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Abstract

This position paper presents a very simple mechanggimitive
associationsand argues that this mechanism is worth careful con-
sideration in connection with the kind of support for program cor-
rectness that grows out of mechanisms for ownership, controlled
aliasing, sharing, escape analysis, and so on.
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1. Primitive Associations
Almost all object-oriented programming languages support a no-

tion of references. A reference provides access to a specific object

and type systems are often mainly focused on specifying which
(kinds of) objects are reachable from a given object. However, nor-
mally only little is known about the set of references referriog

a given object—which we will designate asxoming references

Linear types [13], ownership types [9, 4, 3, 1, 11], escape ana-
lysis [10, 2], and other kinds of mechanisms and analyses help
in establishing invariants or knowledge about these incoming ref-
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Figure 1. A primitive association is eithefULL or cyclic

On the other hand, the dynamic flexibility of ownership by
primitive associations provides fewer guaranteed properties at run-
time. E.g., an inconsistency arises if the primitive association is
modified during the execution of some operation which is only
permitted for owners.

Primitive associations are closely relate¢ptrent-child attrib-
utesor inverse fieldsn JavaFX [12], because they also involve bid-
irectional references with language support for simultaneous updat-
ing. However, in this context we are interested in the ability to help

'managing uniqueness relationships rather than maintaining prob-

lem domain related constraints.

Note that it is easy to build associations of different arity than 1—
1 based on primitive associations; for example, an array of length
may be used as an intermediate object to modelkaaksociation.

2. Derived Correctness Properties

erences, and this may simplify reasoning about program correct- The main idea behind ownership is that it is easier to reason about
ness, especially because the sources of changes to objects and olthe correctness of a program when ownership related invariants can
ject graphs are simpler. However, we believe that it is useful to be used to show that other invariants are maintained. The ownership
complement these techniques with a dynamic mechanism, namelyrelated invariants are generally concerned with the exclusion of a
primitive associationsbecause it is useful, simple, flexible, and un-  (large) class of possible incoming pointers.
derstandable. Consider for instancelaist data structure which uses a number
We define primitive associations to mean bidirectional refer- of ListCell objects to represent a linking structure and keep a
ences, i.e., a pair of references in two objects that refer to eachreference to each of the contained objects. Now, invariants about
other, see Fig. 1. Changes to these references must be restricted bthe structure of eadhi st object, including itd.istCells, is easier
the language semantics to enforce this invariant at all timesisf to reason about if eadhistCell is owned by one particuldrist
an object andd . £ is a field in A that is part of a primitive associ-  object, and access to list cells is thereby restricted to come from
ation, then either . f is NULL or it refers to an objecB such that the owner list or the list cells themselves. Conventional ownership
B has a fieldB . g which is the other half of that primitive asso- mechanisms are well suited for this type of purpose; they associate
ciation, andB . g refers to the objectl. Hence, the language must each owned object (e.g., eathstCell) with an owner (aList)
support statically decidable pairing of fields, and the run-time ma- at creation time, and never change this binding during the lifetime
nipulation of fields which take part in a primitive association must of the owned object.
occur atomically. However, it is not always convenient to bind each owned object
Given that the language semantics enforces this invariant, it is to one particular owner for its entire life-time. For example, it
known for any given objecd having a primitive association to  may be useful to move owned objects from one “owning context”
another objectB that no other objec3’ (respectivelyA’) is in to another. The main benefit of using primitive associations for
the same relation tol (resp.B). This may be interpreted as an  ownership management is exactly this dynamic flexibility of being
ownership relation—thati owns B, or vice versa. able to change owner during the lifetime of the owned object.
However, this ownership relation differs from more traditional This property, however, creates challenges for exploiting own-
ownerships by being more dynamic, because it may be changed byership, i.e., to derive other correctness properties, because it gets
assignment. Other ownership related mechanisms would specify anharder to maintain a complex invariant that expresses a structural
owner via type declarations or type arguments and fix it at creation relation in the object graph of owned and owning objects when
time for each owned object, thus disallowing the change of owner an assignment to a primitive association may suddenly change the
during the life-time of the owned object. owner. However, for the simple relationship that only involves the



two objects directly connected by a primitive association, thereisa 4. Conclusion
potential for reconciling these to opposing forces.

The concept required to express this is that phéh-restricted
feature i.e., a feature of an object that is only accessible via a
specified path. Consider the pseudo-code example in Box 1 below:

This position paper presented some preliminary thoughts about the
usefulness of the very simple construct of primitive associations
(aka inverse fields), used to express a dynamic kind of ownership.
The notion of path-restricted features was created as a consequence
of this analysis, as a special case of earlier work on so-called

class Person { invisible mixins. We believe that this combination of mechanisms
E:;V;:i’("fzitﬂ::lﬁ; E-> owner; // pr.ass. provides a simple and useful complement to traditional ownership
if (wlt.has(value)) { mechanisms.
wlt.take(value); return value;
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} this work.
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