
On the Suitability of UML 2.0 Activity Diagrams for Business
Process Modelling∗

Nick Russell1 Wil M.P. van der Aalst2,1 Arthur H.M. ter Hofstede1

Petia Wohed3

1School of Information Systems, Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia

{n.russell, a.terhofstede}@qut.edu.au
2Department of Technology Management, Eindhoven University of Technology

GPO Box 513, NL5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

3Centre de Recherche en Automatique de Nancy, Université Henri Poincaré, Nancy 1
BP239, 54506 Vandoeuvre les Nancy, France

petia.wohed@cran.uhp-nancy.fr

Abstract

UML is posited as the “swiss army knife” for sys-
tems modelling and design activities. It embodies a
number of modelling formalisms that have broad ap-
plicability in capturing both the static and dynamic
aspects of software systems. One area of UML that
has received particular attention is that of Activity
Diagrams (ADs), which provide a high-level means
of modelling dynamic system behaviour. In this pa-
per we examine the suitability of UML 2.0 Activity
Diagrams for business process modelling, using the
Workflow Patterns as an evaluation framework. The
Workflow Patterns are a collection of patterns devel-
oped for assessing control-flow, data and resource ca-
pabilities in the area of Process Aware Information
Systems (PAIS). In doing so, we provide a compre-
hensive evaluation of the capabilities of UML 2.0 ADs,
and their strengths and weaknesses when utilised for
business process modelling.

1 Introduction

The Unified Modeling Language (UML) is increas-
ingly being seen as the de-facto standard for soft-
ware modelling and design. The most recent ver-
sion (2.0) (OMG 2004) includes 13 distinct modelling
notations ranging from high-level use case diagrams,
which depict the interactions and relationships be-
tween (human) actors and major business functions,
through to low-level object diagrams which capture
instances of individual data objects, their constituent
data elements and values, and their relationships with
other data objects.

The various modelling notations essentially divide
into three main groups:

• Behaviour diagrams, which describe the overall
functionality of the software at a relatively high
level of abstraction;

• Interaction diagrams, which further augment the
behaviour diagrams and present a more detailed

∗This work is funded in part by ARC Discovery Project
DP0451092.
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Third Asia/Pacific Conference on Conceptual
Modelling (APCCM’2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 53. S.
Hartmann and M. Stumptner, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

description of system functionality in terms of
object interactions;

• Structure diagrams which capture the underlying
static structure of a software system at various
levels from individual objects to overall applica-
tion packages.

At its heart, UML is an object-oriented set of no-
tations and is particularly effective for capturing de-
tailed design models of software systems in a form
which is suitable for translation into some form of en-
actment technology (usually program code) either by
suitably qualified developers or in a semi-automated
manner via CASE technology. However, the breadth
of UML ensures that it also has potential applica-
bility in a number of other scenarios such as business
process modelling although in such a distinct domain,
some notations (e.g. the class of behaviour diagrams)
are likely to be more useful than others.

Over the past decade, the economics of software
usage have begun to change, and it is increasingly
common for new systems to be based on modifications
of widely distributed software products rather than
being custom software developments. There is also a
broader view being taken as to the scope in which a
system operates and the recognition that true cost-
benefits can only occur when software processes are
aligned with organisational processes. These notions
have been reinforced by the advent of organisation-
wide software packages such as Enterprise Resource
Planning (ERP), Customer Relationship Manage-
ment (CRM) and Workflow Management (WFM) sys-
tems which bind together multiple operational groups
within an organisation in a set of integrated business
processes.

As a consequence of this shift, there is an in-
creased interest in software process modelling in an
organisational context – generally termed business
process modelling or enterprise modelling, depend-
ing on whether the focus of the modelling is on the
business process or the overall organisation. Sev-
eral modelling techniques have been proposed as an
all-encompassing standard for this role, however no
one formalism is predominant in this area (Mendling,
Neumann & Nüttgens 2005). One of the major rea-
sons cited for this (zur Muehlen & Rosemann 2004)
is the wide disparity in the needs and viewpoints of
various modellers and designers.

In this paper, we investigate the suitability of Ac-
tivity Diagrams for business process modelling. This
notation is the most detailed form of process mod-
elling within UML. However, its applicability to the



business process modelling domain in a general sense
is not immediately evident and merits more detailed
examination in order to determine what advantages
it offers and what its shortcomings are.

We base this evaluation on the Workflow Pat-
terns1, a taxonomy of generic, recurring constructs
originally devised to evaluate workflow systems, and
more recently used to successfully evaluate workflow
standards, business process languages and process-
aware information systems in general (Dumas & ter
Hofstede 2001, White 2004, Wohed, Perjons, Dumas
& ter Hofstede 2003). In accordance with Jablon-
ski and Bussler’s original classification (Jablonski &
Bussler 1996), these patterns span the control-flow,
data and resource perspectives of PAIS. Our choice
of this evaluation framework is based on the fact that
it is 1) widely used, 2) well accepted, 3) comprehensi-
ble to the IT practitioner, 4) at a sufficiently detailed
level of abstraction to provide a comprehensive ba-
sis for assessing their capabilities of business process
modelling languages and 5) the most complete and
powerful framework for this form of assessment cur-
rently in existence.

The main contributions of this paper are as fol-
lows:

• It is the first multi-perspective evaluation of the
expressive capabilities of UML 2.0 ADs;

• It provides an assessment of the overall suitabil-
ity of UML 2.0 ADs for business process mod-
elling;

• It identifies several areas of potential future
improvements to UML 2.0 ADs to further
strengthen their use for this purpose.

This paper focuses on the the new version of
UML Activity Diagrams (ADs) 2.0 (OMG 2004),
which differ considerably from their precursor UML
1.4 ADs.2 Previous evaluations (cf. (Dumas & ter
Hofstede 2001, Opdahl & Henderson-Sellers 2002))
have analysed the expressive power of UML 1.4
ADs. There has also been a review of the capabil-
ities of the control-flow perspective of UML 2.0 ADs
(White 2004), however the limited focus of this in-
vestigation has restricted its usefulness as a means of
assessing their overall suitability for general modelling
purposes.

The remainder of this paper proceeds as follows:
Sections 2 and 3 provide an overview of business
process modelling languages and UML 2.0 ADs re-
spectively. Sections 4, 5 and 6 present evaluations
of the control-flow, data and resource perspectives of
UML 2.0 ADs. Section 7 reviews the suitability of
UML 2.0 ADs for business process modelling in light
of the findings in the preceding sections. It also offers
some recommendations for further improving their ca-
pabilities in this area.

2 Business Process Modelling Languages

Business process modelling is essentially a conver-
gence of two related modelling domains: process mod-
elling (cf. (Curtis, Kellner & Over 1992, Rolland 1997,
Rolland 1998)) which seeks to provide “an abstract
representation of a process architecture, design, or de-
finition” ((Humphrey & Feiler 1992), p.33) and enter-
prise modelling or business modelling which focuses
on documenting an organisation from a holistic stand-
point, capturing details of its overall purpose and

1See www.workflowpatterns.com for comprehensive details.
2The semantics of UML 2.0 ADs are based on token flow instead

of statecharts as in UML 1.4.

goals in addition to more concrete details such as or-
ganisational structure and significant business activ-
ities (cf. (Vernadat 1996, Bubenko, Persson & Stirna
2001, Eriksson & Penker 2000, Marshall 1999)).

Although there is significant overlap between
them, they are generally viewed as having distinct
motivations (Jablonski & Bussler 1996), and this is
best exemplified by the formalisms used for mod-
elling in the two areas. Process models are usually
based on a single technique, such as data flow dia-
grams (DFDs), event-driven process chains (EPCs),
UML Activity Diagrams or Petri-Nets, which is used
to capture the details of the process in question. In
contrast, enterprise modelling generally requires a
range of modelling techniques to be used in conjunc-
tion with each other in order to capture the required
domain information. This tends to favour the use
of integrated suites of modelling techniques such as
ARIS (Scheer 2000), UML (Eriksson & Penker 2000,
Marshall 1999) and EKD (Bubenko et al. 2001) which
possess a sufficiently broad range of integrated mod-
elling formalisms.

Business process modelling essentially seeks to
provide a detailed description of a business process
in an organisational context. There are a range of
potential modelling languages that can be used for
this purpose and Kueng et. al. (Kueng, Kawalek &
Bichler 1996) have proposed a taxonomy of business
process modelling techniques which classifies them
into four groups:

• Activity-oriented approaches - focusing on the de-
finition of business processes as a sequence of ac-
tivities;

• Object-oriented approaches - leveraging the more
comprehensive modelling constructs of object-
orientation to capture business processes;

• Role-oriented approaches - modelling business
processes based on the specific organisational
roles and responsibilities involved;

• Speech-act approaches - viewing business
processes in the context of the speech-act
language action paradigm.

Other considerations for the selection of an appro-
priate business process modelling language to use in a
particular scenario include the kind of process being
modelled and the purpose for which the modelling is
being undertaken. Rolland (1998) classifies processes
into three kinds: strategic – which investigate alter-
native ways of achieving a required outcome and pro-
duce a plan for doing so; tactical – which focus on the
tactics for achieving the plan; and implementation –
which describe how the plan will be achieved. Sim-
ilarly, individual process models may be developed
with one of three possible aims: descriptive – which
describe what actually happens during a process; pre-
scriptive – which define how a process might or should
be performed; and explanatory – which detail the ra-
tionale for a process and link it to the requirements
it must fulfill.

3 UML 2.0 Activity Diagrams

In UML Activity Diagrams the fundamental unit
of behaviour specification is the Action. “An ac-
tion takes a set of inputs and converts them to a
set of outputs, though either or both sets may be
empty” ((OMG 2004), p.229). Actions may also mod-
ify the state of the system. The language provides a
very detailed action taxonomy, identifying more than
40 different action types in detail. A comprehensive

2



discussion of them is beyond the scope of this paper
and in Figure 1a we only present the action types that
we have found to be most relevant to our evaluations.
These are the generic Action concept, Accept Event,
Send Signal, and Call Behavior Action constructs.

a) Actions
 b) Control Nodes


Action/Activity
 AcceptEvent


SendSignal
CallBehaviorAction
 Fork
 Join
Merge


...


InitialNode
 ActivityFinal
 FlowFinal


Decision

[cond1]


[cond n]


...
 ...
 ...


Figure 1: The main constructs in UML 2.0 ADs

In order to represent the overall behaviour of a sys-
tem, the concept of the Activity is used. Activities are
composed of actions and/or other activities and they
define dependencies between their elements. Graph-
ically, they are composed of nodes and edges. The
edges connect the nodes in sequential order. Nodes
represent either Actions, Activities, Data Objects, or
control nodes. The various types of control nodes are
shown in Figure 1b.

4 The Control-Flow Perspective in UML 2.0
ADs

In this section we examine the control-flow perspec-
tive of UML 2.0 ADs and their ability to represent
a series of twenty common control-flow modelling re-
quirements that occur when defining process mod-
els. These requirements are described in terms of the
Workflow Control Patterns (van der Aalst, ter Hof-
stede, Kiepuszewski & Barros 2003). The material
in this section summarises the findings in (Wohed,
van der Aalst, Dumas, ter Hofstede & Russell 2005)
thus providing the basis for a comprehensive evalua-
tion of UML 2.0 ADs from multiple perspectives.

4.1 Basic control patterns

The basic control-flow patterns define elementary
aspects of process control. These are analogous
to the definitions of elementary control-flow con-
cepts laid down by the Workflow Management Coali-
tion (WFMC 1999). There are five of these patterns:

• WCP1: Sequence – the ability to depict a se-
quence of activities;

• WCP2: Parallel split – the ability to capture a
split in a single thread of control into multiple
threads of control which can execute in parallel;

• WCP3: Synchronisation – the ability to cap-
ture a convergence of multiple parallel sub-
processes/activities into a single thread of con-
trol thus synchronising multiple threads;

• WCP4: Exclusive choice – the ability to repre-
sent a decision point in a workflow process where
one of several branches is chosen;

• WCP5: Simple merge – the ability to depict a
point in the workflow process where two or more
alternative branches come together without syn-
chronisation.

All five of these patterns can be captured by UML
2.0 ADs. The specific representation of each of these
patterns is illustrated in Figure 2.

WCP1: Sequence

B


C

A


WCP2: Parallel split

B


C


A


WCP3: Synchronisation

B


C

A


WCP5: Simple merge

A

B


C


[Guard1]


[Guard2]


WCP4: Exclusive choice

Figure 2: Basic control patterns in UML 2.0 ADs

4.2 Advanced branching & synchronisation
patterns

This class of patterns corresponds to advanced
branching and synchronisation scenarios that often
do not have direct realisations in PAIS but are rela-
tively common in real-life business processes. There
are four of these patterns:

• WCP6: Multiple choice – the ability to represent
a divergence of the thread of control into several
parallel branches on a selective basis;

• WCP7: Synchronising merge – the ability to de-
pict the synchronised convergence of two or more
alternative branches;

• WCP8: Multiple merge – the ability to represent
the unsynchronised convergence of two or more
distinct branches. If more than one branch is
active, the activity following the merge is started
for every activation of every incoming branch;

• WCP9: Discriminator – the ability to depict
the convergence of two or more branches such
that the first activation of an incoming branch
results in the subsequent activity being triggered
and subsequent activations of remaining incom-
ing branches are ignored.

The multiple choice, multiple merge and discrim-
inator patterns can be captured directly in UML 2.0
ADs and they are illustrated in Figure 3. The syn-
chronising merge pattern cannot be directly modelled.

WCP6: Multiple choice

B


C

A


A


B


C


WCP8: Multiple merge WCP9: Discriminator

D


B


C

A


[Guard1]


[Guard2]


Figure 3: Advanced branching & synchronisation pat-
terns in UML 2.0 ADs

4.3 Structural patterns

Structural patterns identify whether the modelling
formalism has any restrictions in regard to the way
in which processes can be structured (particularly in
terms of the type of loops supported and whether a
single terminating node is necessary). There are two
of these patterns:

• WCP10: Arbitrary cycles – the ability to repre-
sent loops in a process that have multiple entry
or exit points;

• WCP11: Implicit termination – the ability to
depict the notion that a given subprocess should
be terminated when there are no remaining ac-
tivities to be completed (i.e. no explicit unique
termination node is needed).

3



Both of these patterns are directly supported in
UML 2.0 ADs.

4.4 Multiple instance patterns

This class of patterns relates to situations where there
can be more than one instance of an activity active at
the same time for the same process instance. There
are four of these patterns:

• WCP12: MI without synchronisation – the abil-
ity to initiate multiple instances of an activity
within a given process instance;

• WCP13: MI with a priori design time knowl-
edge – the ability to initiate multiple instances
of an activity within a given process instance.
The number of instances is known at design time.
Once all instances have completed, a subsequent
activity is initiated;

• WCP14: MI with a priori runtime knowledge –
the ability to initiate multiple instances of an ac-
tivity within a given process instance. The num-
ber of instances varies but is known at runtime
before the instances must be created. Once all
instances have completed, a subsequent activity
is initiated;

• WCP15: MI without a priori runtime knowledge
– the ability to initiate multiple instances of an
activity within a given process instance. The
number of instances varies but is not known at
design time or at runtime before the instances
must be created. Once all instances have com-
pleted, a subsequent activity is initiated. New in-
stances can be created even while other instances
are executing or have already completed.

The first three of these patterns can be captured
in UML 2,0 ADs as illustrated in Figure 4. The MI
without a priori runtime knowledge pattern is not di-
rectly supported in UML 2.0 ADs.

WCP12: MI without Synchronisation WCP13: MI with a Priori Designtime Knowledge


WCP14: MI with a Priori Runtime Knowledge


Build

Component


[no more

components

to be built]


Install

Component


[more components

to be built]


Specify


Specify

Trip


Trip


Route


Route


Print


Print


Itinerary


Itinerary


Book

Hotel


Book


Book


Book


Book


Flight


Flight


Flight


Flight


1

3

2

Figure 4: Multiple instance patterns in UML 2.0 ADs

4.5 State-based patterns

This class of patterns characterise scenarios in a
process where subsequent execution is determined by
the state of the process instance. There are three such
patterns:

• WCP16: Deferred choice – the ability to depict
a divergence point in a process where one of sev-
eral possible branches should be activated. The
actual decision on which branch is activated is
made by the environment and is deferred to the
latest possible moment;

• WCP17: Interleaved parallel routing – the ability
to depict a set of activities that can be executed
in arbitrary order;

• WCP18: Milestone – the ability to depict that
a specified activity cannot be commenced until
some nominated state is reached which has not
expired yet.

Owing to the absence of the notion of state, only
the deferred choice pattern can be captured in UML
2.0 ADs. This is illustrated in Figure 5.

A

Signal 1


Signal 2
 C


B


WCP16: Deferred choice 

Figure 5: Deferred choice pattern in UML 2.0 ADs

4.6 Cancellation patterns

Cancellation patterns characterise the ability of the
modelling formalism to represent the potential termi-
nation of activities and process instances in certain
(specified) circumstances. There are two such pat-
terns:

• WCP19: Cancel activity – the ability to depict
that an enabled activity should be disabled in
some nominated circumstance;

• WCP20: Cancel case – the ability to represent
the cancellation of an entire process instance (i.e.
all activities relating to the process instance) in
some nominated circumstance.

Both of these patterns can be captured in UML 2.0
ADs. The first is illustrated in Figure 6, the second
is captured via the ActivityFinalNode construct.

WCP19: Cancel Activity 

A


Cancel

A


Figure 6: Cancel activity pattern in UML 2.0 ADs

5 The Data Perspective in UML 2.0 ADs

Extensions (Russell, ter Hofstede, Edmond & van der
Aalst 2005) to the Workflow Patterns Initiative have
focused on identifying and defining generic constructs
that occur in the the data perspective of PAIS. In
total forty data patterns have been delineated in four
distinct groups – data visibility, data interaction, data
transfer and data-based routing. In this section, an
analysis of UML 2.0 ADs is presented using the data
patterns described in (Russell, ter Hofstede, Edmond
& van der Aalst 2005).

5.1 Data visibility patterns

Data visibility patterns seek to characterise the vari-
ous ways in which data elements can be defined and
utilised within the context of a process. In general,
this is determined by the main construct to which the
data element is bound as it implies a particular scope
in which the data element is visible and capable of
being utilised. There are eight patterns which relate
to data visibility:

• WDP1: Task data – data elements defined and
accessible in the context of individual execution
instances of a task or activity;

4



Nr Pattern 2.0 Nr Pattern 2.0
Basic Control Multiple Instance

1 Sequence + 12 MI without Synchronization +
2 Parallel Split + 13 MI with a priori Design Time Knowledge +
3 Synchronisation + 14 MI with a priori Runtime Knowledge +
4 Exclusive Choice + 15 MI without a priori Runtime Knowledge –
5 Simple Merge + State-based

Adv. Branching & Synchronisation 16 Deferred Choice +
6 Multiple Choice + 17 Interleaved Parallel Routing –
7 Synchronising Merge – 18 Milestone –
8 Multiple Merge + Cancellation
9 Discriminator + 19 Cancel Activity +

Structural 20 Cancel Case +
10 Arbitrary Cycles +
11 Implicit Termination +

Table 1: Support for Control-Flow Patterns in UML 2.0 ADs

• WDP2: Block data – data elements defined by
block tasks (i.e. tasks which can be described
in terms of a corresponding decomposition) and
accessible to the block task and all correspond-
ing components within the associated decompo-
sition;

• WDP3: Scope data – data elements bound to a
subset of the tasks in a process instance;

• WDP4: Multiple instance data – data elements
specific to a single execution instance of a task
(where the task is able to be executed multiple
times);

• WDP5: Case data – data elements specific to a
process instance which are accessible to all com-
ponents of the process instance during execution;

• WDP6: Folder data – data elements bound to
a subset of the tasks in a process definition but
accessible to all task instances regardless of the
case to which they correspond;

• WDP7: Workflow data – data elements accessi-
ble to all components in all cases;

• WDP8: Environment data – data elements de-
fined in the operational environment which can
be accessed by process elements.

In the case of UML 2.0 ADs, there is support for
several of these patterns. The smallest operational
unit in the context of these diagrams is the action.
This corresponds to the notion of a process element
or task and although the notion of task data is not
directly supported, there is indirect support in the sit-
uation where a local action language is utilised which
provides action-specific variables (see (OMG 2004),
p.338-9).

Activities serve as the main grouping mechanism
in UML 2.0 ADs and they have similar characteris-
tics to the block construct in process definitions. The
block data pattern is directly supported through pa-
rameters to activities (see (OMG 2004), p.363) which
are accessible to all activity components. The concept
of attributes (see (OMG 2004), p.341-7) is also pro-
vided which allows data elements to be defined which
are scoped to a specific activity.

Scope data is not supported. The ActivityGroup
construct (see (OMG 2004), p.359) seems to offer
something analogous however the semantics of the
construct are not defined.

Multiple instance data is directly supported.
There are three situations where multiple instances
of a given task may arise:

1. Where a task is specifically designated as having
multiple instances in the process model – this fa-
cility seems to be provided by the ExpansionKind
construct (see (OMG 2004), p.394) where the
parallel option is chosen forcing parallel execu-
tion.

2. Where a task can be triggered multiple times e.g.
it is part of a loop. This situation is allowable in
UML 2.0 ADs (see (OMG 2004), p.345).

3. Where two tasks share the same decomposition.
This is also supported in UML 2.0 ADs as each
activity decomposition is distinct and has a dif-
ferent set of tokens supplied to it at initiation
(see (OMG 2004), p.360-1).

Case and folder data are not supported as there does
not appear to be the notion of distinct execution in-
stances in UML 2.0 ADs, rather all instances of a
process model execute in the same context and are
differentiated by distinct sets of control and object
tokens flowing through the diagram. Workflow data
is directly supported through data objects or Object-
Nodes (see (OMG 2004), p.422) which are potentially
accessible to all of the components in a UML 2.0 ADs.
There does not appear to be the ability within UML
2.0 ADs to refer to data outside of the context of
the diagram, and hence environment data is not sup-
ported.

5.2 Data interaction patterns

Data interaction patterns deal with the various ways
in which data elements can be passed between com-
ponents within a process instance and also with the
operating environment (e.g. data transfer between a
component of a process and an application, data store
or interface that is external to the process). They ex-
amine how the characteristics of the individual com-
ponents can influence the manner in which the traf-
ficking of data elements occurs.

There are six internal data interaction patterns:

• WDP9: Data elements flowing between task in-
stances;

• WDP10: Data elements flowing to a block ;

• WDP11: Data elements flowing from a block ;

• WDP12: Data elements flowing to a multiple in-
stance task instance;

• WDP13: Data elements flowing from a multiple
instance task instance;

5



• WDP14: Data elements flowing between process
instances or cases.

Data interaction between tasks is directly supported
in UML 2.0 ADs by the ObjectNode construct
(see (OMG 2004), p.422) which is the standard means
of communicating data elements between activities.

Data interaction between block tasks and their de-
compositions has a similar analogy in UML 2.0 ADs
in the form of data passing to and from activities.
The standard means of doing this is via parameters
(see (OMG 2004), p.363). Both the data interac-
tion block task to sub-workflow and data interac-
tion sub-workflow to block task patterns (WDP10 and
WDP11) are directly supported.

Data interaction to and from multiple instance
tasks has a direct analogy in UML 2.0 ADs in the
ExpansionRegion construct (see (OMG 2004), p.395)
which allows nominated regions of a process model to
be executed multiple times in parallel (providing the
ExpansionKind mode is set to parallel). Data pass-
ing into and out of the ExpansionRegion occurs using
ExpansionNodes which provide the ability to map dis-
tinct sections of the input data set to specific execu-
tion instances and similarly completing instances can
map their output to a specific section of the output
data set. Hence the data interaction to and from mul-
tiple instance task patterns (WDP12 and WDP13)
are directly supported.

There is no notion of distinct execution cases in
UML 2.0 ADs, hence the data interaction – case to
case pattern (WDP14) is not supported.

There are 12 external data interaction patterns,
characterised by three dimensions:

• The type of process element – task, case or com-
plete process – that is interacting with the envi-
ronment;

• Whether the interaction is push or pull-based;

• Whether the interaction is initiated by the
process component or the environment.

Difficulties arise when examining UML 2.0 ADs in
the context of this class of patterns as the UML ap-
proach assumes that an Activity Diagram represents
the complete universe of discourse and does not pro-
vide the ability to reference or interact with elements
that are external to it.

5.3 Data transfer patterns

Data transfer patterns focus on the way in which data
elements are actually transferred between one process
element and another. They aim to capture the various
mechanisms by which data elements can be passed
across the interface of a process element. There are
seven distinct patterns in this category:

• WDP27: Data transfer by value – incoming –
incoming data elements passed by value;

• WDP28: Data transfer by value – outgoing – out-
going data elements passed by value;

• WDP29: Data transfer – copy in/copy out –
where a process element synchronises data ele-
ments with an external data source at commence-
ment and completion;

• WDP30: Data transfer by reference – without
lock – data elements are communicated between
components via a reference to a data element in
some mutually accessible location. No concur-
rency restrictions are implied;

• WDP31: Data transfer by reference – with lock
– similar to WDP30 except that concurrency re-
strictions are implied with the receiving compo-
nent receiving the privilege of read-only or dedi-
cated access to the data element;

• WDP32: Data transformation – input – where
a transformation function is applied to a data
element prior to it being passed to a subsequent
component;

• WDP33: Data transformation – output – where
a transformation function is applied to a data
element prior to it being passed from a previous
component.

In the context of UML 2.0 ADs, only three of these
patterns are supported: WDP31: data transfer by
reference – with lock - is the standard means of pass-
ing data elements into an activity as parameters. As
UML 2.0 ADs adopt a token-oriented approach to
data passing, these parameters – which typically re-
late to objects – are effectively consumed at activity
commencement and only become visible and acces-
sible to other activities once the specific activity to
which they were passed has completed and returned
them; WDP32: data transformation - input – can be
achieved through the ObjectFlow transformation be-
haviour (see (OMG 2004), p.418) which allows trans-
formation functions to be applied to data tokens as
they are passed along connecting edges between ac-
tivities; and WDP33: data transformation - output –
as for pattern WDP32.

5.4 Data-based routing patterns

Data-based routing patterns capture the various ways
in which data elements can interact with other per-
spectives and influence the overall execution of the
process. There are seven (relatively self-explanatory)
patterns in this category:

• WDP34: Task precondition – data existence;

• WDP35: Task precondition – data value;

• WDP36: Task postcondition – data existence;

• WDP37: Task postcondition – data value;

• WDP38: Event-based task trigger ;

• WDP39: Data-based task trigger ;

• WDP40: Data-based routing.

The majority of these patterns are supported in UML
2.0 ADs. Both action and activity constructs in-
clude local preconditions and postconditions based
on logical expressions (which may include data ele-
ments) framed in OCL (see (OMG 2004), p.336 and
p.346). As a consequence, all of the task pre and
postcondition patterns (WDP34 - WDP37) are di-
rectly supported. The AcceptEventAction construct
(see (OMG 2004), p.334) provides direct support for
the event-based task triggering pattern. Similarly,
there is direct support for data-based routing via
the DecisionNode construct and guard conditions on
ActivityEdges (see (OMG 2004), p.387 and p.351).
The lack of support for persistent state management
within UML 2.0 ADs means that the data-based task
trigger pattern cannot be captured.

6



Nr Pattern Nr Pattern
Data Visibility Data Interaction (Ext.) (cont.)

1 Task Data +/– 21 Env. to Case – Push-Oriented –
2 Block Data + 22 Case to Env. – Pull-Oriented –
3 Scope Data – 23 Workflow to Env. – Push-Orient. –
4 Multiple Instance Data + 24 Env. to Workflow – Pull-Orient. –
5 Case Data – 25 Env. to Workflow – Push-Orient. –
6 Folder Data – 26 Workflow to Env. – Pull-Orient. –
7 Workflow Data + Data Transfer
8 Environment Data – 27 by Value – Incoming –

Data Interaction (Internal) 28 by Value – Outgoing –
9 between Tasks + 29 Copy In/Copy Out –
10 Block Task to Sub-workflow Decomp. + 30 by Reference – Unlocked –
11 Sub-workflow Decomp. to Block Task + 31 by Reference – Locked +
12 to Multiple Instance Task + 32 Data Transformation – Input +
13 from Multiple Instance Task + 33 Data Transformation – Output +
14 Case to Case – Data-based Routing

Data Interaction (External) 34 Task Precondition – Data Exist. +
15 Task to Env. – Push-Oriented – 35 Task Precondition – Data Val. +
16 Env. to Task – Pull-Oriented – 36 Task Postcondition – Data Exist. +
17 Env. to Task – Push-Oriented – 37 Task Postcondition – Data Val. +
18 Task to Env. – Pull-Oriented – 38 Event-based Task Trigger +
19 Case to Env. – Push-Oriented – 39 Data-based Task Trigger –
20 Env. to Case – Pull-Oriented – 40 Data-based Routing +

Table 2: Support for Data Routing Patterns in UML 2.0 ADs

6 The Resource Perspective in UML 2.0 ADs

Recent work (Russell, van der Aalst, ter Hofstede
& Edmond. 2005) has focused on the resource per-
spective and the manner in which work is distrib-
uted amongst and managed by the resources asso-
ciated with a business process. Our investigations
have indicated that these patterns are relevant to
all forms of PAIS including modelling languages such
as XPDL and business process enactment languages
such as BPEL4WS. In this section, we examine the
resource perspective of UML 2.0 ADs and their ex-
pressive power in regard to work distribution.

Forty three workflow resource patterns have been
identified in seven distinct groups:
• Creation patterns – which correspond to restric-

tions on the manner in which specific work items
can be advertised, allocated and executed by re-
sources;

• Push patterns – which describe situations where
a PAIS proactively offers or allocates work to re-
sources;

• Pull patterns – which characterise scenarios
where resources initiate the identification of work
that they are able to undertake and commit to
its execution;

• Detour patterns – which describe deviations from
the normal sequence of state transitions associ-
ated with a business process either at the insti-
gation of a resource or the PAIS;

• Auto-start patterns – which relate to situations
where the execution of work is triggered by spe-
cific events or state transitions in the business
process;

• Visibility patterns – which describe the ability of
resources to view the status of work within the
PAIS;

• Multiple resource patterns – which describe sce-
narios where there is a many-to-many relation-
ship between specific work items and the re-
sources undertaking those work items.

In UML 2.0 ADs, the association of a particular
action or set of actions with a specific resource is illus-
trated through the use of the ActivityPartition con-
struct (see (OMG 2004), p.367). This may take many
forms although the “swimlanes” notation is proba-
bly the most widely adopted means of presentation,
where each lane indicates the resource that will be re-
sponsible for executing a specific subset (i.e. a parti-
tion) of the actions within an activity. Each partition
has a name that corresponds to a specific resource or
a group of resources to which the contained actions
should be allocated at run-time. Partitions may be
specified in four distinct ways: Classifier, Instance,
Part, and Attribute and Value. The first two of these
schemes (i.e. Classifier and Instance) are relevant in
the context of resource allocation.

The direct allocation pattern (WRP1) is directly
supported in UML 2.0 ADs as the ability to base a
partition on a specific instance allows the actions to
be associated with a single specified resource. There
is no direct notion of roles within UML 2.0 ADs, al-
though where a partition is based on a classifier, it
is possible that the contained actions are allocated to
multiple objects corresponding to the classifier (i.e.
multiple resources). This is analogous to the notion
of group allocation within a traditional workflow sys-
tem. It is up to the individual resources to determine
whether one or all of them will execute the assigned
actions (see (OMG 2004), p.368-70). Consequently
the requirements of the role-based allocation pattern
(WRP2) are fully met and the pattern is directly sup-
ported. It is not necessary that actions within an ac-
tivity belong to a partition and have a corresponding
resource association, therefore the automatic execu-
tion pattern (WRP11) is also directly supported.

None of the other Creation Patterns are supported
within UML 2.0 ADs. In the main, this is a conse-
quence of the restrictive manner in which partitions
are specified and the lack of support for relationships
between distinct partitions. The attribute and value
partition specifier seems to offer a means of imple-
menting the deferred allocation pattern (WRP3) by
delaying the need to identify a potential resource until
run-time, however it is not possible to specify alter-

7



nate (i.e. parallel) courses of action based on different
values of an attribute and even if it were, the neces-
sity to enumerate a distinct course of action for each
value (i.e. each potential resource) would make this
approach unwieldy. Lack of an integrated authorisa-
tion framework, organisational model or access to an
execution history also rules out any form of support
for the authorisation (WRP4), organisational alloca-
tion (WRP9) and history-based allocation (WRP8)
patterns respectively.

The execution semantics of a UML 2.0 AD are
based on Petri Net token flow, hence actions become
“live” once they receive a control-flow token. The
resource associated with a given partition can have
multiple actions executing (possibly in different parti-
tions) at the same time. There is no notion of schedul-
ing work execution or of resources selecting the work
(i.e. the actions) they wish to undertake, hence there
is minimal support for the Push, Auto-start or Mul-
tiple Resource patterns within UML 2.0 ADs. The
following patterns from these classes are directly sup-
ported:
• WRP14: Distribution by allocation - single re-

source – the resource(s) associated with a given
partition is immediately allocated an action once
it is triggered;

• WRP19: Distribution on enablement – all ac-
tions in a partition are associated with the re-
source responsible for the partition when they
are triggered;

• WRP36: Commencement on creation – an ac-
tion is assumed to be live as soon as it receives a
control-flow token;

• WRP39: Chained execution – once an action
is completed, subsequent action(s) receive a
control-flow token and are triggered immediately;

• WRP42: Simultaneous execution – there are no
constraints on how many partitions a given re-
source can be specified for or how many instances
of these can be active at any one time.

None of the Pull, Detour or Visibility patterns are
supported.

7 Conclusions

The pattern evaluations described in this paper indi-
cate that whilst UML 2.0 ADs have merit as a nota-
tion for business process modelling, they are not suit-
able for all aspects of this type of modelling. They
offer comprehensive support for the control-flow and
data perspectives allowing the majority of the con-
structs encountered when analysing these perspec-
tives to be directly captured. However, their suitabil-
ity for modelling resource-related or organisational as-
pects of business processes is extremely limited. It
is interesting to note that they are not able to cap-
ture many of the natural constructs encountered in
business processes such as cases and the notion of in-
teraction with the operational environment in which
the process functions. These are limitations that they
share with most other business process modelling for-
malisms and reflect the overwhelming emphasis that
has been placed on the control-flow and data perspec-
tives in contemporary modelling notations.

The level of support observed for control-flow pat-
terns (see Table 1 for a complete summary3) illus-
trates that there is relatively broad support for cap-
turing the various types of control-flow constructs

3A “+” in the table indicates direct support for the pattern
(i.e. there is a construct in the language that directly supports the
pattern).

that may arise in actual business processes. In terms
of addressing the patterns that are not directly sup-
ported, we would like to make the following recom-
mendations:

• Given the difficulties in capturing state-based
patterns, most notably the interleaved parallel
routing pattern and the milestone pattern, it may
be worthwhile providing direct support for the
notion of the place as it exists in Petri nets.
Petri net places capture the notion of “waiting
state” in a much less restrictive way than the
AcceptEventAction construct does;

• UML 2.0 ADs currently do not support the cre-
ation of new instances of an activity while other
instances of that activity are already running.
This could be resolved through extensions to the
ExpansionRegion construct to allow further in-
stances to be dynamically created after the ac-
tivity has started;

• Given the lack of support for the synchronising
merge, a concept similar to the OR-join could be
added to UML 2.0 ADs.

The data patterns evaluation is summarised in Ta-
ble 2. This shows that the data perspective is also
well supported. Furthermore, the following remarks
can be made:

• There is no notion of cases or distinct process
instances in UML 2.0 ADs, hence all data is
effectively block-scoped by default and paral-
lel threads of execution occur in the same data
space. This could lead to some problematic sit-
uations when modelling highly data intensive
and/or highly concurrent processes;

• The use of “tokens” as the fundamental under-
pinning for control and data flow introduces some
subtle variations that do not exist in other PAIS
(except those based on Petri-nets) – in particular
data elements are truly consumed (and cease to
exist) when they are passed to an activity for the
duration of the activity. This also makes it diffi-
cult to actually share a data element/object be-
tween concurrent activities. On the other hand,
it minimises concurrency problems;

• The token approach provides an effective basis
for internal data interaction (and hence all pat-
terns are “+”). In particular, multiple instance
data handling seems to be supported for all three
multiple instance situations: designated multiple
instance tasks, multiply triggered tasks (loops)
and block tasks with a common decomposition;

• There does not seem to be any ability to model
things “outside of the model” i.e. in the external
environment. Hence there is no real ability to
support external data interaction patterns. This
may be addressed by using UML ADs in con-
junction with other diagrams such as UML in-
teraction, overview and sequence diagrams, but
this requires that the relationships between these
diagrams be carefully established.

The resource patterns evaluation is summarised in Ta-
ble 3. As discussed, it indicates that the support in
UML 2.0 ADs for the modelling of work distribution
directives is relatively minimal. This reinforces the
fact that UML 2.0 ADs tend to be control-flow and
data-centric and mainly aim to capture simple static
routing directives associated with actions. They do
not provide a means of representing the subtleties as-
sociated with selective work allocation across a range

8



Nr Pattern Nr Pattern
Creation Patterns Pull Patterns (cont.)

1 Direct Allocation + 24 System-Determ. Wk Queue Cont. –
2 Role-Based Allocation + 25 Resource-Determ. Wk Queue Cont. –
3 Deferred Allocation – 26 Selection Autonomy –
4 Authorisation – Detour Patterns
5 Separation of Duties – 27 Delegation –
6 Case Handling – 28 Escalation –
7 Retain Familiar – 29 Deallocation –
8 Capability-Based Allocation – 30 Stateful Reallocation –
9 History-Based Allocation – 31 Stateless Reallocation –
10 Organisational Allocation – 32 Suspension/Resumption –
11 Automatic Execution + 33 Skip –

Push Patterns 34 Redo –
12 Distrib. by Offer - Single Resource – 35 Pre-Do –
13 Distrib. by Offer - Multiple Resources – Auto-Start Patterns
14 Distrib. by Allocation - Single Resource + 36 Commencement on Creation +
15 Random Allocation – 37 Creation on Allocation –
16 Round Robin Allocation – 38 Piled Execution –
17 Shortest Queue – 39 Chained Execution +
18 Early Distribution – Visibility Patterns
19 Distribution on Enablement + 40 Conf. Unalloc. Work Item Visibility –
20 Late Distribution – 41 Conf. Alloc. Work Item Visibility –

Pull Patterns Multiple Resource Patterns
21 Resource-Init. Allocation – 42 Simultaneous Execution +
22 Resource-Init. Exec. - Alloc. Wk Items – 43 Additional Resource –
23 Resource-Init. Exec. - Offer. Wk Items –

Table 3: Support for Resource Patterns in UML 2.0 ADs

of possible resources and the management of those
work items at run-time. In particular, there is no real
support for modelling any form of work distribution
other than direct allocation or role-based allocation.
There is no opportunity to utilise data resources (ei-
ther within the model or externally from the environ-
ment) thus any opportunity for modelling organisa-
tional, history-based or capability-based allocation is
obviated. Similarly, there is no support for specifying
any form of work distribution algorithm or employing
varying styles of work distribution (e.g. push vs pull,
offer vs allocation).

Other observations arising from the resource pat-
terns analysis include:

• The fact that the partitions can result in actions
being simultaneously allocated to more than one
resource can lead to difficulties where a means
of providing role-based work allocation to a sin-
gle resource is required. It is important to note
that the resolution of this situation must be ad-
dressed as part of the implementation of the ac-
tions within the Activity Diagram;

• The ability to use OCL statements in the specifi-
cation of partitions (and also for specifying rela-
tionships between partitions) would enhance the
capability of UML 2.0 ADs to capture possible
resource allocations, both in terms of precision
and the range of work allocation strategies that
could be represented.

References

Bubenko, J., Persson, A. & Stirna, J. (2001), EKD
user guide, Technical report, Royal Institute of
Technology (KTH) and Stockholm University,
Stockholm, Sweden.

Curtis, B., Kellner, M. & Over, J. (1992),
‘Process modelling’, Communications of the
ACM 35(9), 75–90.

Dumas, M. & ter Hofstede, A. (2001), UML activity
diagrams as a workflow specification language,
in M. Gogolla & C. Kobryn, eds, ‘Proceedings
of the Fourth International Conference on the
Unified Modeling Language (UML 2001)’, LNCS
2185, Springer, Toronto, Canada, pp. 76–90.

Eriksson, H. & Penker, M. (2000), Business Modeling
with UML, OMG Press, New York.

Humphrey, W. & Feiler, P. H. (1992), Software
process development and enactment : Concepts
and definitions, Technical Report SEI-92-TR-4,
SEI Institute, Pittsburgh, USA.

Jablonski, S. & Bussler, C. (1996), Workflow Manage-
ment: Modeling Concepts, Architecture and Im-
plementation, Thomson Computer Press, Lon-
don, UK.

Kueng, P., Kawalek, P. & Bichler, P. (1996),
How to compose an object-oriented business
process model?, in S. Brinkkemper, K. Lyyti-
nen & R. Welke, eds, ‘Proceedings of the IFIP
WG8.1/WG8.2 Working Conference’, Atlanta,
GA, USA.

Marshall, C. (1999), Enterprise Modeling with UML,
Addison Wesley, Reading.

Mendling, J., Neumann, G. & Nüttgens, M. (2005),
A comparison of XML interchange formats for
business process modelling, in L. Fischer, ed.,
‘Workflow Handbook 2005’, Workflow Manage-
ment Coalition, Lighthouse Point, Florida, USA,
pp. 185–198.

OMG (2004), UML 2.0 superstructure specifica-
tion, Technical report. http://www.omg.org/
cgi-bin/doc?ptc/2004-10-02.

Opdahl, A. & Henderson-Sellers, B. (2002), ‘Onto-
logical evaluation of the UML using the Bunge-
Wand-Weber model’, Software and System Mod-
eling 1(1), 43–67.

9

http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02


Rolland, C. (1997), A primer for method engineering,
in ‘Proceedings of the INFormatique des ORgan-
isations et Systèmes d’Information et de Décision
(INFORSID’97)’, Toulouse, France.

Rolland, C. (1998), A comprehensive view of process
engineering, in B. Pernici & C. Thanos, eds,
‘Proceedings of the 10th International Confer-
ence on Advanced Information Systems Engi-
neering (CAiSE’98)’, Vol. 1413 of Lecture Notes
in Computer Science, Springer, Pisa, Italy.

Russell, N., ter Hofstede, A., Edmond, D. & van der
Aalst, W. (2005), Workflow data patterns: Iden-
tification, representation and tool support, in
‘Proceedings of the 25th International Con-
ference on Conceptual Modeling (ER’2005)’,
Springer, Klagenfurt, Austria.

Russell, N., van der Aalst, W., ter Hofstede, A. & Ed-
mond., D. (2005), Workflow resource patterns:
Identification, representation and tool support.,
in O. Pastor & J. Falcao é Cunha, eds, ‘Pro-
ceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05)’,
Vol. 3520 of Lecture Notes in Computer Science,
Springer, Porto, Portugal, pp. 216–232.

Scheer, A.-W. (2000), ARIS - Business Process Mod-
elling, Springer, Berlin, Germany.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B.
& Barros, A. (2003), ‘Workflow patterns’, Dis-
tributed and Parallel Databases 14(3), 5–51.

Vernadat, F. (1996), Enterprise Modeling and Inte-
gration, Chapman and Hall, London.

WFMC (1999), Workflow management coali-
tion terminology and glossary, document
status - issue 3.0, Technical Report WFMC-
TC-1011, Workflow Management Coalition.
http://www.wfmc.org/standards/docs/
TC-1011 term glossary v3.pdf.

White, S. (2004), Process modeling notations and
workflow patterns, in L. Fischer, ed., ‘Workflow
Handbook 2004’, Future Strategies Inc., Light-
house Point, FL, USA., pp. 265–294.

Wohed, P., Perjons, E., Dumas, M. & ter Hofstede, A.
(2003), Pattern based analysis of EAI languages
- the case of the business modeling language, in
O. Camp & M. Piattini, eds, ‘Proceedings of the
5th International Conference on Enterprise In-
formation Systems (ICEIS 2003)’, Vol. 3, Escola
Superior de Tecnologia do Instituto Politecnico
de Setubal, Angers, France, pp. 174–184.

Wohed, P., van der Aalst, W., Dumas, M., ter Hof-
stede, A. & Russell, N. (2005), Pattern-based
analysis of UML activity diagrams, in ‘Proceed-
ings of the 25th International Conference on
Conceptual Modeling (ER’2005)’, Springer, Kla-
genfurt, Austria.

zur Muehlen, M. & Rosemann, M. (2004), Multi-
paradigm process management, in J. Grund-
spenkis & M. Kirikova, eds, ‘Proceedings of
the Fifth Workshop on Business Process Mod-
eling, Development, and Support (BPMDS
’04), held in conjunction with the Conference
on Advanced Information Systems Engineering
(CAiSE) 2004’, Vol. 2, Faculty of Computer Sci-
ence and Information Technology, Riga Techni-
cal University, Riga, Latvia, pp. 169–175.

10

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

	Introduction
	Business Process Modelling Languages
	UML 2.0 Activity Diagrams
	The Control-Flow Perspective in UML 2.0 ADs
	Basic control patterns
	Advanced branching & synchronisation patterns
	Structural patterns
	Multiple instance patterns
	State-based patterns
	Cancellation patterns

	The Data Perspective in UML 2.0 ADs
	Data visibility patterns
	Data interaction patterns
	Data transfer patterns
	Data-based routing patterns

	The Resource Perspective in UML 2.0 ADs
	Conclusions

