
1

Lecture 2 and 3 - Dimensional Modelling

Reading Directions
L2 [K&R] chapters 2-8
L3 [K&R] chapters 9-13, 15

Keywords
facts, attributes, dimensions, granularity, dimensional modeling,

time, semi-additive facts, dense fact tables, sparsity, skinny
fact tables, keys, slowly changing dimension, rapidly changing
dimensions, large dimensions, demographic minidimension,
degenerate dimension, junk dimension, heterogeneous products,
many-to-many relationships, factless fact table, bridge table,
family of stars, stove pipe problem, data warehouse bus, value
chains, the design process, aggregates, sparcity failure,
aggregation navigator,  bitmap indexing, extended SQL, ROLAP
and MOLAP servers

Some basic concepts

• Fact
– “something not known in advance”,
– an observation
– many facts (but not all) have numerical, continuously

values
e.g., the price of a product, quantity

• Attribute
– “describe a characteristic of a tangible thing”
– “we do not measure them, we usually know them”
– usually text fields, with discrete values

e.g., the flavour of a product, the size of a product



2

Some basic concepts 2

• Dimension
– a business perspective from which data is looked upon
– “a collection of text like attributes that are highly correlated”

e.g. Product, Store, Time

• Granularity
– the level of detail of data contained in the data

warehouse
e.g. Daily item totals by product, by store

Example of a Dimensional Model

Time Dimension
time_key
day_of_week
month
quarter
year
holiday_flag

Product Dimension
product_key
description
brand
category

Sales Fact
time_key
product_key
store_key
dollars_sold
units_sold
dollars_cost

Store Dimension
store_key
store_name
address
floor_plan_type



3

The Standard Template Query

SELECT p.brand, sum(f.dollar), sum(f.units)
FROM salesfact f, product p, time t
WHERE f.prductkey = p.productkey 
     AND f.timekey = t.timekey 
     AND t.quarter = ’1Q1995’
GROUP BY p.brand
ORDER BY p.brand

Brand
Axon 780 263
Framis 1004 509
Widget 213 444
Zapper 95 39

Dollar Sales Unit Sales

Row header

Aggregated fact

An Example Answer Set

The Time Dimension

Time Dimension
time_key
day_of_week
day_nr_in_month
day_nr_overall
week_nr_in_year
week_nr_overall
month
month_nr_overall
quarter
fiscal_period
holiday_flag
last_day_in_month_flag
season
event



4

The Concept of Hierarchy

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity

Multidimensional Data

• Sales volume as a function of product, month,
and region

Pr
od

uc
t

Sto
re

Time

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

                   Office         Day



5

A Sample Data Cube

Time

Pro
du

ct

C
ou

nt
rysum

Sum Year/CountryTV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr
U.S.A

Canada

Mexico

sum

Facts

• (Perfectly) Additive
– a fact is additive if it make sense to add it across all

the dimensions
e.g., discrete numerical measures of activity, i.e., quantity

sold, dollars soled

• Semiadditive
– a fact is semiadditive if it make sense to add it along

some of the dimensions only
e.g., numerical measures of intensity, i.e., account balance,

inventory level

• Non-additive
– facts that can not be added at all

e.g., measurement of room temperature



6

Facts and the Additive Property

28/3, paper, store1, 25, 250, 20
28/3, paper, store2, 45, 450, 40

70, 700, 60

28/3, paper, store1, 15,  150, 10
29/3, paper, store1, 35, 350, 30

50, 500, 40

28/3, paper1, store1, 25, 250, 20
28/3, paper2, store1, 35, 350, 30

60, 600

Sales Fact
time_key
priduct_key
store_key
qnt_sold
revenue
customer_count

Time Dim

Product Dim

Store Dim

Semiadditive fact - example

Sales Fact
time_key
priduct_key
store_key
qnt_sold
revenue
customer_count

Time Dim

Product Dim

Store Dim

NB! customer_count
is not additive across
the product dimension

28/3, tissue paper,  store1, 25, 250, 20
28/3, paper towels, store1, 35, 350, 30----

 50

Is the number of customers who bought either paper towels
or tissue paper 50?

No, the number could be anywhere between 30 and 50.



7

Numerical Measures of Intensity

• All measures that record a static level, such as account
balance and inventory level, are non-additive across
time.

• However, these measures may be usefully aggregated
across time by averaging over the number of time
periods.

• Note that, the SQL AVG can not be used for this.
– What is the average daily inventory of a brand in a geographic region

during a given week?
– Let the brand cluster 3 products, the region has 4 stores, and we have

7 days/week.
– Using the SQL AVG would divide the summed value into 3*4*7=84
– The correct answer is to divide the summed inventory value by 7

Skinny fact tables

• As the fact table contains the vast volume of
records it is important that it is memory space
efficient

• Foreign keys are usually represented in integer
form and do not require much memory space

• Facts too are often numeric properties and can
usually be represented as integers (contrast to
dimensional attributes which are usually long text
strings)

• This space efficiency is critical to the memory
space consumption of the data warehouse



8

Keys

• Choice the data warehouse keys to be meaningless
surrogate keys
– Let a surrogate key be a simple integer
– 4-byte (--------,--------,--------,--------)

can contain 232  values (> 2 billion positive integers,
starting with 1)

Keys
• Use surrogate keys also for the Time dimension

– SQL-based date  key, is typically 8 bytes, so 4 bytes
are wasted

– bypassing joins leads to embedding knowledge of the
calendar in the application, rather than reading it
from the time dimension

– it is not possible to encode a data stamp as “I do not
know”, “It has not happen yet”, etc

• Avoid smart keys
• Avoid production keys

– production may decide to reuse keys
– the company may acquire a competitor and thereby

change the key building rules
– changed record, but deliberately not changed key



9

Slowly Changing Dimensions

• Type 1: Overwrite the dimension record with the
new values, thereby losing history

• Type 2: Create a new additional dimension record
using a new value of the surrogate key

• Type 3: Create a new field in the dimension record
to store the new value of the attribute

For example, the product or customer dimension
The assumption: the key does not change, but

some of the attributes does.

Overwrite the old value of an attribute with a new
one

e.g.

+ easy to implement
- avoids the real goal, which is to accurately track  
  history

Type 1

12334 Mary Jones single
married



10

Type 2

Create a new additional dimension record

• A generalised (surrogate) key is required (which is a
responsibility of the data warehouse team)

…
12334001 Mary Jones single
…
12334002 Mary Jones married
…

…
12334001
12334001
…
12334001

12334002
…
12334002
…

Fact table Dimension table

Type 3

Create a new field in the dimension record

Nr
First 
Name

Family 
Name

Original / 
Previous 
Marrital 
Status

Current 
Marrital 
Status

Effective 
Date

12334 Mary Jones single married 15/6 1987



11

Rapidly Changing Dimensions

From the previous slides: What is slow?
What if the changes are fast?
Must a different design technique be used?
• Small dimensions:

– the same technologies as for slowly changing
dimensions may be applied

• Large dimensions:
– the choice of indexing techniques and data design

approaches are important
– find suppress duplicate entries in the dimension
– do not create additional records to handle the

slowly changing dimension problem

Rapidly changing very large dimensions

• Break off some of the attributes into their own
separate dimension(s), a demographic dimension(s).
– force the attributes selected to the demographic

dimension to have relatively small number of discrete
values

– build upp the demographic dimension with all possible
discrete attributes combinations

– construct a surrogate demographic key for this
dimension

NB! The demographic attributes are the one of the
heavily used attributes. Their values are often
compared in order to identify interesting subsets.



12

Demographic Minidimension

Customer dim.
cust_key
name
original_address
date_of_birth
first_order_date
…
income
education
number_children
marital_status
credit_score
purchase_score

Fact table
…
cust_key
…

Customer dim.
cust_key
name
original_address
date_of_birth
first_order_date
…

Demographics dim.
demog_key
income_band
education_level
number_children
marital_status
credit_band
purchase_band

Fact table
…
cust_key
demog_key
…

Demographic Minidimension

Demographics dim.
demog_key
income_band
education_level
marrital_status

Three values
Two values
Two values

D1              -100 000 Graduate Married
D2 100 000-200 000 Graduate Married
D3 200 000- Graduate Married
D4              -100 000 Non-graduate Married
D5 100 000-200 000 Non-graduate Married
D6 200 000- Non-graduate Married

..cont ..cont ..cont

3*2*2=12 rows



13

Two Demographic Minidimensions

Customer dim
customer_key
relatively constant 
attributes …

Demographic dim
demog_key
demographic 
attributes ...

Purchase-Credit 
demographic dim
purch_cred_dem_key
purchase and credit 
attributes ...

Fact table
…
customer_key
demog_key
purc_cred_dem_key
…

Demographic Minidimension

• Advantages
– frequent ‘snapshoting’ of customers profiles with no

increase in data storage or data complexity
• Drawbacks

– the demographic attributes are clumped into banded
ranges of discrete values (it is impractical to change
the set of value bands at a later time)

– the demographic dimension itself can not be allowed
to grow too large

– slower down the browsing
• What if the fact table (connecting the demographic

minidimension with the customer dimension) is
sparse?



14

Demographic Minidimension

• What to do if the fact table (connecting the
demographic minidimension with the customer
dimension) is sparse?

– Define a demographic transaction event, i.e.,
introduce a new fact table

or
– Add a current demographic key to the customer

dimension table

Degenerate Dimension

• A degenerate dimension is represented by a
dimension key attribute(s) with no corresponding
dimension table

• Occurs usually in line-item oriented fact table
design

Fact Table
order_date
product_key
store_key
…
PO_number
PO_line_nr

Time Dimension Store Dimension

Product Dimension



15

Junk Dimensions

• Leaving the flags and attributes unchanged in the fact table
record

• Making each flag and attribute into its own separate
dimension

• Stripping out all of these flags and attributes from the
design

When a number of miscellaneous flags and text attributes
exist, the following design alternatives should be avoided:

A better alternative is to create a junk dimension.
A junk dimension is a convenient grouping of flags and
attributes to get them out of a fact table into a useful
dimensional framework

Heterogeneous Products

Some products have many, many distinguishing attributes
and many possible permutations (usually on the basis of
some customised offer). This results in immense
product dimensions and bad browsing performance

• In order to deal with this, fact tables with
accompanying product dimensions can be created for
each product type - these are known as custom fact
tables

• Primary core facts on the products types are kept in a
core fact table (but can also be copied to the
conformed fact tables)



16

Heterogeneous Products

Core Fact Table
time_key
account_key
household_key
balance
checing facts …
saving facts …
credit card facts…
safe deposit facts …

Time Dim

Core Account Dim
account_key
type
category
checking attr …
saving attr …
credit card attr …
safe deposit attr…

Household Dim

Heterogeneous Products

Custom Saving Dim
account_key
type
category
saving attr …

Cusom Checking Dim
account_key
type
category
checking attr …

Core Fact Table
time_key
account_key
household_key
balance

Custom Checking Fact 
time_key
account_key
household_key
balance
checking facts …

Custom Saving Fact 
time_key
account_key
household_key
balance
saving facts …

Core Account Dim
account_key
type
category



17

Orders

Production

Dimensions
Time
Sales Rep
Customer
Promotion
Product
Plant
Distr. Center

The Data Warehouse Bus

Dimensional modelling vs. ER-modelling

Entity-relationship modelling
- a logical design technique to eliminate data redundancy to
keep consistency and storage efficiency
- makes transaction simple and deterministic
- ER models for enterprise are usually complex, e.g. they
often have hundreds, or even thousands, of entities/tables

Dimensional modelling
- a logical design technique that present data in a intuitive
way and that allow high-performance access
- aims at model decision support data
- easier to navigate for the user and high performance



18

Why dimensional modelling?

• the logical model is easy understand
• a predictable standard framework for end user applications
• the logical design can be done nearly independent of expected

query pattern
• handle changes easy - at least adding new dimensional attributes
• high performance “browsing” across the attributes, eliminating

joins and make use bit vector indexes
• strategy to handling aggregates, e.g. summery records that are

logical redundant with base table to enhance query performance
• the database engine can make strong assumption how to optimise
• strategies for handling slowly changing dimensions, heterogenous

products, event-handling (“factless fact tables”)

To be continued


