
PATTERN BASED ANALYSIS OF EAI LANGUAGES – THE CASE OF
THE BUSINESS MODELING LANGUAGE

Petia Wohed∗, Erik Perjons
Stockholm University/The Royal Institute of Technology

Forum 100, 164 40 Kista, Sweden
{petia, perjons}@dsv.su.se

Marlon Dumas, Arthur ter Hofstede
Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
{m.dumas, a.terhofstede}@qut.edu.au

Key words: Enterprise Application Integration, Workflow and Communication patterns

Abstract: Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the soft-
ware industry and the research community. A landscape of languages and techniques for EAI has emerged and
is continuously being enriched with new proposals from different software vendors and coalitions. However,
little or no effort has been dedicated to systematically evaluate and compare these languages and techniques.
The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language,
namely the Business Modeling Language, specifically developed for EAI. The framework used for this anal-
ysis is based on a number of workflow and communication patterns. This framework provides a basis for
evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.

1 INTRODUCTION

The paradigmatic shift from a functional to a pro-
cess (cross-functional) oriented approach of informa-
tion system development during the last years, raises
new demands for integrating the underlying informa-
tion systems. The technical problems elicited during
such integration have become the main topic of En-
terprise Application Integration (EAI), the purpose of
which is the integration of individual applications into
a seamless whole, with minimum coding effort.

One of the techniques for EAI is to extract all the
process logic and to encapsulate it in one place (the
Process Broker), separated from the application logic
which is implemented by the underlying applications.
A process broker communicates with the surrounding
applications by means of messages and executes ac-
cording to the logic implemented in it (Linthicum,
00).

During the last years a number of techniques and
platforms for developing process brokers have been
developed by different software vendors, e.g. (IBM,
02; IONA, 02; HP, 02; Vitria, 02). These platforms
implement proprietary modelling languages and no-
tations. With the continuously increasing number of
such languages, the need of an in-depth comparison

∗Research conducted while at the Queensland Univer-
sity of Technology.

of them becomes more and more obvious. The work
presented in this paper is a first step in this direction.
An analysis framework based on a number of work-
flow and communication patterns has been used for
analyzing one of these languages, namely the Busi-
ness Modeling Language (BML) (Wåhlander et al.,
01; Johannesson and Perjons, 01).

The contribution of the paper is twofold: (i) the in-
depth analysis of BML; and (ii) the assemblage and
testing of the framework through this analysis. BML
was selected as the starting language for the analy-
sis, because it is a message oriented process mod-
eling language based on communicating state ma-
chines. This feature clearly distinguishes BML from
the activity-based process modeling languages imple-
mented by traditional Workflow Management Sys-
tems (WFMS), for which an extensive comparison
has already been provided in (Aalst et al., 02b). Al-
though the analysis provided here is specifically tar-
geted to BML, many of the results are applicable to
other languages of the same family, such as SDL1.

The framework used for the analysis is composed
of two parts:

• A set of workflow patterns identified by van der

1SDL - Structured and Description Language (ITU,
01) was developed by the International Telecommunication
Union for the purposes of specifying telecommunication
services.

1

Aalst et al. (Aalst et al., 02b). A Workflow (WF)
pattern is an abstracted form of a recurring situ-
ation related to the ordering of the activities in a
workflow. The WF patterns defined in (Aalst et al.,
02b) are language and domain independent, mak-
ing them a suitable analysis instrument. Besides,
they have been successfully used for comparing a
number of commercial WFMS (Aalst et al., 02b),
and for analyzing the expressive power of UML ac-
tivity diagrams (Dumas and ter Hofstede, 01).

• A set of communication patterns described in
(Ruh et al., 01). Since messages are the way in
which a process broker communicates with the ap-
plications that it integrates, this is a necessary part
for achieving a comprehensive analysis.

This framework is complementary to the one pre-
sented in (Söderström et al., 02). This latter frame-
work addresses a similar problem: the continuously
increasing number of new process modeling lan-
guages and the need to understand and compare them.
However it is intended to be used by IS/IT-managers,
business strategists and other stakeholders involved
in business process management, which puts it at a
higher level of abstraction than the framework pro-
posed in this paper.

The rest of the paper is structured as follows. Sec-
tion 2 gives an overview of the EAI domain and in-
troduces briefly the BML language. In sections 3
and 4 the BML language is evaluated against the set of
workflow and communication patterns. Finally, sec-
tion 5 concludes the work and gives directions for fu-
ture research.

2 BACKGROUND

2.1 EAI

We adopt Linthicum’s definition of enterprise appli-
cation integration as “the unrestricted sharing of data
and business processes among any connected applica-
tions and data sources in the enterprise” (Linthicum,
00). The point of departure when applying EAI is fa-
cilitating sharing of data and processes without apply-
ing extensive changes to the existing application and
data structures.

The approaches used for EAI have evolved from
deploying Point-to-Point solutions, to Message Bro-
ker architectures, and then to Process Broker archi-
tectures (see fig. 1, reprinted from (Johannesson and
Perjons, 01)). This line of development clearly re-
veals the two main forces driving it, namely: 1) com-
plexity reduction, by moving from a Point-to-Point to
a Message Broker architecture, and 2) process logic
extraction and encapsulation, which is the essence

of extending the message brokers into process bro-
kers. Separating in this way the process logic from
the application logic improves flexibility and facili-
tates maintenance.

Application A�

Application B�

Application C�

Application A�Application D�

Application A�

Application B�

Application C�

Application A�Application A�Application A�Application D�

Message Broker�

Application A�

Application B�

Application C�

Application D�

Message Broker�

Application A�

Application B�

Application C�
Application D�

Application A�
Application B�

Application C�

Process Broker�

Person A�

Application A� Application B�

Application C�Application C�

Process Broker�

Person A�

Figure 1: Architectures of EAI

A technology related to the Process Brokers is that
of Workflow Management Systems (WFMS). The
WFMS were initially designed for managing commu-
nication based on document routing. Whereas the
first generation of WFMS aimed to support simple
task coordination, the next generation workflow tech-
nologies put the business process in focus. Follow-
ing the development further, the workflow community
has extended the problem domain to even span over
enterprise-wide and inter-organizational workflows in
the last years. A result from this is the development
of the Wf-XML language (WfMC, 00), by the Work-
flow Management Coalition. The Wf-XML language
defines a number of XML message templates, the in-
stances of which can be used for initiating, monitor-
ing and controlling business processes in/by remote
systems.

2.2 Overview of BML

The Business Modeling Language (BML)
(Wåhlander et al., 01; Johannesson and Perjons,
01) is a message oriented process modeling language
based on communicating state machines. A process
diagram (see the right-hand side in fig. 2) models the
states of a process and what is performed/processed
during the transitions between these states. During
the transitions messages can be sent, automated tasks
can be performed, and/or automated decisions can be
made. For each process diagram there is a number
of process instances, that are created at runtime.
The process instances execute independently of
each other, but can communicate by sending and
receiving messages. Each instance has an input queue
(left-hand side in fig. 2), where received messages
are stored. A process instance can either be waiting
in a state or performing a transition from one state to
another. A transition is initiated when a message in
the input queue is consumed or a timer has expired.

Following the example in fig. 2, a process instance
starts in a Start state (a circle with the name Start).
Only the messages m1 from process a and m2 from
process c can initiate a transition. The message m1

2

is first in the queue and is therefore consumed, and
the process instance performs a transition to the state
Wait for Event 1. During the transition a message m3
is sent to human actor D and a timer T1 is started.
Thereafter the message m9 is first in the queue. Since
only message m5 can initiate a further transition from
Wait for Event 1, message m9 is discarded (sent to the
back of the queue). The next message in the queue
is then m5, which initiates Automated Business De-
cision 1 and the process instance continues following
the path satisfying the specified business rule.

Start�

Receive�
message�

m2�

Receive�
message�

m1�

Send�
message�

m4�

Send�
message�

m3�

End�

Receive�
message�

m5�

...�

process c�

process a�

application b�process b�

m10�

m5�

m9�

m1�

Automated�
Business�

Activity A1�

Start�
TimerT1�

Wait�
for�

Event 1�
Expire�

TimerT1�

Automated�
Business�
Decision�

1�

 A�

~ A�

...�

...�

human�
actor D�

human�
actor D�

Figure 2: A process instance with the input queue

The main BML symbols are as follows. Wait for
Event and Start: a process instance is waiting in a
Wait for Event state until a message is received or a
timer has expired. The starting state is indicated by
a Wait for Event symbol named Start. The end of
the flow of a process is described by the End sym-
bol. Receive Message describes the consumption
of a message from the input queue and Send Mes-
sage describes the sending of a message. Automated
Business Activity defines operations that will be per-
formed on the process instance. Automated Business
Decision defines how the control flow is dynamically
changed depending on different business rules. Start
Timer and Expire Timer capture the notion of time,
which facilitates delays supervision. When a timer
is started it is provided with a timeout value. Appli-
cation and Human actor are both symbols denoting
external actors and like the Process symbol they are
used to model the sender/recipient of a message. Each
process diagram has furthermore a data model that de-
scribes the data handled in the model as well as the
structure of the different messages exchanged during
the process execution.

3 WORKFLOW PATTERNS IN
BML

In this section, we consider a subset of the 20 work-
flow patterns presented in (Aalst et al., 02b), and we
discuss how and to what extent these patterns can
be expressed in BML. The patterns considered here
have been selected because they put forward impor-
tant strengths, weaknesses, or specificities of BML
with respect to alternative activity-based business pro-
cess modelling languages. In particular, we do not

consider patterns that directly correspond to primi-
tive BML constructs such as the “sequence” pattern,
the “exclusive choice” pattern (whereby one among
several branches is chosen based on a condition), and
the “simple merge” pattern (the dual of the “exclusive
choice”, i.e. several branches of which only one is ac-
tive at a moment, reconverge into one single branch).

3.1 Parallel Split

Description A point in the process where a single
thread of control splits into multiple threads of con-
trol which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any or-
der2.

Example After activity new cellphone subscription
order the activity insert new subscription in Reg-

istry application (Home Location Registry applica-
tion) and insert new subscription in Mobile answer
application are executed in parallel.

Solution In many contemporary workflow languages,
this pattern is captured by a primitive operator which
creates two parallel branches (or threads) within the
same process. In contrast, BML does not support
multiple threads within a single process instance. In-
stead, a parallel split is realized by simultaneously
creating instances of two or several (sub-)processes,
which then run in parallel (see fig. 3). This feature is
inherent to languages based on communicating state
machines (SDL for example) since a state machine
can only be in one state at a time3.

a�
c�

Receive�
M1�

b�
a�

Send�
M1�

b�

A� B�

Receive�
M1�

c� a�

C�Start�

Start�

Figure 3: Parallel Split

3.2 Synchronization

Description A point in the process where multiple
parallel branches (i.e. sub-processes or activities) con-
verge into one single thread of control, thus synchro-
nizing multiple threads (see also (WfMC, 99)). It
is an assumption of this pattern that after an incom-
ing branch has been completed, it cannot be com-
pleted again while the merge is still waiting for other

2This definition is close to the definition introduced by
WFMC in (WfMC, 99)

3Harel’s statecharts (Harel, 87) and similar formalisms
are an exception. They are based on state machines but sup-
port parallel branches.

3

branches to be completed. Also, it is assumed that the
threads to be synchronized belong to the same global
process instance (i.e., to the same “case” in workflow
terminology).

Example Activity archive is executed after the com-
pletion of both activity send tickets and activity re-
ceive payment. Obviously, the synchronization oc-
curs within a single global process instance: the
send tickets and receive payment must relate to the
same client request (i.e. no synchronization occurs be-
tween the payment of client X and the sending of the
tickets to client Y).

Solution As discussed in the previous pattern, the
“threads” to be synchronized are modelled in BML as
distinct processes running in parallel. These parallel
processes are denoted by b and c in fig. 4. To be able
to synchronize, b and c send a message to an already
running instance of a process called a, which acts as
a synchronizer. The synchronizer waits for messages
from both b and c and then triggers the activity or
sub-process to be performed after the synchronization
point, which in our example is activity D.

Send�
M2�

a�

c�

Start�
Receive�

M1�

b�
a�

Send�
M1�

b�

A�

B�

Start�
Receive�

M1�

c� a�

C�

Receive�
M2�

D�

?�
M2 & M3�

in�

no�

yes�

Receive�
M3�

b�

...�

Send�
M3�

End�

End�

a�

a�

c�
...�

Figure 4: Synchronization

This solution presupposes that the instances of b
and c know to which instance of a they have to send
their synchronization messages. Hence, instances of b
and c must be provided at creation time with the iden-
tifier of the instance of a which will act as their syn-
chronizer. This in turn means that for every synchro-
nization point there is a corresponding parallel split,
such that when the split is reached, it is known for
certain that the synchronization point will be reached
as well, and therefore, it is clear that an instance of a
needs to be created and its identifier needs to be given
to both b and c. This is not the case in the presence
of arbitrary (non-structured) cycles, i.e. cycles going
from a point within a block delimited by a parallel
split and a synchronization point, to a point preceding
this region. In these cases, when the parallel split is
reached, it is not known for certain whether the cor-
responding synchronization point will be reached or
not. Indeed, it may happen that the arbitrary cycle in
the middle of the block is taken, so that the process

quits the block before reaching the synchronization
point. (Kiepuszewski et al., 00) analyzes the prop-
erties of processes containing such arbitrary cycles,
and identifies situations in which such cycles cannot
be removed (or “unfolded”) without changing the be-
haviour of the process. However, we have not yet
found practical situations involving such “unfoldable”
arbitrary cycles in the context of EAI.

3.3 Multi-Merge

Description A point in a process where two or
more branches reconverge without synchronization.
If more than one branch gets activated, possibly con-
currently, the activity following the merge is started
for every action of every incoming branch.

Example Two activities audit application and pro-
cess applications running in parallel, should both be
followed by an activity close case, which must be
executed twice if the activities audit application and
process applications are both executed.
Solution Two different solutions apply for this pat-
tern. The first one is as proposed by van der Aalst et
al. in (Aalst et al., 02b). It is based on replication
of the activities triggered after the merge, so that they
are included in each parallel process. The second so-
lution (see fig. 5) avoids this replication by starting a
new process instance of a separate process, where the
activities following the merge are placed. In this way
a new process instance is created each time one of the
triggering tasks is completed. As with the “Synchro-
nization” pattern, this solution assumes that for every
synchronizing merge, there is a single corresponding
multi-choice point (or parallel split), that precedes it
and that starts the sub-processes to be synchronized.

a� c�
b�

Send�
M1�

A�

Receive�
M1�

b�

B�

a�

D�

Start�
Receive�

M1�

c�

C�

a�

Send�
M2�

d�

Send�
M3�

d� Start�

Receive�
M2�

Receive�
M3�

d�

b�

c�

Start�

Figure 5: Multi-Merge

3.4 N out of M Join

Description A point in the process where M paral-
lel threads converge into one. The subsequent activ-
ity or sub-process should be activated once N out of
these M threads have completed (N ≤ M). The com-
pletion of all remaining threads is ignored. This pat-
tern has been identified in (Casati et al., 95), where it
is called partial join. The “Synchronization” pattern
presented above is a special case of the N out of M
pattern, where N = M.

4

Example To improve query response time, a complex
search is sent to two alternative databases over the In-
ternet. The first one that comes up with the result
should proceed the flow. The second result is ignored.

Solution As in the “Synchronization” pattern, the
M incoming branches are modelled in BML as sub-
processes running in parallel (sub-processes b1,...,bM
in fig. 6). These sub-processes are triggered from a
parent process a. Upon completion, each of these
sub-processes sends a message back to a, which waits
until it receives N messages from the sub-processes
b1,...,bM, before proceeding with the next activity
(task C in fig. 6). Assuming that the process a never
returns to the state Wait M2, after the execution of
task C, the messages from b1,...,bM received from
this point on, will not be consumed.

Start�
Receive�

M1�

b�1�

B1�

a�

Send�
M2�

End�

a�

a� b�m�
b1...�

Send�
M1�

A�
?�

N� M�2�
in� C�

no�

yes�

Start�
Receive�

M1�

b�M�

BM�

a�

Send�
M2�

End�

a�

.�

.�

.�

Wait�
M2�

Receive�
M2�

Receive�
M2�

b�m�

b1�

.�

.�

.�
...� ...�

Figure 6: N out of M join

This solution assumes that the process a is not in-
volved in a loop. If this was the case, process a would
come back to the state Wait M2 in the second iter-
ation of the loop, and consequently, messages from
b1,...,bM that should be ignored, would now be con-
sumed. In other words, completion messages related
to the first iteration of the loop would be mixed with
completion messages related to the second iteration.
To avoid this happening, a solution is to transform
the loop into a recursive call to process a4. In other
words, when an instance of process a reaches a point
where a loop should be taken, a new instance of pro-
cess a is created to handle the next iteration of the
loop. Eventually, this new instance will create in-
stances of b1,...,bM and will synchronize them. How-
ever, each instance of b1,...,bM will be associated to a
unique instance of a, thereby eliminating the possibil-
ity of mixing instances created in different iterations
of the loop. However, this transformation of loops
into recursive calls is only possible if the loops are
structured (i.e. there are no unfoldable arbitrary cy-
cles), as discussed in the “Synchronization” pattern.

4In MQSeries workflow, loops are also modelled
through such recursive or iterative invocations to a process.

3.5 Multiple Instances without a
Priori Runtime Knowledge

Van der Aalst et al. present a family of patterns that
involve the creation of multiple instances of an ac-
tivity or subprocess (Aalst et al., 02b). For space rea-
sons, we only consider the most complex of these pat-
terns. The other patterns of this family can be handled
by restricting the solution to this pattern.

Description A point in a workflow process where an
activity B is enabled multiple times. The number of
instances of B that need to be enabled is not known
until all these instances have been created. After all
the created instances of B have completed, a terminat-
ing activity E has to be executed once.

Example When booking a trip, the activity
book flight is executed multiple times if the trip
involves multiple flights. Once all bookings are
made, an invoice is sent to the client. How many
bookings are made is only know at runtime through
interaction with the user.

Solution In BML, this pattern is implemented by
three processes that communicate with each other:
one “wrapping” the activity B, called process b; a sec-
ond one process a, for initiating the necessary num-
ber of instances of the process b; and a third one
process c, that waits for the completion of all initi-
ated instances of process b before executing activity
E. Process c receives from process a the number n of
instances of process b that it needs to wait for, before
initiating task E. This solution is presented in figure 7.
Initializing of the counters n and i to zero is done at
start time.

a�

c�

Start�
Receive�

M1�

b�

B�

b�

a�

n:=n+1�

Send�
M2�

End�

?Start�
new b�

Yes/�
No�

Send�
S�

c�
?Yes�
/No�

Send�
M1�

Send� n�

Start� Receive�
S�

Receive�
M2�

i:=i+1�

Receive�
n�

?�
n=i or�
n=0�

E�

c�
a� a�

b�
yes�

no�

?�
n=0�

yes�

no�

End�

c�

Figure 7: MI without a priori runtime knowledge

5

3.6 Deferred Choice

Description A point in a process where one among
several alternative branches is chosen based on infor-
mation which is not necessarily available when this
point is reached. This differs from the normal exclu-
sive choice, in that the choice is not made immedi-
ately when the point is reached, but instead several
alternatives are offered to the process broker, and the
choice is delayed until a signal is received.
Example When a contract is finalised, it has to be
reviewed and signed either by the director or by the
operations manager, whoever is/are available first.
The process broker will notify both the director and
the operations manager that the contract is to be re-
viewed: the first one available will review it.
Solution There is a construct in BML for handling
this situation, namely the Wait for Event state. This
contrasts with other workflow modelling languages
where the choices between branches are always made
immediately when the point of choice is reached, and
there is no straightforward way of expressing the fact
that the choice needs to be delayed.

3.7 Interleaved Parallel Routing

Description A set of activities is executed in an arbi-
trary order. Each activity in the set is executed exactly
once. The order is decided at run-time: it is not until
one activity is completed that the decision on what to
do next is taken. In any case, no two activities in the
set can be active at the same time.
Example At the end of each year, a bank executes
two activities for each account: add interest and
charge credit card costs. These activities can be ex-
ecuted in any order. However, since they both update
the account, they cannot be executed at the same time.
Solution The idea is to wrap the activities to be in-
terleaved in separate BML sub-processes. A master
process is responsible for deciding which activity is
to be executed in the first place. After taking this
decision (based on user input for example), the mas-
ter process sends an invocation message to the first
activity. When this activity is completed, the sub-
process sends a message back to the master process.
The master process then decides which activity will
be executed in the second place, and sends an invo-
cation message to the sub-process wrapping this sec-
ond activity, and so on. A solution based on a similar
principle is described in the context of UML activity
diagrams in (Dumas and ter Hofstede, 01).

3.8 Milestone

Description A given activity can only be enabled if a
certain milestone has been reached which has not yet

expired. A milestone is defined as a point in the pro-
cess where a given activity has finished and an activity
following it has not yet started.
Example After having placed a purchase order, a cus-
tomer can withdraw it at any time before the ship-
ping takes place. To withdraw an order, the cus-
tomer must complete a withdrawal request form, and
this request must be approved by a customer ser-
vice representative. The execution of the activity ap-
prove order withdrawal must therefore follow the ac-
tivity request withdrawal, and can only be done if: (i)
the activity place order is completed, and (ii) the ac-
tivity ship order has not yet started.
Solution The milestone is modelled by a Wait for
Event state with two outgoing branches. One of the
branches is triggered by the expiry of the milestone
(the beginning of the activity ship order in the above
example), while the other branch is triggered by a re-
quest for executing the activity linked to the milestone
(activity approve order withdrawal in the example).
This is illustrated in figure 8, where activity C is only
enabled if activity A has completed and activity B has
not yet started.

c�

A�

Receive�
M3�

Receive�
M1� Send M2�

B�

Send M1� Receive�
M2�

C�

...�

...�
...�

...�

a�

c�

a�

actor b�

a�

Figure 8: Milestone

4 COMMUNICATION PATTERNS
IN BML

In this section we consider the communication pat-
terns presented in (Ruh et al., 01), and describe their
implementation in BML.

Communication is realized by exchanges of mes-
sages between points located in different processes.
In message oriented process languages, the points of
communication are explicitly modelled by two sym-
bols: one for sending and another one for receiving a
message. In BML a message may also be sent from
a process (or application) to itself, which implies that
a pair of send-receive messages does not necessarily
need to be split across two different processes. Two
types of communications are distinguished, namely
synchronous and asynchronous communication.

Synchronous Communication

Synchronous communication denotes the situation in
which the sender and the receiver coordinate their
processing according to their communication.

6

4.1 Request/Reply

Description One application/process A sends a re-
quest to an application/process B and blocks (i.e.,
waits for reply) until B sends a reply. After receiving
the reply A continues processing. The task performed
then usually depends on the response it gets from B.
Example After the customer has booked a flight, the
booking system asks (requests) the customer which
payment method he/she prefers. Depending of the
customer’s response, the booking system performs
different activities. No customer activities can be per-
formed before the response is received.
Solution The solution for this pattern is shown in
fig. 9. Naturally, two processes/applications a and
b between which the communication is realized are
modeled (see, alt1). After sending a message to pro-
cess b, process a gets into a Wait for Event state, wait-
ing for a response from process b. After receiving the
response from process b a choice is made based on it,
and the execution of process a continues according to
this choice.

This solution is applicable when the owner of pro-
cess/application a also has sufficient control of the
process/application b and can guarantee that pro-
cess/application b always sends a reply back to a.
However, if it is not the case, e.g. if b is an exter-
nal process/application, it is better to include an extra
check in the process/application a, limiting the wait-
ing for response time. This is typically done by in-
cluding a timer in a (see alt2) and specifying the ex-
ecution path in case the time expires before any re-
sponse from b has been registered.

Send�
M1�

Receive�
M2�

a�

Send�
M2�

Receive�
M1�

. . .�

b�

. . .�

Send�
M1�

a�

T1�
T1�

x1�

xn�

. .
 .�

Receive�
M2� . .

 .�

alt2�alt1�

b�

a�

b�

?�
M2�

a�

Send�
M2�

Receive�
M1�

. . .�

b�

. . .�

a� a�

x1�

xn�

?�
M2�b�

b�

Figure 9: Request/Reply

4.2 One-Way

Description One-way communication is a special
case of Request/Reply when the sender A only re-
quires a confirmation for receipt from the receiver B,
before continuing.
Example After the customer has ordered products,
the supplier confirms to the customer that the order
is received. The customer does not perform any activ-
ities until a confirmation is received.
Solution Since this is a special case of the Re-
quest/Reply pattern the solution is very close to the

one presented above. The only differences are that
process/application b sends a notification for receipt
immediately after consuming a’s message. When re-
ceiving it a simply continues to execute without tak-
ing into consideration the content of the notification.

4.3 Synchronous Polling

Description Synchronous Polling partially allows the
sender A to continue processing while waiting for a
reply from the receiver B. A needs, though, to period-
ically stop and check for the expected reply.

Example During a game session, the system continu-
ously checks if the customer has terminated the game.

Solution The solution for this pattern (see fig. 10) is
implemented through checkpoints, i.e. states in which
the process can either: (i) consume the message re-
ceived from b before continuing with its other tasks;
or (ii) if the message from b has not yet arrived, sim-
ply continue with its tasks until the next checkpoint
is reached. Checkpoints are modelled by a Wait for
Event state with two outgoing branches: one that will
be fired if the message from b is already available,
and the other pointing to a timer whose value is set
to zero, indicating the absence of waiting time but the
presence of an interruption.

Send M1�

Receive�
M2�

Receive�
M1�

Send M2�. . .�

. . .�

. . .�

a�

b�

Receive�
M2�

. . .�. . .�

. . .�

. . .�

b�

b�

a�

b�

a�

Figure 10: Synchronous Polling

Asynchronous Communication

In contrast to synchronous communication, asyn-
chronous communication does not require the sender
to synchronize processing with communication. The
sender sends a message and continues processing im-
mediately.

4.4 Message Passing

Description An application A sends a message to an
application B and continues processing.

Example When an order is received, a log is notified,
before the system execute the order.

Solution Message passing can simply be represented
by the Send message symbol alone.

7

4.5 Publish/Subscribe

Description An application A sends messages to a
number of other applications which have previously
lodged an expression of interest in receiving this type
of message(s).

Example An organisation offers information about
the products to its customers. If the customers are
interested in receiving such information, they have
to notify a system, which lists interested customer.
When product information is going to be distributed
to the customers, the organisation requests the current
list, including the customer’s addresses.

Solution There is no construct in BML that directly
captures the concept of subscription list. It is however
possible to model the control-flow of a subscription
handling process (see process b in fig. 10). The pro-
cess b is initiated when a request for a subscription
list is made. From there on, actors can subscribe or
unsubscribe by sending Start or Delete subscription
messages to the subscription process b. The subscrip-
tion list can then be used for publishing, i.e. sending
information to the subscribers on the list. The publi-
cation is done by process a in the figure, requesting
and receiving the subscription list from b. This solu-
tion does not capture the details of the data manipula-
tion required to maintain the subscription list.

b�

Start�
Start�

subscriber�
list�

Start�
subscription�

Delete�
subscription�

 Request�
subscriber�

list�

Delete�
subscriber�

list�

Subscriber�
list�

End�

Request�
subscriber�

list�

Subscriber�
list�

a�

b�c, d�

Delete�
subscription�

Start�
subscription�

b�b�

b� a�
a�

c or d ...�

Figure 11: Publish/Subscribe

4.6 Broadcast

Description A message is sent to every application in
a system. The receiver decides whether it is interested
in the message or not. If it has interest the request is
processed according to the logic programmed into the
receiver, otherwise the message is ignored.

Example Before a system is shut down, every client
connected to it is informed about the situation.

Solution In BML this is represented by a Send mes-
sage symbol, where all the applications are explicitly
specified as recipients of this message. The way in
which the different recipients react to the message is
implemented in the corresponding application logic.

5 CONCLUSION

In this paper a framework based on existing work-
flow and communication patterns was used for an in-
depth analysis of BML. BML, as a language based
on communicating state machines, differs from the
traditional activity-based workflow languages. Heav-
ily focused on modeling communication, it provides
a comparatively simple representation for most of the
communication patterns. At the same time, this em-
phasis on modelling the communication, does not
seem to imply major drawbacks on its ability to model
typical workflow (i.e. task-driven) scenarios. Most of
the workflow patterns can be represented in BML in a
relatively simple way.

In particular, state-based patterns such as the de-
ferred choice and the milestone patterns can be cap-
tured naturally in BML, since BML integrates the
concept of states in between the processing of two
business activities. These state-based patterns are dif-
ficult, and sometimes impossible to express in exist-
ing workflow modeling languages (Aalst et al., 02b).
On the other hand, modeling parallel threads in BML
involves decomposing the process into several sub-
processes: one per parallel thread. As a result, for
processes with a high degree of parallelism, the repre-
sentation in BML will contain an equally large num-
ber of distinct sub-process, which may affect the com-
prehensibility of the overall process model.

A limitation of BML identified during our analy-
sis relates to the modeling non-structured workflows.
However, given that non-structured workflows cause
problems even for many existing WFMS, this is not a
drawback specific to BML.

A summary of the analysis on BML is presented
in Table 1. The table also shows a comparison
of BML with two Workflow Modelling Languages:
IBM’s MQSeries Workflow and TIBCO’s InConcert,
both of which are key components of the EAI solu-
tions of their respective vendors (IBM’s WebSphere
MQ and TIBCO’s ActiveEnterprise). The ratings for
MQSeries Workflow and InConcert in the table are
taken from (Aalst et al., 02b) where an analysis of
major commercial WFMS is provided. A ’+’ in a cell
of the table refers to direct support; a ’–’ refers to in-
direct support (i.e. there is no cunstruct which directly
support the pattern, but a work-around solution has to
be applied); ’+/–’ is an intermediate ranking; and ’ne’
means that we have not (conclusively) evaluated the
support for the pattern in the language.

The framework used in this paper can be applied to
the analysis of other EAI languages. Furthermore, as
EAI is closely related to Web service composition, it
is possible to use the same framework for evaluating
Web service composition languages. In (Wohed et al.,
02; Aalst et al., 02a) we have reported the evaluations
for BPEL4WS and BPML.

8

BML MQS InC

Sequence + + +

Parallel Split + + +

Synchronization + + +

Exclusive Choice + + +/–

Simple Merge + + +/–

Multi Choice + + +/–

Synchronizing Merge + + +

Multi-Merge + – –

N out of M Join +/– – –

Arbitrary Cycles – – –

Implicit Termination + + +

MI without Synchronization + – –

MI with a priori Design Time Knowledge + + +

MI with a priori Runtime Knowledge +/– – –

MI without a priori Runtime Knowledge +/– – –

Deferred Choice + – –

Interleaved Parallel Routing – – –

Milestone + – –

Cancel Activity ne – –

Cancel Case ne – –

Request/Reply + ne ne

One-Way + ne ne

Synchronous Polling + ne ne

Message Passing + ne ne

Publish/Subscribe +/– ne ne

Broadcast + ne ne

Table 1: Comparison of BML against MQSeries
Workflow (MQS) and InConcert (InC)

Acknowledgement

We would like to thank Prof. Wil van der Aalst for his
valuable comments on an earlier version of this paper.

REFERENCES

Aalst, W. v. d., Dumas, M., ter Hofstede, A., and Wohed, P.
(02a). Pattern-Based Analysis of BPML (and WSCI).
Technical report, FIT-TR-2002-05, Queensland Uni-
versity of Technology, Brisbane.

Aalst, W. v. d., ter Hofstede, A., Kiepuszewski, B., and
Barros, A. (02b). Workflow patterns. Technical re-
port FIT-TR-2002-2, Queensland University of Tech-
nology. Accessed from http://www.tm.tue.
nl/it/research/patterns. To appear in Dis-
tributed and Parallel Databases, Kluwer.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (95). Concep-
tual modeling of workflows. In Papazoglou, M., edi-
tor, Proc. of the 14th Int. Object-Oriented and Entity-
Relationship Modelling Conference (OOER’95), vol-
ume 1021 of LNCS, pages 341–354. Springer Verlag.

Dumas, M. and ter Hofstede, A. (01). UML activ-
ity diagrams as a workflow specification language.
In Gogolla, M. and Kobryn, C., editors, Proc. of
the 4th Int. Conf. on the Unified Modeling Lan-

guage (UML01), volume 2185 of LNCS, pages 76–90.
Springer Verlag.

Harel, D. (87). Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231–274.

HP (02). HP Process Manager, Interactive Edition. Ac-
cessed Sep 02, www.ice.hp.com/cyc/af/00/
101-0601.pdf.

IBM (02). IBM WebShere MQ software. Accessed Sep 02,
www.ibm.com/software/ts/mqseries.

IONA (02). Orbix E2A Application Server Platform.
Accessed Sep 02, www.iona.com/products/
appserv.htm.

ITU (01). Int. Telecommunication Union, Specification
and Description Language (SDL). Accessed Nov 01
from www.itu.int/rec/recommendation.
asp?type=products&parent=T-REC-z.

Johannesson, P. and Perjons, E. (01). Design principles
for process modelling in enterprise application inte-
gration. Information Systems, 26(2):165–184. Special
Issue on Practical Applications of Agents.

Kiepuszewski, B., ter Hofstede, A., and Bussler, C. (00).
On structured workflow modelling. In Wangler, B.
and Bergman, L., editors, Proc. of the 12th Int.
Conf. on Advanced Information Systems Engineering
(CAiSE00), volume 1789 of LNCS, pages 431–445.
Springer Verlag.

Linthicum, D. S. (00). Enterprise Application Integration.
Addison-Wesley.

Ruh, W., Maginnis, F., and Brown, W. (01). Enterprise Ap-
plication Integration: A Wiley Tech Brief. John Wiley
and Sons, Inc.

Söderström, E., Andersson, B., Johannesson, P., Perjons,
E., and Wangler, B. (02). Towards a framework for
comparing process modelling languages. In Pidduck,
A., Mylopoulos, J., Woo, C., and Özsu, M., editors,
14th Int. Conf. on Advanced Information Systems En-
gineering (CAiSE02), volume 2348 of LNCS, pages
600–611. Springer Verlag.

Vitria (02). Business ware: The leading inte-
gration plattform. Accessed Sep 02 from
www.vitria.com/library/brochures/
vitria_businessware_brochure.pdf.

WfMC (00). Workflow Management Coalition Work-
flow Standard - Interoperability Wf-XML Bind-
ing. Accessed Aug 02 from www.wfmc.org/
standards/docs/Wf-XML-1.0.pdf.

WfMC (99). Workflow Management Coalition: Terminol-
ogy and Glossary, WFMC-TC-1011. Accessed Feb 99
from www.wfmc.org.

Wohed, P., van der Aalst, W., Dumas, M., and ter Hofstede,
A. (02). Pattern-Based Analysis of BPEL4WS. Tech-
nical report, FIT-TR-2002-04, Queensland University
of Technology, Brisbane.

Wåhlander, C., Nilsson, M., and Törnebohm, J. (01). Vi-
suera PM Modeler. Accessed Jun 02 from www.
visuera.com/en/index.htm.

9

