Tether owned bythis, only travelling objects can create tethers. To
prevent direct construction,Tether has a private constructor:

class Tether<class PtrT> {
// private constructor, only available to friend Traveller
PtrT ptr;

public:
bool alive();
void request access(owner:TetherUser<PtrT> p) {

if (... same thread ...)
p.access granted(ptr);

else
... error

}
}

interface TetherUser<class PtrT> {
<O inside world> void access granted(O:PtrT);

}

Tether’s main job is to guard access to the pointee. To do
this, Tether requires that its users implement theTetherUser in-
terface. Similar to the double virtual dispatch in the Visitor pat-
tern, access granted() gets called byTether in response to call-
ing request access(). This approach does three things forTether:
first, it lets Tether dynamically guard access to the reference;
second, the owner polymorphic methodaccess granted() allows
Tether to prevent the given reference or any copies from outliving
access granted(); and third,Tether knows the duration of the ref-
erence’s visibility and can thus prevent the travelling object from
getting sent to another thread somewhere in the call stack.

As shown in theTether pseudo-code, the library implementa-
tion ignores ownership types internally:Tether stores a plain ref-
erence to the object and callsaccess granted() without any owner-
ship context. This is similar in spirit to how, for example, a C++
std::vector presents a typed container interface to its users, but
internally works withmalloc()s, void∗s, andmemcpy()s. As with
world, this exemption should only exist for classes that are part of
the library.

Lastly, client objects in the main thread need an owner. Without
world and starting in the non-membermain() function, however,
there is no way to create objects. Following the same pattern as
AssemblyLine andTraveller, MainThread allows the client to gen-
erically embed an object which will be owned by theMainThread
object:

class MainThread<class ClientMain> extends world:Object {
this:ClientMain host = new this:ClientMain;

public:
int main() { return host.main(); }

}

With the library types covered, we can now consider what
ownership types are needed for the user’s code. TheHost needs
to modify its arrived() member function which gets called by
AssemblyLine to reflect that it can only reference the arrived travel-
ling object temporarily:

class Host {
owner:Data data;

public:
typedef Job Guest;

<O inside world> void arrived(O:Job guest) {
guest.do work<owner>(data);

}
}

The data member is a local object, so it is owned by the
AssemblyLine. To pass a reference to theJob, Host needs to pass
owner as well. As the travelling object,Job requires the most modi-
fications:

class JobArgs {
...
owner:Monster m;

}

class Job implements TetherUser<Monster> {
owner:Tether<Monster> tether;

public:
typedef JobArgs InitArgs;

<O inside world> Job(Traveller t, O:JobArgs j) {
tether = t.create tether<O,Monster>(j.m);

}

67



<O inside world> void do work(O:Data d);

void welcome back() {
tether.request access(this);

}
<O inside world> void access granted(O:Monster m) {

m.found path(...);
}

}

First, to support initialization in the genericTraveller, Job has to
specify what data it needs with theJobArgs class andInitArgs asso-
ciated type.Job also receives its owningTraveller as a constructor
parameter, which it uses to create a tether. Inwelcome back(),
Job calls request access(), passing itself to be the receiver of the
access granted() call. Instead of creating aJob directly, Monster
now makes aTraveller:

class Monster {
AssemblyLine<Host> ai thread;

public:
void think() {

if (... I want to attack ...)
ai thread.send

(new Traveller<Job>(new owner:JobArgs(this)));
}
void found path(...);

}

Having theJob embedded in theTraveller preventsMonster from
holding any references to the travelling object when it leaves.

In summary, the library requires all user objects to be owned by
a library object. User objects that share the same owner are static-
ally guaranteed to be in the same thread. Additionally, objects that
are temporarily in the same thread can be allowed to reference each
other in a controlled manner using owner polymorphic methods. A
key part of this approach is that ownership types are not modified
to include concepts of thread, local, travelling, and tethers. Rather,
these concepts are in the library, which then uses ownership types
as a tool for library design.

4. Embedding Ownership
Section 3 demonstrates how the primitives provided by the concur-
rency library of Section 2 could be checked if everything is written
in an idealized language with ownership types. What is needed is
a translation to this checkable form from Standard C++. We do not
have such a translation implemented, however we outline what we
believe is a promising approach to a minimal embedding in the lan-
guage.

The first problem to address is how to attach ownership to
references. In the simplest case, no annotation is needed at all.
First, references to the library types that use manifest ownership
(AssemblyLine, Traveller, andMainThread) do not need any own-
ership parameters. Next, when an owner is needed,owner may be
used as a default. Defaulting has already been applied to Owner-
ship Generic Java [15] to allow Generic Java programs to compile
unmodified. For users of the concurrency library, code that does not
deal with travelling objects will only refer to objects owned by the
same thread. Thus, depending on how much code deals with con-
currency, havingowner be the default can eliminate much of the
need for annotations.

When the default does not work, the programmer needs to
make an annotation. There are many ways a programmer could
make explicit the intent that a pointer or reference should represent
ownership. The goal is to allow programmers and tools to verify
that the ownership rules are obeyed. The most primitive approach
is to use a special class of names for variables such as:

Foo ∗this owned a;
Foo ∗owner owned b;

where portions of identifiers are used as cues. Another approach
is annotations in smart comments, which is the approach used by
Universes [14]:

/∗∗ this: ∗/Foo ∗a;
/∗∗ owner: ∗/Foo ∗b;

However, the least intrusive interface to an analysis tool is a trivial
template wrapper, such as:

this owned ptr<Foo> a;
owner owned ptr<Foo> b;

The templates are defined as any other template, using the
standard syntax of C++. The type checker, however, can recognize
the templates as an explicit ownership annotation. In addition to
providing a solid handle for an analysis tool to work on, the wrap-
pers can naturally introduce or remove operations on the wrapped
type. The reason for using a technique that does not require lan-
guage changes is that we eventually want to handle a large class
of annotations and do not want to define our own set of dialects
with their own compiler infrastructure. This is the SELL (Semantic-
ally Enhance Library Language) approach which we support with
a simple tools infrastructure called “The Pivot” [16].

Considering in particular annotations needed for the concur-
rency library, the primary case is when using an owner polymorphic
method:

class Job {
<O inside world> void do work(O:Data data) {

// use data reference
}

}

To annotatedata we can write the following:

class Job {
void do work(caller owned ptr<Data> data) {

// use data smart pointer
}

};

Here, the presence of thecaller owned ptr template wrapper indic-
ates to the translation to both declare an owner polymorphic para-
meter and bind it todata.

Aside from annotating references with ownership, some of
the constructs of the library had to be changed to accommodate
ownership types. In particular: global variables and non-member
functions need to be wrapped into a global object owned by
a MainThread; Tethers are “dereferenced” indirectly through a
double dispatch instead of using the more natural arrow oper-
ator; and inheriting fromTravellerBase is changed to embedding
in Traveller. For these special cases, a translation from C++ should
be able to make simple patterned substitutions. For example, con-
sider the following:

A ∗global = new A;
void foo(A ∗a) {}
int main() { foo(global); }

For type checking purposes, these globals can be collected into a
singleProcess class that gets embedded inMainThread:

class Process {
A ∗global = new A;
void foo(A ∗a) {}

public:

int main() { foo(global); }
};

68



int main() {
MainThread<Process> mt;
return mt.main();

}

With the defaultowner applied, the code can type check. A
more involved example is converting uses of the arrow operator in
Tether to double dispatch. Here, the translation involves hoisting
the member function call, the arguments, and the return value into
an automatically generatedTetherUser. For example:

class Job {
Tether<Monster> tether;

public:
void welcome back() {

if (tether)
tether−>found path(...);

}
};

can be automatically translated into:

class AutoUser : public TetherUser<Monster> {
...

public:
AutoUser(...);
void access granted(caller owned<Monster> m) {

m.found path(...);
}

};
class Job {

Tether<Monster> tether;
public:

void welcome back() {
if (tether)

tether.request access(AutoVisitor(...));
}

};

With these and related transformations, the syntactic burden
over normal use of the library can be reduced while internally
generating the fully ownership-annotated source for checking.

5. Discussion
The presentation so far has been concerned with describing our
experience with a single library on a single project. This section
branches out to consider a wider range of features and applications
of this kernel experience.

5.1 Variations on Tethers

The Tether construct presented in this paper was motivated by
the specific needs of a project, but other variations on the same
approach make sense for different situations. The essential ideas
are: (1) regardless of aliasing boundaries, objects need to be able
to point to objects in other threads, and (2) these pointers can
have different operations in place of the standard “dereference”.
We present two further examples here.

An opposite approach to callingAssemblyLine::send() is for a
local object to use aTether to “pull” a travelling object into the
same thread. The pull operation waits until the target object is not
in use in its current thread and transfers it to the caller’s thread.

class Worker {
PullTether<RenderPipeline> rpipe;
void render data(...) {

// prepare data for rendering
// expensive computation...
PulledObject<RenderPipeline> po = rpipe.pull();
po−>render(...);

}
};

We can see that these semantics are analogous to that of a
traditional lock which protects the object getting pulled. However,
without any additional work on the part of the user, the runtime
system can make optimizations over plain locks. First, by keeping
track of the tethers to an object, the runtime can tell which threads
can possibly request a lock at the same time. With this knowledge,
the runtime can use cheaper locks when, for example, it knows that
all contending threads are assigned to the same physical processor.
Conversely, in a non-uniform memory architecture, the runtime
system could look at the tethers that exist between objects and place
threads which have many tethers between them “closer” together,
with respect to the machine topology.

Another variation is to treat a tether as a homing device for the
object to which it points. Instead of pulling a distant object close,
tether could be augmented to provide a “take me to this object”
operation which allows a travelling object to go to the thread that
owns the pointee:

class UpdateCourier {
Update update;

public:
void update data(HomingTether<Data> d) {

d.go to thread(∗this);
}
void arrived at thread(Data &d) {

d.apply(update);
}

};

In this example, a control thread updates data structure that are local
to different processing threads by sending courier objects to the
threads with the update. Courier objects are givenHomingTethers
to indicate which data set needs to receive the update. Finally,
arrived at thread() is called byHomingTether when the transfer
is complete.

5.2 Variations on Libraries

In this section we identify the design and typing of the concur-
rency library as an instance of a more general pattern of library
design. The pattern is defined by: (1) providing library primitives
whose semantics imply aliasing boundaries, and (2) providing the
user of the library semantically-modified pointers to refer across
these boundaries. We now consider two other examples, how their
primitives imply aliasing boundaries, and how users can refer to
objects across these boundaries.

5.2.1 Memory Protection

Fine grained memory protection has been used for security, fault
isolation, and efficient IPC since early capability-based architec-
tures [17] and continues to be researched. Recent work includes
Mondriaan Memory Protection (MMP) which has been applied to
the Linux kernel [18]. The idea is to associateprotection domains
with allocated memory regions and threads. Threads are then pre-
vented from accessing memory outside their current protection do-
main. This approach helps find errors that might have gone undetec-
ted and catches errant program behavior closer to the source.

A straightforward API for a memory protection library would
provide functions for: allocating and deallocating opaque protec-
tion domain handles; adding and removing memory regions to and
from domains; and changing the domain of the currently executing
thread. These API calls could be abstracted by an object-oriented
library in the same manner that the concurrency library in Section 2
abstracted low level locking and thread operations. The aliasing
boundaries in this case would align with protection domains and
a library pointer type would be provided to point to objects in other
protection domains. The library could then either offer travelling
mechanisms similar to the concurrency library or simply provide

69



a dereference operation. In addition to allowing a flat partitioning
of memory, systems like MMP allow a region of memory to be in
more than one protection domain. This lets the user create a nesting
structure of permissions which directly corresponds to the owners-
as-dominators property enforced by ownership types.

5.2.2 Resource Accounting

A good operating system will release all resources requested by a
process when the process exits. This requires the system to record
which resources have been allocated by the process. Thus, a simple
way to do “garbage collection”, not only for memory but all OS
resources, is to fork child processes to handle work items and then
exit, automatically freeing the resources used to process the work
item. This approach has several performance disadvantages and
consequently developers usually need to use multiple threads and
careful resource management instead.

The utility of a process, with respect to resource management,
is that it provides a single collection point for resources. To achieve
the same effect at a finer granularity, we can introduce “resource
domains”. Each resource domain owns a set of objects and keeps
track of all allocation requests made by objects it owns. One chal-
lenge for the library is to keep track of the current resource domain
as execution passes between objects owned by different resource
domains. By aligning aliasing boundaries with resource domains,
the library user would be required to use a library mechanism when
pointing to objects in other resource domains. By controlling access
to objects in other resource domains, the library can keep track of
changes:

class EnemyAI : ResourceDomainVisitor<EnemyGraphics> {
CrossDomainPtr<EnemyGraphics> ptr;

public:
void think() {

if (... decide to hold a fireball ...)
ptr.access resource domain(∗this);

}
void in resource domain(EnemyGraphics &g) {

// allocate Fireball in graphics resource domain
g.shoot(new Fireball);

}
};

In this example, the AI component of an enemy creates a
Fireball for the graphics component to show. The two objects are
in different resource domains, so theEnemyAI needs to use the
library-supplied pointer typeCrossDomainPtr. To access the ob-
ject, the same double virtual dispatch technique used byTether in
Section 3 is used. This allows the library to change domains for the
duration ofin resource domain() so thatFireball is allocated in the
graphics resource domain.

Hierarchical resource management is normally done in C++ us-
ing constructors and destructors following the Resource Acquisi-
tion Is Initialization idiom [19]. On the opposite end of the resource
management spectrum, garbage collection tries to hide when re-
sources are released and does not associate an owner. The approach
presented in this section is therefore somewhere in between: re-
sources have owners and deterministic bounds on their allocation,
but these bounds are more like catch-alls than proper manual re-
source management. Thus, allocation domains can be seen as a
fine-grained way to handle leaks or a way to recover resources
when an error has left a portion of the system in an undefined state.

5.2.3 Summary

In the examples above, the library provides primitives that organ-
ize objects in the program hierarchically. To fully utilize this lib-
rary design, however, several libraries need to be able to coexist in
the same ownership tree in the same program. For example, con-

sider a modern web browser. Concurrency boundaries can be asso-
ciated with different browsing windows, security boundaries with
the scripting interpreters, memory protection boundaries with less-
than-stable modules, and resource accounting boundaries where
leaks are difficult to avoid. This implies a heterogeneous nesting
of boundaries which we have not considered thus far. For the same
reason it is necessary to cross homogeneous boundaries, it will be
necessary to compose each library’s semantically-modified point-
ers to cross multiple heterogeneous boundaries. This ventures far
from the experience and example focused on by this paper but we
feel it points to an exciting use of ownership types as a tool for
future library design.

6. Related Work
Since the widespread recognition of the problems of aliasing in
object-oriented programming, and the need for local reasoning,
more than a decade ago [1], many type systems have emerged to
address the problems. The approaches vary from completely out-
lawing aliasing using variants of linear types [20,21], to cutting the
object graph into fully encapsulated partitions [22,23], to enforcing
an owners-as-dominators property on the object graph using own-
ership types [2], to even more flexible and/or less intrusive type
systems with less guarantees [24–26]. Of these approaches, owner-
ship types have emerged as a promising compromise and many dif-
ferent aspects of the type system have been researched [3, 27, 28].
Boyapatiet al. have used and extended ownership types to guar-
antee the absence of data races and deadlocks [4], statically safe
region-based memory management [5], and safe lazy upgrades to
persistent object stores [6].

The work most similar to ours is SafeJava [4], which also uses
ownership types. More recent work to statically ensure the ab-
sence of data-races has been done by Jacobset al. using auto-
matically verified annotations in the Spec# compiler [29, 30]. The
main difference between our approach and these two is the basis
for concurrency: in our model, nothing is shared and objects travel
between threads; in the other two, there are shared objects which
are owned byworld and synchronized with locks. SafeJava does
allow unique types to be passed between threads via a synchron-
ized global shared variable, but this places aliasing constraints on
the unique object which would not allow constructs like tethers.
Another difference is how the data-race freedom guarantees are
made. These approaches use concurrency constructs built into the
language and build concurrency guarantees into the type system.
In the approach we outline, the library both provides the concur-
rency primitives and uses a generic ownership type system to make
guarantees about use of the library.

7. Conclusion and Future Work
In this paper we presented a simple library for concurrency, suc-
cessfully used in a large student project, and demonstrated how
ownership types could be used to statically check that client code
respect the aliasing boundaries imposed by the library. To provide
flexible support for objects travelling between threads while carry-
ing aliases to thread local objects, we combine owner polymorphic
methods with dynamic checks performed by the library to guaran-
tee the absence of data races. Finally, we present an approach to
embed the necessary ownership annotations in C++ and to use an
extended type checker to enforce the rules on top of the language.

We also found the strategy used to support the concurrency lib-
rary was also found to apply to a family of related libraries includ-
ing memory protection and resource accounting. One direction for
future work is to examine existing programs that exhibit task-level
parallelism, like the videogame example in this paper. By looking at
more and larger programs, we can further develop both the concur-

70



rency model and typing approach introduced here to address more
usage scenarios.

Acknowledgements: We are grateful to the reviewers for their feed-
back, members of the program committee for their patience, and
Alex Potanin for his help.

References
[1] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and

Richard Holt. The Geneva convention on the treatment of object
aliasing.SIGPLAN OOPS Mess., 3(2):11–16, 1992.

[2] David Gerard Clarke.Object ownership and containment. PhD thesis,
University of New South Wales, 2002.

[3] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic
ownership for generic Java. InOOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 311–324, New York, NY,
USA, 2006. ACM Press.

[4] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: preventing data races and deadlocks. In
OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
pages 211–230, New York, NY, USA, 2002. ACM Press.

[5] Chandrasekhar Boyapati, Alexandru Salcianu, Jr. William Beebee,
and Martin Rinard. Ownership types for safe region-based memory
management in real-time Java. InPLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and
implementation, pages 324–337, New York, NY, USA, 2003. ACM
Press.

[6] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue
Moh, and Steven Richman. Lazy modular upgrades in persistent
object stores. InOOPSLA ’03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, pages 403–417, New York, NY, USA,
2003. ACM Press.

[7] K. Rustan M. Leino and Peter M̈uller. Object invariants in dynamic
contexts. In M. Odersky, editor,European Conference on Object-
Oriented Programming (ECOOP), volume 3086 ofLecture Notes in
Computer Science, pages 491–516. Springer-Verlag, 2004.

[8] Peter M̈uller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular
invariants for layered object structures.Sci. Comput. Program.,
62(3):253–286, 2006.

[9] Texas Aggie Game Developers:http://tagd.cs.tamu.edu.

[10] C++ Boost Library Collection, 2007. Boost Smart Pointers:
http://www.boost.org/libs/smart ptr/smart ptr.htm.

[11] Tobias Wrigstad.Ownership-Based Alias Management. PhD thesis,
Stockholm University, 2006.

[12] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Owner-
ship types for object encapsulation. InACM Symposium on Principles
of Programming Languages (POPL), New Orleans, Louisiana, Janu-
ary 2003.

[13] James Noble. Iterators and encapsulation. InTOOLS ’00:
Proceedings of the Technology of Object-Oriented Languages and
Systems (TOOLS 33), page 431, Washington, DC, USA, 2000. IEEE
Computer Society.

[14] Werner Dietl and Peter M̈uller. Universes: Lightweight ownership for
JML. Journal of Object Technology, 4(8):5–32, 2005.

[15] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle.
Defaulting generic Java to ownership. InIn Proceedings of the
Workshop on Formal Techniques for Java-like Programs in European
Conference on Object-Oriented Programming, Oslo, Norway, 2004.
Springer-Verlag.

[16] Bjarne Stroustrup. A rationale for semantically enhanced library
languages. InProceedings of the First International Workshop on
Library-Centric Software Design (LCSD ’05), 2006. As technical
report 06-12 of Rensselaer Polytechnic Institute, Computer Science
Department.

[17] R. M. Needham and R. D.H. Walker. The Cambridge CAP computer
and its protection system. InSOSP ’77: Proceedings of the sixth ACM
symposium on Operating systems principles, pages 1–10, New York,
NY, USA, 1977. ACM Press.

[18] Emmett Witchel, Junghwan Rhee, and Krste Asanovic. Mondrix:
memory isolation for Linux using Mondriaan memory protection.
SIGOPS Oper. Syst. Rev., 39(5):31–44, 2005.

[19] Bjarne Stroustrup.The C++ Programming Language, Third Edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1997.

[20] Philip Wadler. Linear types can change the world! In M. Broy and
C. Jones, editors,IFIP TC 2 Working Conference on Programming
Concepts and Methods, Sea of Galilee, Israel, pages 347–359. North
Holland, 1990.

[21] Dave Clarke and Tobias Wrigstad. External uniqueness is unique
enough. InEuropean Conference on Object-Oriented Programming
(ECOOP), pages 176–200, 2003.

[22] John Hogg. Islands: aliasing protection in object-oriented languages.
In OOPSLA ’91: Conference proceedings on Object-oriented
programming systems, languages, and applications, pages 271–285,
New York, NY, USA, 1991. ACM Press.

[23] Paulo Śergio Almeida. Balloon types: Controlling sharing of state in
data types.Lecture Notes in Computer Science, 1241:32–59, 1997.

[24] Jan Vitek and Boris Bokowski. Confined types. InOOPSLA ’99:
Proceedings of the 14th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
82–96, New York, NY, USA, 1999. ACM Press.

[25] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle.
Featherweight generic confinement.J. Funct. Program., 16(6):793–
811, 2006.

[26] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias
annotations for program understanding.SIGPLAN Not., 37(11):311–
330, 2002.

[27] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect.SIGPLAN Not., 37(11):292–
310, 2002.

[28] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Safe
runtime downcasts with ownership types. Technical Report TR-853,
MIT Laboratory for Computer Science, June 2002.

[29] Bart Jacobs, Jan Smans, Frank Piessens, and Wolfram Schulte.
A statically verifiable programming model for concurrent object-
oriented programs. In8th International Conference on Formal
Engineering Methods, pages 420–439, 2006.

[30] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and Wolfram
Schulte. Safe concurrency for aggregate objects with invariants. In
SEFM ’05: Proceedings of the Third IEEE International Conference
on Software Engineering and Formal Methods, pages 137–147,
Washington, DC, USA, 2005. IEEE Computer Society.

71


