
Primitive Associations

Erik Ernst
University of Aarhus, Denmark

eernst@daimi.au.dk

Abstract
This position paper presents a very simple mechanism,primitive
associations, and argues that this mechanism is worth careful con-
sideration in connection with the kind of support for program cor-
rectness that grows out of mechanisms for ownership, controlled
aliasing, sharing, escape analysis, and so on.

Categories and Subject Descriptors D.3 - PROGRAMMING
LANGUAGES [D.3.3 - Language Constructs and Features]: Data
types and structures

Keywords Ownership, confinement, alias control, primitive asso-
ciations, inverse fields, path-restricted features.

1. Primitive Associations
Almost all object-oriented programming languages support a no-
tion of references. A reference provides access to a specific object,
and type systems are often mainly focused on specifying which
(kinds of) objects are reachable from a given object. However, nor-
mally only little is known about the set of references referringto
a given object—which we will designate asincoming references.
Linear types [13], ownership types [9, 4, 3, 1, 11], escape ana-
lysis [10, 2], and other kinds of mechanisms and analyses help
in establishing invariants or knowledge about these incoming ref-
erences, and this may simplify reasoning about program correct-
ness, especially because the sources of changes to objects and ob-
ject graphs are simpler. However, we believe that it is useful to
complement these techniques with a dynamic mechanism, namely
primitive associations, because it is useful, simple, flexible, and un-
derstandable.

We define primitive associations to mean bidirectional refer-
ences, i.e., a pair of references in two objects that refer to each
other, see Fig. 1. Changes to these references must be restricted by
the language semantics to enforce this invariant at all times: ifA is
an object andA.f is a field inA that is part of a primitive associ-
ation, then eitherA.f is NULL or it refers to an objectB such that
B has a fieldB.g which is the other half of that primitive asso-
ciation, andB.g refers to the objectA. Hence, the language must
support statically decidable pairing of fields, and the run-time ma-
nipulation of fields which take part in a primitive association must
occur atomically.

Given that the language semantics enforces this invariant, it is
known for any given objectA having a primitive association to
another objectB that no other objectB′ (respectivelyA′) is in
the same relation toA (resp.B). This may be interpreted as an
ownership relation—thatA ownsB, or vice versa.

However, this ownership relation differs from more traditional
ownerships by being more dynamic, because it may be changed by
assignment. Other ownership related mechanisms would specify an
owner via type declarations or type arguments and fix it at creation
time for each owned object, thus disallowing the change of owner
during the life-time of the owned object.

f
A

f
A

g

B

Figure 1. A primitive association is eitherNULL or cyclic

On the other hand, the dynamic flexibility of ownership by
primitive associations provides fewer guaranteed properties at run-
time. E.g., an inconsistency arises if the primitive association is
modified during the execution of some operation which is only
permitted for owners.

Primitive associations are closely related toparent-child attrib-
utesor inverse fieldsin JavaFX [12], because they also involve bid-
irectional references with language support for simultaneous updat-
ing. However, in this context we are interested in the ability to help
managing uniqueness relationships rather than maintaining prob-
lem domain related constraints.

Note that it is easy to build associations of different arity than 1–
1 based on primitive associations; for example, an array of lengthk

may be used as an intermediate object to model a 1–k association.

2. Derived Correctness Properties
The main idea behind ownership is that it is easier to reason about
the correctness of a program when ownership related invariants can
be used to show that other invariants are maintained. The ownership
related invariants are generally concerned with the exclusion of a
(large) class of possible incoming pointers.

Consider for instance aList data structure which uses a number
of ListCell objects to represent a linking structure and keep a
reference to each of the contained objects. Now, invariants about
the structure of eachList object, including itsListCells, is easier
to reason about if eachListCell is owned by one particularList
object, and access to list cells is thereby restricted to come from
the owner list or the list cells themselves. Conventional ownership
mechanisms are well suited for this type of purpose; they associate
each owned object (e.g., eachListCell) with an owner (aList)
at creation time, and never change this binding during the lifetime
of the owned object.

However, it is not always convenient to bind each owned object
to one particular owner for its entire life-time. For example, it
may be useful to move owned objects from one “owning context”
to another. The main benefit of using primitive associations for
ownership management is exactly this dynamic flexibility of being
able to change owner during the lifetime of the owned object.

This property, however, creates challenges for exploiting own-
ership, i.e., to derive other correctness properties, because it gets
harder to maintain a complex invariant that expresses a structural
relation in the object graph of owned and owning objects when
an assignment to a primitive association may suddenly change the
owner. However, for the simple relationship that only involves the

1



two objects directly connected by a primitive association, there is a
potential for reconciling these to opposing forces.

The concept required to express this is that of apath-restricted
feature, i.e., a feature of an object that is only accessible via a
specified path. Consider the pseudo-code example in Box 1 below:

class Person {
private Wallet wlt <-> owner; // pr.ass.
int pay(int value) {

if (wlt.has(value)) {
wlt.take(value); return value;

} else {
// error handling

}
}

}
class Wallet {

private Person owner <-> wlt; // pr.ass.
private int contents;
public bool has(int value) {

return (contents>=value);
}
restricted(wlt) void take(int value) {

contents -= value;
}

} Box
1

In this example, the instances of the classesPerson andWallet
are connected by a primitive association whose ends are named
wlt andowner. In classWallet there is a methodtake which
is path-restricted bywlt. This means that an invocation oftake is
only allowed if it is on the formwlt.take(...) wherewlt is the
opposite end of a primitive association that connects aPerson and
thisWallet. The effect is that only theowner is allowed to call this
method. Note that this differs from traditional ownership in that the
person may choose to transfer the wallet to some other person.

3. Integrating Primitive Associations into gbeta
Primitive associations and the corresponding mechanism of path-
restricted features are currently being implemented in the language
gbeta [5, 8], where they complement a more traditional notion of
ownership which is expressed using family polymorphism [6] and
invisible mixins [7].

Family polymorphism includes a restricted form of dependent
types: Classes are features of objects and thus two nested classes
Outer andInner give rise to a unbounded set of distinct types at
runtime, because each instance ofOuter contains its own, distinct
class corresponding to the declaration namedInner. An invisible
mixin is a mixin which is guaranteed to have a zero effect on the
type of any class that it is added to—in other words, an invisible
mixin can only add implementation, not interface. A consequence
of this is that no code outside the mixin can refer to its declared
features. Note that the notion of invisible mixins is in fact built on
the notion of path restriction, because most of the characteristics of
an invisible mixin are specified in terms of restrictions on paths.

Putting the two together, traditional ownership can be expressed
by declaring owned classes in an invisible mixin. This is now com-
plemented with the ability for owned object structures to include
temporary ownership based on primitive associations and path re-
strictions.

It is our impression so far that this combination of life-time
ownership and temporary ownership makes it easier to express
practical program designs and still have a better basis for reasoning
about the possible run-time object structures than that which is
offered through traditional ownership or traditional unrestricted
(un-owned) objects.

4. Conclusion
This position paper presented some preliminary thoughts about the
usefulness of the very simple construct of primitive associations
(aka inverse fields), used to express a dynamic kind of ownership.
The notion of path-restricted features was created as a consequence
of this analysis, as a special case of earlier work on so-called
invisible mixins. We believe that this combination of mechanisms
provides a simple and useful complement to traditional ownership
mechanisms.

Acknowledgments
The IWACO reviewers provided some very helpful comments on
this work.

References
[1] Jonathan Aldrich and Craig Chambers. Ownership domains:

Separating aliasing policy from mechanism. In Martin Odersky,
editor, Proceedings ECOOP, volume 3086 ofLecture Notes in
Computer Science, pages 1–25. Springer, 2004. ECOOP 2004 -
Object-Oriented Programming, 18th European Conference, Oslo,
Norway, June 14-18, 2004, Proceedings.

[2] Bruno Blanchet. Escape analysis: Correctness proof, implementation
and experimental results. InProceedings POPL ’98, pages 25–37.
ACM SIGACT and SIGPLAN, ACM Press, 1998.

[3] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In Cindy Norris and
Jr. James B. Fenwick, editors,Proceedings of the 17th ACM
conference on Object-oriented programming, systems, languages,
and applications (OOPSLA-02), volume 37, 11 ofACM SIGPLAN
Notices, pages 292–310, New York, November 4–8 2002. ACM
Press.

[4] David Clarke. Object Ownership and Containment. PhD thesis,
School of Computer Science and Engineering; University; of New
South Wales, Australia, July 12 2001.

[5] Erik Ernst. gbeta – A Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD thesis,
DEVISE, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, June 1999.

[6] Erik Ernst. Family polymorphism. In Jørgen Lindskov Knudsen,
editor, Proceedings ECOOP’01, LNCS 2072, pages 303–326,
Heidelberg, Germany, 2001. Springer-Verlag.

[7] Erik Ernst. Reconciling virtual classes with genericity. In Proceedings
JMLC’06, LNCS 4228, pages 57–72, Oxford, UK, September 2006.
Springer-Verlag.

[8] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class
calculus. InProceedings POPL’06, pages 270–282, Charleston, SC,
USA, 2006. ACM.

[9] James Noble, John Potter, David Holmes, and Jan Vitek. Flexible
alias protection. InProceedings of ECOOP’98, Brussels, Belgium,
July 20 - 24 1998.

[10] Young Gil Park and Benjamin Goldberg. Escape analysis onlists. In
Proceedings of the 5th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 116–127, 1992.

[11] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic
ownership for generic java. In Peri L. Tarr and William R. Cook,
editors,Proceedings OOPSLA, pages 311–324. ACM, 2006.

[12] Inc. Sun Microsystems. Javafx script – an overview.http:
//www.sun.com/software/javafx/script/, July 2007.

[13] Philip Wadler. Linear types can change the world! In M. Broy
and C. Jones, editors,Programming Concepts and Methods, Sea
of Galilee, Israel, April 1990. North Holland. IFIP TC 2 Working
Conference.

2


