Primitive Associations

Erik Ernst

University of Aarhus, Denmark
eernst@daimi.au.dk

Abstract

This position paper presents a very simple mechanggimitive
associationsand argues that this mechanism is worth careful con-
sideration in connection with the kind of support for program cor-
rectness that grows out of mechanisms for ownership, controlled
aliasing, sharing, escape analysis, and so on.

Categories and Subject Descriptors D.3 - PROGRAMMING
LANGUAGES [D.3.3 - Language Constructs and FeatJrd3ata
types and structures

Keywords Ownership, confinement, alias control, primitive asso-
ciations, inverse fields, path-restricted features.

1. Primitive Associations
Almost all object-oriented programming languages support a no-

tion of references. A reference provides access to a specific object

and type systems are often mainly focused on specifying which
(kinds of) objects are reachable from a given object. However, nor-
mally only little is known about the set of references referriog

a given object—which we will designate asxoming references

Linear types [13], ownership types [9, 4, 3, 1, 11], escape ana-
lysis [10, 2], and other kinds of mechanisms and analyses help
in establishing invariants or knowledge about these incoming ref-

1

Figure 1. A primitive association is eithefULL or cyclic

On the other hand, the dynamic flexibility of ownership by
primitive associations provides fewer guaranteed properties at run-
time. E.g., an inconsistency arises if the primitive association is
modified during the execution of some operation which is only
permitted for owners.

Primitive associations are closely relate¢ptrent-child attrib-
utesor inverse fieldsn JavaFX [12], because they also involve bid-
irectional references with language support for simultaneous updat-
ing. However, in this context we are interested in the ability to help

'managing uniqueness relationships rather than maintaining prob-

lem domain related constraints.

Note that it is easy to build associations of different arity than 1—
1 based on primitive associations; for example, an array of length
may be used as an intermediate object to modelkaaksociation.

2. Derived Correctness Properties

erences, and this may simplify reasoning about program correct- The main idea behind ownership is that it is easier to reason about
ness, especially because the sources of changes to objects and olthe correctness of a program when ownership related invariants can
ject graphs are simpler. However, we believe that it is useful to be used to show that other invariants are maintained. The ownership
complement these techniques with a dynamic mechanism, namelyrelated invariants are generally concerned with the exclusion of a
primitive associationsbecause it is useful, simple, flexible, and un- (large) class of possible incoming pointers.
derstandable. Consider for instancelaist data structure which uses a number
We define primitive associations to mean bidirectional refer- of ListCell objects to represent a linking structure and keep a
ences, i.e., a pair of references in two objects that refer to eachreference to each of the contained objects. Now, invariants about
other, see Fig. 1. Changes to these references must be restricted bthe structure of eadhi st object, including itd.istCells, is easier
the language semantics to enforce this invariant at all timesisf to reason about if eadhistCell is owned by one particuldrist
an object andd . £ is a field in A that is part of a primitive associ- object, and access to list cells is thereby restricted to come from
ation, then either . f is NULL or it refers to an objecB such that the owner list or the list cells themselves. Conventional ownership
B has a fieldB . g which is the other half of that primitive asso- mechanisms are well suited for this type of purpose; they associate
ciation, andB . g refers to the objectl. Hence, the language must each owned object (e.g., eathstCell) with an owner (aList)
support statically decidable pairing of fields, and the run-time ma- at creation time, and never change this binding during the lifetime
nipulation of fields which take part in a primitive association must of the owned object.
occur atomically. However, it is not always convenient to bind each owned object
Given that the language semantics enforces this invariant, it is to one particular owner for its entire life-time. For example, it
known for any given objecd having a primitive association to may be useful to move owned objects from one “owning context”
another objectB that no other objec3’ (respectivelyA’) is in to another. The main benefit of using primitive associations for
the same relation tol (resp.B). This may be interpreted as an ownership management is exactly this dynamic flexibility of being
ownership relation—thati owns B, or vice versa. able to change owner during the lifetime of the owned object.
However, this ownership relation differs from more traditional This property, however, creates challenges for exploiting own-
ownerships by being more dynamic, because it may be changed byership, i.e., to derive other correctness properties, because it gets
assignment. Other ownership related mechanisms would specify anharder to maintain a complex invariant that expresses a structural
owner via type declarations or type arguments and fix it at creation relation in the object graph of owned and owning objects when
time for each owned object, thus disallowing the change of owner an assignment to a primitive association may suddenly change the
during the life-time of the owned object. owner. However, for the simple relationship that only involves the

two objects directly connected by a primitive association, thereisa 4. Conclusion
potential for reconciling these to opposing forces.

The concept required to express this is that phéh-restricted
feature i.e., a feature of an object that is only accessible via a
specified path. Consider the pseudo-code example in Box 1 below:

This position paper presented some preliminary thoughts about the
usefulness of the very simple construct of primitive associations
(aka inverse fields), used to express a dynamic kind of ownership.
The notion of path-restricted features was created as a consequence
of this analysis, as a special case of earlier work on so-called

class Person { invisible mixins. We believe that this combination of mechanisms
E:;V;:i’("fzitﬂ::lﬁ; E-> owner; // pr.ass. provides a simple and useful complement to traditional ownership
if (wlt.has(value)) { mechanisms.
wlt.take(value); return value;
} else { Acknowledgments
} // error bandling The IWACO reviewers provided some very helpful comments on
} this work.
}
class- Wallet { References
private Person owner <-> wlt; // pr.ass.
private int contents; [1] Jonathan Aldrich and Craig Chambers. Ownership domains:
public bool has(int value) { Se_parating alia_sing policy from mechanism. In Martin Odgrsky
return (contents>=value); editor, Proceedings ECOOPvolume 3086 ofLecture Notes in
Computer Sciencepages 1-25. Springer, 2004. ECOOP 2004 -
restricted(wlt) void take(int value) { Object-Oriented Programming, 181h_ European Conference, Osl
contents -= value; Norway, June 14-18, 2004, Proceedings.
} Box [2] Bruno Blanchet. Escape analysis: Correctness prooflementation
} 1 and experimental results. Proceedings POPL '98pages 25-37.
ACM SIGACT and SIGPLAN, ACM Press, 1998.
In this example, the instances of the classasson andwallet [3] Dave Clarke and Sophia Drossopoulou. Ownership, endafisn
are connected by a primitive association whose ends are named and the disjointness of type and effect. In Cindy Norris and
wlt andowner. In classWallet there is a methodake which Jr. James B. Fenwick, editorgroceedings of the 17th ACM
is path-restricted by1t. This means that an invocation téke is conference on Object-oriented programming, systems,uapes,

and applications (OOPSLA-02yolume 37, 11 ofACM SIGPLAN
Notices pages 292-310, New York, November 4-8 2002. ACM
Press.

only allowed if it is on the formwlt.take(...) wherewlt is the
opposite end of a primitive association that conne@smson and
thiswallet. The effectis that only thewner is allowed to call this]]])]
method. Note that this differs from traditional ownership in thatthe ~ [4] David Clarke. Object Ownership and ContainmenPhD thesis,

School of Computer Science and Engineering; University; efvN
person may choose to transfer the wallet to some other person. South Wales, Australia, July 12 2001.

. L . . [5] Erik Ernst. gbeta — A Language with Virtual Attributes, Block

3. Integrating Primitive Associations into gbeta Structure, and Propagating, Dynamic InheritancéhD thesis,
Primitive associations and the corresponding mechanism of path- BaEth'jsE' DDeer?nigrrTllegltjr?; (fgg‘gp“ter Science, University of Aarhus,
restricted features are currently being implemented in the language _ ' o . '
gbeta [5, 8], where they complement a more traditional notion of [6] Erik Ernst. Family polymorphism. In Jargen Lindskov Knudse
ownership which is expressed using family polymorphism [6] and editor, Proceedings ECOOP'QILNCS 2072, pages 303-326,
invisible mixins [7]. Heidelberg, Germany, 2001. Springer-Verlag.

Family polymorphism includes a restricted form of dependent [7] Erik Ernst. Reconciling virtual classes with generjcin Proceedings
types: Classes are features of objects and thus two nested classes JMLC'06, LNCS 4228, pages 57-72, Oxford, UK, September 2006.

—

Outer andInner give rise to a unbounded set of distinct types at Springer-Verlag.

runtime, because each instanceéater contains its own, distinct [8] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtatass
class corresponding to the declaration namegler. An invisible calculus. InProceedings POPL'Ofpages 270-282, Charleston, SC,
mixin is a mixin which is guaranteed to have a zero effect on the USA, 2006. ACM.

type of any class that it is added to—in other words, an invisible [9] James Noble, John Potter, David Holmes, and Jan Vitek. itsiex
mixin can only add implementation, not interface. A consequence alias protection. IProceedings of ECOOP'9@russels, Belgium,
of this is that no code outside the mixin can refer to its declared July 20 - 24 1998.

features. Note that the notion of invisible mixins is in fact built on [10] voung Gil Park and Benjamin Goldberg. Escape analysiksts In
the notion of path restriction, because most of the characteristics of Proceedings of the 5th ACM SIGPLAN Conference on Progragimin

an invisible mixin are specified in terms of restrictions on paths. Language Design and Implementatj@ages 116-127, 1992,

Putting the two together, traditional ownership can be expressed [11] Alex Potanin, James Noble, Dave Clarke, and Robert Bid@eneric
by declaring owned classes in an invisible mixin. This is now com- ownership for generic java. In Peri L. Tarr and William R. ®po
plemented with the ability for owned object structures to include editors Proceedings OOPSL Aages 311-324. ACM, 2006.
temporary ownership based on primitive associations and path re-

[12] Inc. Sun Microsystems. Javafx script — an overvieWttp:

strictions. //www.sun.com/software/javafx/script/, July 2007.

It is our impression so far that this combination of life-time
ownership and temporary ownership makes it easier to express (13]
practical program designs and still have a better basis for reasoning
about the possible run-time object structures than that which is
offered through traditional ownership or traditional unrestricted
(un-owned) objects.

Philip Wadler. Linear types can change the world! In Mo
and C. Jones, editor®rogramming Concepts and Method3ea
of Galilee, Israel, April 1990. North Holland. IFIP TC 2 Wank
Conference.

