
93

Conceptual Patterns for Reuse in Information
Systems Analysis

Petia Wohed

Department of Information and Systems Sciences
Stockholm University/Royal Institute of Technology

Electrum 230, 164 40  Kista, Sweden
petia@dsv.su.se

Abstract: Reuse of already existing resources and solutions has always
been a strategy for reducing the costs in the information systems
development process. Construction and organization of small pieces of
reusable solutions, also called patterns, in libraries for reuse support, has
taken a central place within research during the last years. In this paper, a
methodology for collecting conceptual patterns and a navigation structure
for suggesting the most suitable one during the information systems
analysis process are suggested. The study has, so far, been carried out on
one domain only, but it provides a theoretical background for research on
other domains as well.

1 Introduction

The concept of patterns is increasingly used in the context of information
systems development. A pattern is a piece of a solution for a problem reusable in
different situations. The main purpose of the use and reuse of patterns is to
reduce the costs for the design and implementation of information systems. The
idea of reuse of different parts of a solution is also at the heart of the approaches
of object orientation and component-based development. These paradigms
become more and more commonly used and are widely spread in the sphere of
implementation, a line of development clearly distinguished by the character of
the current environments for standard programming languages providing large
libraries of reusable objects.

However, the concept of pattern is still not widely used within the initial
phases of information systems development, i.e. analysis and design. One of the
problems may lie in the lack of standardised patterns collected in libraries and
supported by development tools. Another problem may lie in the lack of suitable
patterns. In order to make a pattern applicable in several different situations it



94  Paper 4

often tends to result in a too general pattern to be easily applicable, and such a
general pattern is sometimes even difficult to understand.

In this paper, both these problems are addressed for the area of information
systems analysis. It provides a theoretical foundation for a modelling wizard
tool, which collects a number of conceptual patterns as well as navigates the
designers to the most suitable one for a particular situation. Such a tool,
supporting the initial phases of the database design process, is an attempt to
complement database management systems like Microsoft Access, or as a part of
a visual modelling tool supporting an OO-development process of information
systems like Rational Rose. A prototype for such a wizard collecting more than
360 patterns has been developed.

The difference from earlier approaches is the idea of preserving a number of
different patterns within the same domain, in order to keep them concrete and
easy to use. In order to identify the necessary pattern, a navigation structure
consisting of a number of queries, to be answered by the designer, is suggested.
This navigation structure may also be considered as a method for modelling
support and is the main contribution of this work.

The paper is organised as follows. The next section surveys related research in
the area. In Section 3, the modelling formalism is defined. In Section 4, a
number of patterns within the same domain are analysed and a number of
questions are distinguished outlining the differences between the patterns.
Section 5 gives an example of the behaviour for a domain dependent modelling
wizard tool built by the questions received from Section 4. Section 6 gives a
theoretical background for the identified questions. Finally, Section 7 concludes
the paper and gives directions for further work.

2 Related Research

The identification, naming, and classification of different phenomena in a
Universe of Discourse (UoD) have long been incorporated in the discipline of
taxonomy. One of the oldest and most well known taxonomy is Linné’s
taxonomy for species. However, when dealing with information systems it is not
sufficient to only identify and classify the relevant phenomena in the UoD for
which an information system has to be built, but it is also necessary to specify
their properties and relations, something characterising the discipline of
ontology. Slightly simplified and inspired by [10] and [4] we consider an
ontology as a conceptualisation of the UoD in a certain language (see [10] for a
complete definition of the concept). One of the main reasons for building
ontologies is the reuse capability they provide. Some examples of ontologies are
CYC [6] developed by Cycorp, The Enterprise Ontology [19] developed at the
University of Edinburg, and TOVE (Toronto Virtual Enterprise) [21] developed
by the University of Toronto. Common for all of these three ontologies is that



Conceptual Patterns for Reuse in Information Systems Analysis  95

they conceptualise the organisational structure of enterprises and are meant to be
used for support in the information systems design process. To position our work
in the context of the work provided by the ontology engineers, we will refer back
to Guarino’s framework for ontology driven information systems design [10],
where two dimensions are identified. The first one is the temporal dimension
distinguishing between the development-time and run-time for a system, and the
second one is the structural dimension consisting of the three components of an
IS namely application programs, information resources (i.e. databases and
knowledge bases), and user interfaces. Hence, the focus of this paper is on the
development-time for databases, and the work reported here may be considered
as an application of ontology for the purpose of reuse.

Parallel whit the work of ontology, work in the field of reusable patterns has
been carried out. Some of the works relevant here is the one provided by Maiden
in his doctoral thesis [16], concerning the question of specification reuse. His
paradigm builds on reuse by analogies. A number of domain abstractions are
identified and formalised using a structure called meta-schema that defines seven
knowledge types as necessary for a requirement specification. The source
domain is also specified using this meta-schema. A comparison of the
knowledge types of the source domain model with those of the domain
abstraction is then possible and provides an analogy analysis, meant to identify
possibilities for reuse. Even if Maiden does not call his domain abstractions
‘patterns’, the idea is still reuse of already constructed specifications. However,
the work presented in this paper differs from the work provided by Maiden by
concentrating only on the conceptual patterns and not on the whole requirement
specification. It also differs by suggesting a navigation structure for identifying
the most suitable pattern.

Two other works on patterns, during recent years, have been provided by
Fowler [8] and Hay [12], who, after analysing a number of domains, suggest
conceptual patterns meant to guide inexperienced systems developers or simply
as starting points for those more experienced. However, no navigation support
has been discussed by them, so the work reported here may be considered as a
continuation of the work done by Fowler and Hay, through the investigation on
navigation support.

When talking about patterns, two more works have to be mentioned: the work
provided by Coad et al [5] and the work provided by Gamma et al [9]. Each of
these works provides a library of patterns that are usually referred to. Goad’s
library consists of analysis patterns, whereas Gamma’s library consists of design
patterns. Coad’s patterns are quite general, often consisting of no more than two,
three classes, and they are meant to be varying consolidated into different object
models. Furthermore Coad selects a number of strategies that are aimed to guide
a designer in the analysis process. However these strategies are not formalized in
the sense that they easily can be implemented in a computer, which is also the
difference from our approach. Furthermore, the patterns suggested by Gamma



96  Paper 4

are design patterns and they are meant to support the design process, whereas the
patterns analyzed in our work are analysis patterns. The difference between
analysis contra design patterns is the perspective from which the patterns are
build; analysis: specifying the requirements for a system; and design: specifying
the solutions for a system.

An alternative work on creating libraries of reusable objects also partly
inspired by Fowler [8] and Coad [5] is the work provided by Han, Purao and
Storey [11]. The point of departure in their work is so called design fragments -
reusable solutions with a lower granularity than domain models, but higher
granularity and specificity than analysis patterns. The main results are (a) a
methodology for building such design fragments collected in a repository, and
(b) two clustering algorithms for identifying common pattern set starting from a
natural language requirements specification, which may be used as a navigation
structure for identifying possible starting points for a designer. The work
reported here may be considered as a complement to the work provided by Han
et. al. The main differences are, however, that: (a) the navigation structure by
Han et. al. starts with a requirement, something not required in our work; and (b)
the navigation structure may suggest more than one design fragment as a
relevant starting point for a designer, whereas in our approach only one pattern is
suggested.

Finally, viewed from a traditional knowledge engineering perspective, this
work builds on the work provided by Moulin and Creasy [18] who integrates the
earlier work of Chen [3] and Sowa [20] by adding linguistic elements from
Fillmore’s case grammar [7]. Moulin and Creasy present a simplified picture of
the design process retyped in Figure 1, where the dotted rectangle encircles the
phases being subject for automation in modern modelling tools. Our approach
builds partly on Moulin’s and Creasy’s ideas for using linguistic elements on
conceptual modelling. The difference, however, is that we investigate how to
automate the processes that have not been automated earlier, i.e. the processes
outside the dotted rectangle. Consequently, we focus on the process P1
‘Interviewing user about the real word’ (from Figure 1) in order to support the
users in building conceptual schemas, or, as it also can be considered, in order to
guide the users to find the most suitable pattern. This shift of focus changes
slightly the design process as represented in Figure 2 where the modelling
process is simplified by the use of patterns. A modelling wizard tool is intended
to support the interviewing process P1 and build a conceptual schema gradually,
by using a pattern library. During this process the user shall be able to rename
and complete the proposed solution, i.e. process P2. Furthermore, an integration
module (supporting the processes P3 and P4 in Figure 2) has to be incorporated
with the modelling wizard tool in order to offer integration facilities and make it
possible to consolidate local schemas into a global one.



Conceptual Patterns for Reuse in Information Systems Analysis  97

Figure 1 Modelling the designer’s behaviour (retyped from [18])

Figure 2 The process model for our approach

3 Conceptual Schemas

In this section we briefly introduce the modelling language which is used. A
formal definition of it, based on the definitions represented in [14] and [15] may
be found in the first part of the Appendix.

The basic construct in conceptual modelling approaches is the object. Objects
that are similar to each other are grouped together into object types, such as
Person and Country. Objects have different properties, which are modelled by
attributes, and they can be related to each other, which is represented by
relationships. In our graphical notation (see Figure 3) object types are
represented by rectangles, attributes by bulleted lists inside the object types, and
relationships by labeled arrows. The object type initiating a relationship is called

User
P1

Interviewing user 
about the real world

Informal 
representation of 

real world

P2
Naming concepts and 

selecting relevant 
propositions

P4
Joining elem. data 
structures in a CDS

P3
Creating elementary 

data structures
P5

Validating data 
structures

Propositions 
describing the 

UoD

Semantic data 
model rules

Elementary data 
structures

Conceptual data 
schema (CDS)

User
P1

Interviewing user 
about the real world

Local conceptual 
schema

P2
Naming concepts 
and validating the 

local schemas

P3
Integrating the local 

schemas into a 
global schema

P5
Validating the
global schema

Integration rules

Conceptual 
patterns

Global conceptual 
schema



98  Paper 4

the domain of that relationship and the object type in its end is called the range.
Generalisation constraints are shown by dotted arrows where the head of an
arrow points to the super-type. For each relationship, the mapping constraints
specify whether it is single-valued, injective, total or surjective. A relationship is
single-valued when each instance of its domain is connected to at most one
instance of its range. A relationship that is not single-valued is multi-valued. A
relationship is total when each instance of its domain is connected to at least one
instance in its range. A relationship that is not total is partial. A relationship is
injective (surjective) when its inverse is single valued (total). Since most of the
relationships in our schemas are single valued, not injective, total and not
surjective, only the cardinality constraints that differ from this uniformity will be
specified explicitly.

Figure 3  Example of a conceptual schema

The description of the domain represented by the model in Figure 3 is as
follows: a PERSON  is a citizen_in a  COUNTRY and (s)he may have several
cousins . The distinction between MAN and WOMAN is kept. A person may only
marry_to someone with the opposite sex, and polygamy is only allowed for
women.

4 The Booking Domain

In this section a number of different patterns in the booking domain are
considered. The similarities and differences between them are analysed and a
number of questions are constructed for gathering information about the specific
features within the domain.

The analysed patterns are shown in Figure 4 and most of them may even be
considered as special cases of Fowler’s ‘Resource Allocation’ pattern [8] pp.
168-172. The conceptual schemas may be used within the corresponding
enterprises: a) a dentist cabinet; b) a university; c) a chain of movie theatres; and
d) a travel agency. Even if all these examples are taken from the same domain
the only common thing in their conceptual schemas, at a first glance at least,

MAN WOMAN

cousin
PERSON

- ss#: String
citizen_in

married_to

COUNTRY
- name: String

sitizen_in: surjective
married_to: partial
cousin: multivalued and partial 



Conceptual Patterns for Reuse in Information Systems Analysis  99

a) Booking a time 
    for the dentist

of for

b) Rooms booking at 
     a University

of type

for course

made by 
head teacher part of bo

for

done by

part of

concerning

of

for

BOOKING 
LINE ITEM

for made by

part of

for flight

for hotel

d) Booking a trip in 
     a Travel Agency

for
made by

to

c) Booking movie
    tickets

COURSE 
- cname
- start date
- end date
- nr of places

ADMINI-
STRATOR

- aname

BOOKING
- btime

MOVIE
- mname

CINEMA
- cname

BOOKING 
LINE ITEM

- bdate
- bstart time
- bend time

HOTEL 
BOOKING

- from date
- until date
- nr of beds
- hprise

HOTEL
- hname
- city
- adress
- stars 

DENTIST

- dname

TEACHER 
- tname
- title

PERSON
- name

BOOKING
- booking nr
- invoice address

BOOKING
ORDER 

- time

BOOKING
- date
- time
- nr of tickets

ROOM
- nr

PATIENT
- name
- address
- tnr

BOOKING
- date
- time

ROOM TYPE
- type
- size

ORDER 
LINE ITEM

- date
- start time
- end time
- nr of rooms

CUSTOMER
- name
- tnr

FLIGHT
- nr
- from
- destination
- starttime
- endtime
- company

FLIGHT 
BOOKING

- date
- prise

Figure 4 A number of booking patterns



100  Paper 4

seems to be the BOOKING object type, which occurs all over. The rest of the
schemas differ from each other considerably.

One main difference is that in schema a) a booking may concern only one
object, whereas in schema b) and d) a booking may concern several different
objects, which the object type BOOKING_LINE_ITEM with its relationship to
BOOKING shows. With respect to this difference, the following question may be
placed in order to identify which of those two alternatives pertains in a particular
situation.

Does a booking consist of one object, or may it consist of several objects?

Notable is that even if several tickets may be booked within the same booking in
schema c) the construction is more similar to the one in schema a) where only
one object is booked at a time, but not to those in b) and d) where several objects
are booked. Hence, the construction of schema c) also depends on the fact that
exactly the same kind of objects are booked which leads further to the next
identified difference, namely the difference between the booked object. Schema
a) and b) represent the booking of a dentist and a room, correspondingly. In both
these cases the booked thing is a concrete object, the dentist Peter or the room
605 at DSV. In contrast the schemas c) and d) do not book a concrete object(s),
but they rather describe the kind of object that is booked. I.e. the booking of a
flight ticket for flight SA345 on Friday 7 May 99, economy class only
guarantees that one ticket but not any particular one is booked. The question
resulting from this difference is:

Does a booking concern a (number of) concrete object(s), or does it rather
specify the character of the object(s)?

Analysing further, one of the schemas – schema d) represents two different kinds
of bookings: hotel room bookings and flight ticket bookings, which differ from
each other by their properties. This is shown by specialising the object type
BOOKING_ LINE_ITEM into HOTEL_BOOKING and FLIGHT_BOOKING. In the
rest of the schemas the bookings belong to the same category. In order to identify
whether the bookings objects are from the same category or not, the following
question may be placed:

Do all the bookings have the same character or may they be divided into
several categories?

Continuing the observations, it also can be noted that in schema b) information
about the booking orders is kept by the object types BOOKING_ORDER and
ORDER_LINE_ ITEM. This distinguishes b) from the rest of the schemas and gives
rise to the next question:

Is it necessary to keep information about the request for a booking, before
making the booking?



Conceptual Patterns for Reuse in Information Systems Analysis  101

Furthermore, in schema b) a booking order has to be motivated by giving the
course for which a booking order is placed. Such a motivation for a booking is
not necessary and has not been modeled by the rest of the schemas. The relevant
question for identifying this difference is:

Does a motivation need to be given for a booking/booking request?

Finally, in schema d) information about the person who made a booking is kept
as well as the information about the person, for whom the booking is made. This
fact results in our next question.

May a booking/booking request be done on behalf of someone else?

5 A Modeling Wizard Tool for the Booking Domain

A domain dependent modelling wizard tool for the booking domain can now
easily be constructed using the questions identified in the previous section. In
this section we exemplify such a tool. The scenario is that the user shall answer
the questions identified in the previous section one after another, and after each
answer the tool shall build and refine the conceptual schema according to the
answer. It is of course desirable that the user shall be able to rename entity types
and relationships continuously during the questionnaire process as shown in the
process model in Figure 2, but we leave these details for later work and only
exemplify the behaviour for such a tool here. The detailed logic for the tool can
be found in the second part of the Appendix.

Suppose that we want to ext end a library database for a university with
booking facilities in order to keep information about the students in the booking
queue for a book. On the first question:

1. Does a booking consist
a)  one object, or
b)  may it consist of several objects?

if we choose alternative a), the wizard tool should suggest a schema like this in
Figure 5a) and ask the next question. If our answer is alternative b) the tool
should draw the schema in Figure 5 b) and still ask the next question.

Figure 5 The alternative solutions after the first question

BOOKING

a) b)

BOOKINGBOOKING
LINE ITEM

part of

 



102  Paper 4

2.  Does a booking concern a (number of)
a)  concrete object(s), or
b)  does it rather specify the character of the object(s)?

An answer a) should result in expanding the schema into the one shown in 6a) or
b), depending on the point of the departure, which is the result from our previous
answer. The answer b) should result in the schema from 6c) or d).

Figure 6 The alternative solutions after the second question

In this way, the wizard tool should interview the user and piece by piece
should build a schema depending on the answers. So, if the answers give the
information that a booking consists of several objects, that the bookings have
two different characters, that both order and motivation for a booking are
necessarily to keep information about, and that a booking can not be done on
behalf of someone else (se the right part of Figure 7), the resulting schema
suggested by the wizard should be the one shown in Figure 7. (When
implementing the prototype, the UML notation was used for object types,
relationships, and generalization constraints for practical reasons. For the
mapping constraints the notation used by Johannesson [15] and explained in the
appendix was kept.)

BOOKING

a) b)

BOOKINGBOOKING
LINE ITEM

part of

OBJECT OBJECT

specifies specifies

BOOKING

c) d)

BOOKINGBOOKING
LINE ITEM

part of

OBJECT
CATEGORY

OBJECT
CATEGORY

specifies specifies

 



Conceptual Patterns for Reuse in Information Systems Analysis  103

Figure 7 A screen shot of the modelling wizard

6 Completeness of the Questions

In the previous two sections, we analysed one domain and showed how a tool
may support the modelling process within this domain. An important issue is to
investigate the completeness of the questions, i.e. whether they can be used for
gathering all information for the analysed domain, necessary for the construction
of a satisfactory conceptual schema.

To reason about the completeness of the questions we divide them into
different categories and analyse whether each category is covered by the
questions belonging to it and whether the categories are suitable for discussing
the completeness of the analysis. The following four categories are identified:

• questions with case grammar character;
• questions for cardinality identification;
• questions for power types identification;
• questions for generalisation/specification constraints.

Questions with case grammar character: The concept of case here refers to
what usually has been called a deep case, i.e. the categorisation of noun phrases



104  Paper 4

to the conceptual role they play in an action described by a sentence. Some
examples of cases are agent: one who performs the action; recipient: one for
whom the action is performed; object: one who suffers the action; instrument: an
object used to perform the action; location: the place where the action is
performed. The set of the cases is obviously discussible, which has resulted in a
number of case systems, se [2] for a survey. However, the choice of a case
system is not critical in this phase, as the focus here is to show how a case
system may be used and also further tailored in order to make it suitable for
modelling purposes.

Turning now to the way cases are used in conceptual modelling, it may
generally be said that they are used for semantically enrichment of the schemas.
(See [18] for a discussion about the advantages of using case grammar within
conceptual modelling and [13] for a concrete application based on this
semantically enrichment of conceptual schemas.) Briefly, applying case grammar
to conceptual modelling implies that the object types in a schema represent the
verb and noun phrases, and the relationships between the object types represent
the cases. One restriction is that the domains for the relationships are only object
types representing the verb phrases. The semantically enrichment results from
the categorisation of the noun phrases into cases. It also should be noted that
such a categorisation of noun phrases requires that an action have been described
in some way. Hence, the case grammar is only suitable for schemas describing
actions and not for schemas describing, for instance, product structures. With
this limitation in mind we are going back to one of our conceptual schemas in
Figure 4 and applying case grammar theory to it.

Figure 4 c) describes that: “A number of tickets for a movie to a cinema may
be booked by a person”. Example of information stored in an information base
for this schema (see Figure 8) is: “Peter has booked two tickets for the movie
‘Lecture on Conceptual Modelling’ to the cinema Sergel for the 2 of June ’99 six
o’clock”, i.e.

{booking(b1),date(b1,990602),time(b1,’18.00’),
nr_of_ tickets(b1,2), customer(c1),name(c1,‘Peter’),
movie(m1), mname(m1, ‘Lecture on conceptual model-ling’),
cinema(cn1), cname(c1,‘Sergel’), made_by(b1,c1), for(b1,m1),
to(b1, cn1)}.

Analysing now the sentence describing the schema and the schema itself, we
note that: the action ‘tickets may be booked’ is represented by the object type
BOOKING; and that the rest of the noun phrases i.e. person, movie, and cinema
are represented by the object types CUSTOMER, MOVIE and CINEMA,
correspondingly. The cases for the noun phrases ‘person’, ‘movie’, and ‘cinema’
are ‘agent’, ‘object’, and ‘location’, correspondingly, and they are captured by
the relationships made_by, for and to, correspondingly. In Moulin and Creasy’s
notation [18] the cases are explicitly showed in a schema, something we have not
used in our modelling language. However, the cases may be used as



Conceptual Patterns for Reuse in Information Systems Analysis  105

automatically generated names for the relation-ships suggested by a tool, which
the users shall be able to change afterwards.

 

for
made by

to

MOVIE
m1: Lecture on
 Conceptual Modelling

CINEMA
cn1: Sergel

BOOKING
b1: 990602
b1: 18.00
b1: 2

CUSTOMER
c1: Peter

 

Figure 8 Instance example for the schema from Figure 4 c)

The question is then which of the cases are relevant for a domain. The only
way to give an answer to this question is to analyse a number of different
patterns within a domain, and investigate the cases that have been used in those
patterns, similarly to the analysis we provided for the booking domain. The
booking schemas in Figure 4 were selected to represent some (as much as
possible) distinct booking situations we have encountered. Concluding the
analysis for this domain, we can point out that the cases occurring in all schemas
are ‘object’, ‘agent’ and the ‘time for which a booking is made’. The ‘recipient’
is not explicitly modelled since it represents the system, for which the analysis is
provided. Neither seems the ‘instrument’ be a relevant case for this domain.
Instead cases for ‘order’ and ‘motivation’ for a booking may be of importance as
well as cases for ‘location where the booking is valid’ and the ‘time when a
booking is made’. Since these cases occur in some of the schemas only, we will
call them for optional cases for the booking domain. Looking back at our
questions, we identify the last three questions as questions for identifying
whether an optional case shall be included in a particular schema or not. We also
note that the set of questions is not complete since it does not cover all optional
cases. In order to get a complete set of questions for a domain, questions for all
identified optional cases have to be included.

Questions for cardinality identification: Going the other way around and
analysing the first question, we can se that it does not belong to the previous
category. It does not address the conceptual role of the noun phrases, but is
rather meant to bring information about the cardinality for the modelled object.
Hence we classify this question as a question for cardinality identification.

Questions for power types identification: Into this category we classify the
second question. The terminology of power types within conceptual modelling
was introduced by Martin and Odell [17]. One example of a power type is the
object types BOOK with the properties author and copyright_owner representing
the general existence of an object. In contrast the object type COPY, related to
BOOK, with the property exemplar_number, contains the physical objects and
represents the materialisation of the BOOK. The distinction of power types has



106  Paper 4

also explicitly been done by Fowler [8], who even divides his schemas into two
levels: operational and knowledge level, in order to sort each object type to the
correct level.

Questions for generalisation/specification constraints: Since the third
question is placed in order to identify whether a specialisation hierarchy shall be
introduced to the schema or not, we classify it into this category. Historically, the
first formalisms for conceptual modelling (called entity relationship languages)
did not had any generalisation/specification facilities. However, the formalisms
were soon extended to even capture possibilities to represent this kind of
constraints which was considered as a comfortable way for representing some
parts of the UoD. The modelling languages with such capabilities were called
languages for extended entity relationships diagrams. Since the language we are
using have these facilities, it is natural to investigate whether there is any part of
our domain that with advantage can be modelled using generalisation/special-
isation structures.

Summarising the discussion, the first question category, i.e. questions with case
grammar character comes from the ideas for using linguistic instruments for
enriching conceptual schemas. We have also pointed out how the completeness
of the questions within this category can be improved by taking into account the
relevant cases. The three other categories are closely related to the specific
features of conceptual modelling. A review of five object structures that
frequently occur within conceptual modelling is given in [1] (pp 125-131). Our
last three aspects cover three of the reviewed in [1] object structures. The other
two reviewed structures in [1] are not relevant for this work due to the limitation
done on domains including actions by introducing the case grammar.

7 Conclusions and Further Research

In this paper, we have investigated and proposed a method for supporting the
process of conceptual modelling. The ambition has been that this support shall be
automated, i.e. a modelling wizard tool built for asking a number of questions
and suggesting conceptual schema patterns, shall implement the results from this
work.

As a first step, an analysis on an example domain is provided. A number of
different conceptual patterns, for the booking domain, are considered in order to
identify the similarities and differences between them. The differences are used
for constructing a number of questions intended to support the modelling process
within this domain. The logic for a domain dependent wizard tool is proposed in
order to verify the possibility for automating such support. We also reason about
the nature of the proposed questions, and whether they are complete and suitable
for the purpose they were created for. The main idea has been the usage of case



Conceptual Patterns for Reuse in Information Systems Analysis  107

grammar in questions construction, but question covering some other conceptual
modelling features have also been necessarily. In order to verify the results from
this work a prototype for a modelling wizard based on the results from it has
been developed. The prototype implements the booking domain only, but it is
considered as a necessary step before continuing the work on a domain
independent wizard.

Beside the work with the evaluation of the prototype, more theoretical work
needs to be done in order to be able to build a domain independent wizard,
namely an investigation on the cases occurring in different domains. Domain
specific questions, as well as domain independent questions, have to be
identified and constructed. Also, the different solutions or patterns, which shall
be proposed by a tool, have to be specified, similarly to those proposed here for
the booking domain wizard.

Furthermore, it is also necessary to provide research on how a general tool
shall be constructed in order to support the modelling of complex UoD ranging
over, not only one but, several different domains. One possibility should be to
equip the modelling wizard with schema integration facilities. Still a number of
questions should need to be considered in order to co-ordinate the behaviour of
the tool with the behaviour of a user. One such question is to investigate the
human’s techniques when modelling complex domains and her way of dividing
complex problems into smaller parts, either to make them easily to grasp and
solve, or to distribute the responsibilities between different parties.

Another direction for further research is work on attributes that are not cases.
For instance, name and address for a person are usually not considered as cases,
but rather as simply properties. Then the case grammar should not help us
identifying these attributes, but it still should be useful if a modelling wizard tool
is able to suggest the most commonly such properties for an object type.

Finally, work for eliminating the limitation, resulting from the use of case
grammar, needs to be provided. As we already pointed out earlier the case
grammar may only be used for domains where an action is involved. Therefore,
it is important to investigate how the modelling process within domains excluded
from this study may be supported.

Acknowledgements

I would like to thank my advisor Docent Paul Johannesson for his valuable
comments on earlier drafts of this paper.

References

[1] M. Boman, J.A.Bubenko jr, P. Johannesson and B. Wangler, Conceptual



108  Paper 4

Modelling, Prentice Hall Series in Computer Science, 1997.

[2] B. Bruce, “Case Systems for Natural Language”, Artificial Intelligence, vol. 6, pp.
327-360, 1975.

[3] P.P. Chen, “The Entity-Relationship Model – Toward a Unified View of Data”,
ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, 1976.

[4] R.M. Colomb, “Completeness and Quality of an Ontology for an Information
System”, in N. Guarino (ed.) Formal Ontology in Information Systems, Frontiers in
Artificial Intelligence and Applications, IOS Press, pp. 207-217, 1998.

[5] P. Coad, D. North, M. Mayfield, Object Models: Strategies, Patterns, and
Applications, Prentice Hall, 1995.

[6] CYC® Ontology Guide: Table of Contents, url: http://www.cyc.com/cyc-2-
1/toc.html, June 10 1999.

[7] C.H. Fillmore, The case for case, in Bach and Harms, eds. Universals in Linguistic
Theory, Holt, Rinehart and Winston, New York, 1968.

[8] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[10] N. Guarino, “Formal Ontology and Information Systems”, in N. Guarino (ed.)
Formal Ontology in Information Systems, Frontiers in Artificial Intelligence and
Applications, IOS Press, pp. 3-15, 1998.

[11] T.-D. Han, S. Purao, V.C. Storey, “A Method for Building a Repository of Object-
Oriented Design Fragments”, in J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, E.
Métas (eds.) Conceptual Modeling – ER’99, Lecture Notes in Computer Science,
Springer, pp. 203-217, 1999.

[12] D.C. Hay, Data Model Patterns: Conventions of Thought, Dorset House Publishing,
1996.

[13] P. Johannesson, “Using Conceptual Graph Theory to Support Schema Integration”,
in 12th International Conference on Entity-Relationship Approach, Ed. R. Elmasri,
pp. 280 - 289, Dallas, Omnipress, 1993.

[14] P. Johannesson, "Schema Transformations as an Aid in View Integration", in Fifth
International Conference on Systems Engineering, Ed. C. Rolland, pp. 144 - 251,
Paris, Springer, 1993.

[15] P. Johannesson, Schema Integration, Schema Translation, and Interoperability in
Federated Information Systems, Dissertation at Department of Computer and
Systems Sciences, Stockholm University and Royal Institute of Technology,
Sweden, 1993.

[16] N.A. Maiden, Analogical Specification Reuse During Requirements Engineering,
Dissertation at Department of Business Computing, Scholl of Informatics, City



Conceptual Patterns for Reuse in Information Systems Analysis  109

University, London, 1992.

[17] J. Martin and J. Odell, Object-Oriented Methods: A Foundation, Prentice Hall,
1994.

[18] B. Moulin and P Creasy, “Extending the Conceptual Graph Approach for Data
Conceptual Modelling”, Data and Knowledge Engineering, vol. 8, no. 3, pp. 223-
248, 1992.

[19] Ontology ENTERPRISE-ONTOLOGY, url: http://www-ksl-
svc.stanford.edu:5915/FRAME-EDITOR/UID-21&sid=ANONYMOUS&user-
id=ALIEN, June 10 1999.

[20] J.F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1984.

[21] TOVE Manual, url: http://www.ie.utoronto.ca/EIL/tove/ontoTOC.html, June 10
1999.

Appendix

Formal Definition of a Conceptual Schema

The formalism presented here is based on those proposed by Johanesson in [14] and [15].
Let P and C be two sets of symbols. A (first order) language based on <P,C> written

L(P:C) is defined on an alphabet consisting of connectives, quantifiers, punctual symbols,
variables, constants C, and predicate symbols P, where each predicate symbol has an
arity. A formula in a language L is defined as usual. A term is a constant or a variable. An
atom is a formula of the type p(t1,…,tn), where p is a predicate symbol from P and t1, …,
tn are terms and we say that p has arity n. A ground formula is a formula without
variables.

An integrity constraint is any closed first order formula. Certain special cases of
constraint in conceptual modelling are typing constraints , cardinality constraints  and
generalisation constraints, which we are defining below.

• A typing constraint is either of the form
- ∀x∀y(A(x,y) → D(x)); or of the form
- ∀x∀y(A(x,y) → R(y)):
where the first one is read “the domain for A is D” abbreviated “domain(A) = D”
and the second one “the range for A is R” abbreviated “range(A) = D”.

• Cardinality constraints concern the cardinality of a conceptual relation. The
following four type of cardinality constraints are necessary to define a
relationship.
- The relationship A is single valued iff ∀x∀y∀z(A(x,y) ∧ A(x,z) → y=z)
- The relationship is A injective iff ∀x∀y∀z(A(y,x) ∧ A(z,x) → y=z)
- The relationship is A total iff ∀x(P(x) → ∃yA(x,y)), where P is the domain of

A
- The relationship is A surjective iff ∀x(P(x) → ∃yA(x,y)), where P is the range



110  Paper 4

of A
• A generalisation constraint is a formula of the form ∀x(P(x) → Q(x))

abbreviated “P ⊂ Q”

A conceptual schema CS is a pair <L,IC>, where L is a language and IC is a set of
integrity constraint as defined above. L is restricted to only contain unary and binary
predicate symbols. The unary predicate symbols are called object types and the binary
predicate symbols are called relationships. Furthermore, we distinguish a subset LP of the
set P of predicate symbols i.e. LP ⊂ P, and call the elements of LP for lexical predicates
symbols. This distinction is necessary in order to keep away data values from object
identifiers. We restrict the domain for a relationship to only belong to P-LP. Relationships
whose range is from LP are called attributes. In Figure 9 a graphical representation of a
schema is shown using a UML similar notation. The graph shows that the schema
contains five predicate symbols {PERSON, MAN, WOMAN, COUNTRY, String} where String
is a lexical predicate symbol i.e. String  ⊂ LP . The schema contains, further, five binary
predicate symbols, three of which are relationships, namely {cousin, citizen_in,
married_to}, and the other two, {ss#, name}, are attributes. The figure also shows a
number of typing constraints i.e. ‘domain(citizen_in) = PERSON’ and ‘range(citizen_in)  =
COUNTRY’. The generalisation constraints ‘MAN ⊂ PERSON’ and ‘WOMAN ⊂ PERSON’
are showed by dotted arrows. Furthermore the quadruples next to the relationships shows
the mapping constraints in the order they are presented above i.e ‘single valued, injective,
totality, surectivity’. ‘1’ stands for single valued/ingective, ‘m’ otherwise, and ‘t’ stands
for total/surjective, ‘p’ otherwise.

Figure 9 Example of a conceptual schema

We finally give a definition for an information base. An information base for a
conceptual schema CS = <L(P,C), IC> is a set IBcs of ground atoms whose predicate
symbols belong to P. An example of an information base for the schema in Figure 9 is
{man(p1), person(p1), woman(p2), person(p2), ss#(p1,’Peter’), ss#(p2,’Mary’),
married_to(p1,p2)}

Formal Definition for a Domain Dependent Modelling Wizard Tool for the
Booking Domain

In this part of the appendix the questions identified in Section 4 are reformulated in order
to be suitable for a user dialog implemented in a modelling wizard tool. Each question is

MAN WOMAN

cousin
m,m,p,p

PERSON
- ss#: String

citizen_in
1,m,t,t

COUNTRY
- name: String

married_to
1,m,p,p



Conceptual Patterns for Reuse in Information Systems Analysis  111

followed by a formal definition for the logic of the tool i.e. the schema it will build and
suggest to the user.

1. Does a booking consist
a) one object, or
b) may it consist of several objects?

a) CS:= {BOOKING}

b) CS:= {BOOKING,BOOKING_LINE,consists_of,
domain(consists_of)=BOOKING,

 range(consists_of)=BOOKING_LINE}

2. Does a booking concern a (number of)
a) concrete object(s), or
b) does it rather specify the character of the object(s)

a) CS:= CS ∪ {OBJECT,specifies,range(specifies)=OBJECT}
       ∪ {domain(specifies)=BOOKING_LINE|BOOKING_LINE exists}
       ∪ {domain(specifies)=BOOKING|BOOKING_LINE does not exist}

b) CS:= CS ∪ {OBJECT_CATEGORY,specifies,
                      range(specifies)=OBJECT_CATEGORY}
       ∪ {domain(specifies)=BOOKING_LINE|BOOKING_LINE exists}
       ∪ {domain(specifies)=BOOKING|BOOKING_LINE does not exist}

3. Do all the bookings
a) have the same character,

or may they be divided into several categories? If yes, is the number of categories
b) smaller than, or equal to four (give the number X of categories), or
c) larger than four.

a) CS does not change

b) CS:= CS ∪ {OBJECT1,…,OBJECTX,specifies1,…,specifiesX,
   range(specifies1)=OBJECT1,…,

               range(specifiesX)=OBECTX|OBJECT exists}
∪ {OBECT_CATEGORY1,…,OBECT_CATEGORYX,
   specifies1,…,specifesX,
   range(specifies1)=OBJECT_CATEGORY1,…,
   range(specifiesX)=OBECT_CATEGORYX|

                                          OBECT_CATEGORY exists}
-

{OBJECT,OBJECT_CATEGORY,specifies,domain(specifies),
                                                range(specifies)}

∪ {BOOKING_LN_CATEGORY1,…,BOOKING_LN_CATEGORYX,
   BOOKING_LN_CATEGORY1 isa BOOKING_LINE,…,
   BOOKING_LN_CATEGORYX isa BOOKING_LINE,
   domain(specifies1)=BOOKING_LN_CATEGORY1,…,
   domain(specifiesX)=BOOKING_LN_CATEGORYX|



112  Paper 4

                                             BOOKING_LINE exists}
∪ {BOOKING_CATEGORY1,…,BOOKING_CATEGORYX,
   BOOKING_CATEGORY1 isa BOOKING,…,
   BOOKING_CATEGORYX isa BOOKING,
   domain(specifies1)=BOOKING_CATEGORY1,…,
   domain(specifiesX)=BOOKING_CATEGORYX|

                                     BOOKING_LINE does not exist}

c) CS does not change

4. Is it necessary to keep information about the request for a booking?
a) No.

If yes, does the request concern
b) a concrete object(s), or
c) a specification of object(s).

a) CS does not change

b) CS:= CS ∪ {BOOKING_ORDER,according_to,
   domain(according_to)=BOOKING,
   range(according_to)=BOOKING_ORDER}
∪ {ORDER_LINE,consists_of_ln,according_to_ln,
   domain(consists_of_ln)=BOOKING_ORDER,
   range(constist_of_ln)=ORDER_LINE,
   domain(according_to_ln)=BOOKING_LINE,
   range(according_to_ln)=ORDER_LINE|

                                  BOOKING_LINE exists}
∪ {ORDER_CATEGORY1,…,ORDER_CATEGORYX,
   ORDER_CATEGORY1 isa BOOKING_ORDER,…,
   ORDER_CATEGORYX isa BOOKING_ORDER|

                    BOOKING_CATEGORY1,…,BOOKING_CATEGORYX exist}
∪ {ORDER_LN_CATEGORY1,…,ORDER_LN_CATEGORYX,
   ORDER_LN_CATEGORY1 isa ORDER_LINE,…,
   ORDER_LN_CATEGORYX isa ORDER_LINE|

               BOOKING_LN_CATEGORY1,…,BOOKING_LN_CATEGORYX exist}

  CS:= CS ∪ {OBJECT1,…,OBJECTX,o_specifies1,…,o_specifiesX,
  range(o_specifies1)=OBJECT1,…,

              range(o_specifiesX)=OBJECTX,
  domain(o_specifies1)=ORDER_CATEGORY1,…,
  domain(o_specifiesX)=ORDER_CATEGORYX|
             ORDER_CATEGORY1,…,ORDER_CATEGORYX exist}
∪ {OBJECT1,…,OBJECTX,o_specifies1,…,o_specifiesX,
   range(o_specifies1)=OBJECT1,…,

               range(o_specifiesX)=OBJECTX,
   domain(o_specifies1)=ORDER_LN_CATEGORY1,
   domain(o_specifiesX)=ORDER_LN_CATEGORYX|
       ORDER_LN_CATEGORY1,…,ORDER_LN_CATEGORYX exist}
∪ {OBJECT,o_specifies, range(o_specifies)=OBJECT,
    domain(o_specifies)=BOOKING_ORDER|ORDER_LINE∨

                  ORDER_CATEGORY1∨…∨ORDER_CATEGORYX do not exist}
∪ {OBJECT,o_specifies,range(o_specifies)=OBJECT,



Conceptual Patterns for Reuse in Information Systems Analysis  113

     domain(o_specifies)=ORDER_LN_CATEGORY|
                              ORDER_LINE exist,
                              ORDER_LN_CATEGORY1∨…∨
                              ORDER_LN_CATEGORYX do not exist}

  CS:= CS ∪ {belongs_to1,…,belongs_toX,
   domain(belongs_to1)=OBJECT1,…,

               domain(belongs_toX)=OBJECTX,
   range(belongs_to1)=OBJECT_CATEGORY1,…,
   range(belongs_toX)=OBJECT_CATEGORYX|

                       OBJECT_CATEGORY1,…,OBJECT_CATEGORYX exist}
∪ {belongs_to,domain(belongs_to)=OBJECT,
     range(belongs_to)=OBJECT_CATEGORY|

                                          OBJECT_CATEGORY exists}

c) like b) and exchanging OBJECT and OBJECT_CATEGORY

5. Does a motivation need to be given for
- a booking? (Relevant only if the information about a booking order is not

necessary, since the booking order is concerned as a motivation itself)
a) yes
b) no

- a booking order? (Relevant when it is necessary to keep information about the
booking orders)
c) yes
d) no

a) CS:= CS ∪
{MOTIVATION,motivated_by,domain(motivated_by)=BOOKING,
               range(motivated_by)=MOTIVATION}

b) CS does not change

c) CS:= CS ∪
{MOTIVATION,motivated_by,range(motivated_by)=MOTIVATION,
                domain(motivated_by)=BOOKING_ORDER}

d) CS does not change

6. May a booking be done on behalf of someone else? (relevant only when a booking
requirement is not necessary to keep information about)

a) no
If yes, is it important to keep information about the party who made the
booking?

b) no
c) yes

May a booking request be done on behalf of someone else? (Relevant only when it
is necessary to keep information about the booking requirement)

d) no



114  Paper 4

If yes, is it important to keep information about the party who placed the
request?

e) no
f) yes

a) CS:= CS ∪ {PARTY,booking_for,domain(booking_for)=BOOKING,
    range(booking_for)=PARTY}

b) like a)

c) CS:= CS ∪ {PARTY,booking_for,booked_by,

domain(booking_for)=BOOKING,range(booking_for)=PARTY,
   domain(booked_by)=BOOKING,range(booked_by)=PARTY}

d) CS:= CS ∪
{PARTY,booking_for,domain(booking_for)=BOOKING_ORDER,
               range(booking_for)=PARTY}

e) like d)

f) CS:= CS ∪ {PARTY,booking_for,ordered_by,
               domain(booking_for)=BOOKING_ORDER,
               range(booking_for)=PARTY,

   domain(ordered_by)=BOOKING_ORDER,
               range(ordered_by)=PARTY}


