
A pattern and dependency based approach to the
design of process models

Maria Bergholtz, Prasad Jayaweera, Paul Johannesson, Petia Wohed

Department of Computer and System Sciences
Stockholm University/Royal Institute of Technology

Forum 100, SE-164 40 Kista, Sweden
{maria, prasad, pajo, petia}@dsv.su.se

Abstract. In this paper an approach for building process models for e-
commerce is proposed. It is based on the assumption that the process modeling
task can be methodologically supported by a designers assistant. Such a
foundation provides justifications, expressible in business terms, for design
decisions made in process modeling, thereby facilitating communication
between systems designers and business users. Two techniques are utilized in
the designers assistant, namely process patterns and action dependencies. A
process pattern is a generic template for a set of interrelated activities between
two agents, while an action dependency expresses a sequential relationship
between two activities.

1 Introduction

Conceptual models have become important tools for designing and managing
complex, distributed and heterogeneous systems, e.g. in e-business and e-commerce,
[2, 17]. In e-commerce it is possible to identify two basic types of conceptual models:
business models and process models. A business model focuses on the what in an e-
commerce system, identifying agents, resources, and exchanges of resources between
agents. Thus, a business model provides a high-level view of the activities taking
place in e-commerce. A process model, on the other hand, focuses on the how in an e-
commerce system, specifying operational and procedural aspects of business
communication. The process model moves into a more detailed view on the
choreography of the activities carried out by agents.

A business model has a clearly declarative form and is expressed in terms that can
be easily understood by business users. Therefore, business models function well for
supporting communication between systems designers and business users. In contrast,
a process model has a more procedural form and is at least partially expressed in
terms, like sequence flows and gateways, that are not immediately familiar to business
users. Furthermore, it is often difficult to understand why a process model has been
designed in a certain way and what consequences alternative designs would have. In
order to overcome these limitations, we believe that process models should be
complemented by and be based on a more declarative foundation. Such a foundation
would provide justifications, expressible in business terms, for design decisions made
in process modeling, thereby facilitating communication between systems designers
and business users. In this paper, we propose a designers assistant that provides a

declarative foundation for process modeling suggests a method for gathering domain
knowledge. The work reported in this paper extends the work of [1] and [10] in that
we propose two instruments for a declarative foundation of process models: process
patterns and action dependencies. A process pattern is a generic template for a set of
interrelated activities between two agents, while an action dependency expresses a
sequential relationship between two actions.

The rest of the paper is organized as follows. Section 2 presents the notions of
business models and process models. Section 3 introduces process patterns and makes
a distinction between transaction patterns and collaboration patterns. Section 4
discusses action dependencies. Section 5 proposes a designers assistant that supports a
designer in the construction of a process model. Section 6 concludes the paper and
gives suggestions for further research.

2 Business Models and Process Models

For illustrating business and process models, a small running case is introduced. It is a
simplified version of the Drop-Dead Order business case described in [8]. In this
business scenario, a Customer requests an amount of fried chicken from a Distributor.
The Distributor then requests formal offers from a Chicken Supplier and a Carrier.
Furthermore, the Distributor requests a down payment from the Customer before
accepting the offers from the Chicken Supplier and Carrier. As the Customer
completes the down payment to the Distributor, the Distributor accepts the offer from
the Chicken Supplier by also paying a down payment and the offer from Carrier.
When the Chicken Supplier has provided the fried chicken and the Carrier has
delivered them to the Customer, the Distributor has thereby fulfilled the Customer’s
order. After that, the Customer settles the final payment to the Distributor. Finally, the
Distributor settles the Chicken Supplier’s final payment and the payment for the
Carrier.

2.1 Business Models

As a foundation for business models, we will use the REA ontology [13], which has
been widely used for business modeling in e-Commerce, [17]. The REA framework is
based on three main components: Resources, Economic Events, and Agents, see Fig.
11. An Agent is a person or organization that is capable of controlling Resources and
interacting with other Agents. A Resource is a commodity, e.g. goods or services that
is viewed as being valuable by Agents. An Economic Event is the transfer of control
of a Resource from one Agent to another one. Each Economic Event has a
counterpart, i.e. another Economic Event that is performed in return and realizing an
exchange. For instance, the counterpart of a delivery of goods may be the payment of
the same goods. This connection between Economic Events is modeled through the
relationship Duality.

1 Due to space restrictions and for the purpose of readability we use abbreviated forms of the

terms in the original REA ontology. This is done by dropping the term ‘Economic’ for
Economic Contract, Economic Commitment, Economic Resource, and Economic Agent.

ContractCommitment
establish

12..*

reciprocal
+

Resource Event1

1resource
Flow

* fulfills

duality
+terminator +initiator1..**

Agent
participation

1
Economic

Fig. 1 REA basis for business models

Furthermore, a Commitment is a promise to execute a future Economic Event, for
example fulfilling an order by making a delivery. The Duality between Economic
Events is inherited by the Commitments, where it is represented by the association
Reciprocal. In order to represent collections of related Commitments, the concept of
Contract is used. A Contract is an aggregation of two or more reciprocal
Commitments. An example of a Contract is a purchase order composed of one or
several order lines, each one representing two Commitments (the goods to be
delivered and the money to be paid for the goods, respectively).

$

$ $

Customer C
hi

ck
en

 S
al

es Down Payment

Fried Chicken

Final Payment

Supplier

C
hi

ck
en

 P
ur

ch
as

e
Down Payment

Final Payment

Chicken Supply

Carrier
Payment

C
hicken D

elivery

Delivery

Distributor

Fig. 2 Business Model for the Fried Chicken Business Case

A business model based on REA will consist of instances of the classes Resource,
Economic Event and Agent as well as the associations between these. The business
model for the running case described above can be visualized as in Fig. 2. Here,
arrows represent Economic Events labeled with relevant Resources. The transfer of
resource control from one Agent to another is represented by the direction of arrows.
Ellipses represent relationships between Economic Events belonging to the same
Duality.

2.3 Process Models

The notation we will use for process models is BPMN [4], a standard developed by
the Business Process Management Initiative (BPMI) [3]. The goal of BPMN is to be a
easily comprehensible notation for a wide spectrum of stakeholders ranging from
business domain experts to technical developers. A feature of BPMN is that BPMN
specifications can be readily mapped to executable XML languages for process
specification such as BPEL4WS, [2].

In this paper, a selected set of core elements from BPMN have been used. These
elements are Activities, Events, Gateways, Sequence flows, Message flows, Pools and
Lanes. Activity is a generic term for work that an Agent can perform. In a BPMN
Business Process Diagram (abbreviated BPMN diagram), an Activity is represented by
a rounded rectangle. Events, represented as circles, are something that “happens”
during the course of a business process. There exist three types of Events: Start, End
and Intermediate Events. Activities and Events are connected via Sequence Flows that
show the order in which Activities will be performed in a process. Gateways are used

to control the sequence flows by determining branching, forking, merging, and
joining of paths. In this paper we will restrict our attention to XOR and AND
branching, graphically depicted as a diamond with an ‘X’ or a ‘+’, respectively. Lanes
and Pools are graphical constructs for separating different sets of Activities from each
other. A Lane is a sub-partition within a Pool used to organize and categorize
Activities. Message flows depicted as dotted lines are used for communication
between Activities in different Pools. (An example of them appear later in Fig. 12)

An example of a BPMN diagram is shown in Fig. 3. The diagram shows a single
Business Transaction in one pool with three lanes. A Business Transaction is a unit of
work through which information and signals are exchanged (in agreed format,
sequence and time interval) between two Agents [17]. A Business Transaction
consists of two Activities, one Requesting Activity where one Agent initiates the
Business Transaction and one Responding Activity where another Agent responds to
the Requesting Activity. (See Fig. 4)

" F
ri e

d
C

h i
c k

en
"

C
on

tr
ac

t
O

ff e
r B

u s
in

es
s

T r
an

sa
ct

i o
n

C
u s

t o
m

er
A

ct
i v

it y
D

is
tr

i b
u t

or
A

ct
iv

it y
G

lo
ba

l
In

te
re

s t "Fried Chicken"
Contract
Proposed

Offer "Fried Chicken Contract"

Acknowledge "Fried Chicken
Contract"

Fig. 3 Example of a BPMN diagram

Several Business Transactions between two Agents can be combined into one binary
Business Collaboration. It turns out that it is often fruitful to base binary Business
Collaborations on Dualities, i.e. one Business Collaboration will contain all the
Business Transactions related to one Duality. This gives a starting point for
constructing a process model from a business model. Each Duality in the business
model gives rise to one binary Business Collaboration, graphically depicted as a
BPMN diagram in a Pool. In this way, a process model will be constructed as a set of
interrelated Business Collaborations.

Furthermore, a binary Business Collaboration can naturally be divided into a
number of phases. Dietz, [6], distinguishes between three phases. The Ordering phase,
in which an Agent requests some Resource from another Agent who, in turn, promises
to fulfill the request. The Execution phase, in which the Agents perform Activities in
order to fulfill their promises. The Result phase, in which an Agent declares a transfer
of Resource control to be finished, followed by the acceptance or rejection by the
other Agent. The ISO OPEN-EDI initiative [15] identifies five phases: Planning,
Identification, Negotiation, Actualization and Post-Actualization. In this paper, we
use only two phases: a Contract Negotiation phase in which contracts are proposed
and accepted, and an Execution phase in which transfers of Resources between
Agents occur and are acknowledged. In the next section, we will discuss how a binary
Business Collaboration can be constructed utilizing patterns for these phases.

3 Generic Process Patterns

Designing and creating business and process models is a complicated and time
consuming task, especially if one is to start from scratch for every new model. A good
designer practice to overcome these difficulties is, therefore, to use already proven
solutions. A pattern is a description of a problem, its solution, when to apply the
solution, and when and how to apply the solution in new contexts [11]. The
significance of a pattern in e-commerce is to serve as a predefined template that
encodes business rules and business structure according to well-established best
practices. In this paper such patterns are expressed as BPMN diagrams. They differ
from the workflow patterns of [18], [16], [19] by focusing primarily on
communicative aspects, while control flow mechanisms are covered on a basic level
only.

In the following sub sections, a framework for analyzing and creating transaction-
and collaboration patterns is proposed. We hypothesize that most process models for
e-commerce applications can be expressed as a combination of a small number of
these patterns.

3.1 Modeling business transactions

When a transaction occurs, it typically gives rise to effects, i.e. Business Entities like
Economic Events/Contracts/Commitments are effected (created, deleted, cancelled,
fulfilled). Furthermore, the execution of a transaction may cause the desired effect to
come into existence immediately, or only indirectly, depending on the intentions of
the interacting Agents. For example, the intention of an Agent in a transaction may be
to propose a Contract, to request a Contract or to accept a Contract. In all three cases
the business entity is the same (a Contract) but the intention of the Agent differs.

Activity

Business Entity
Business Intention Business Effect

Type: {Request, Propose,
 Declare, Accept,
 Reject,
 Acknowledge}

1..*

ContractComittment Economic
Event

Business
Collaboration

Type: {Create, Delete,
 Cancel}

1

1..*

1
0..*

1
tartget

choreograph Business
Transactionrequest

reply

intention effect

Fig. 4 Business Transaction analysis

Fig. 4 builds on REA and suggests a set of Business- Intentions, Effects and Entities.
These notions are utilized in defining transaction patterns and transaction pattern
instances as follows.

Definition: A transaction pattern (TP) is a BPMN diagram with two Activities, one
Requesting Activity and one Responding Activity. Every Activity has a label of the form
<Intention, Effect, Business Entity>, where Intention ∈ {Request, Propose, Declare,
Accept, Reject, Acknowledge}, Effect ∈ {create, delete, cancel}, and Business Entity
∈ {aContract, anEconomicEvent, aCommitment}. All End Events are labeled
according to the Intention and Business Entity of the Activity prior to the sequence flow
leading to the End Event.

Intuitively, the components of an activity label mean the following:

• Business Entity tells what kind of object the Activity may effect.
• Effect tells what kind of action is to be applied to the Business Entity – create,

delete or cancel.
• Intention specifies what intention the business partner has towards the Effect on

the Business Entity.

The meanings of the intentions listed above are as follows:
• Propose – someone offers to create, delete or cancel a Business Entity.
• Request – someone requests other Agents to propose to create,

delete or cancel a Business Entity.
• Declare – someone unilaterally declare a Business Entity created, deleted or

cancelled.
• Accept/Reject – someone answers a previously given proposal.
• Acknowledge – someone acknowledges the reception of a message.

Definition: A pattern instance of a transaction pattern is a BPMN diagram derived
from the pattern by renaming its Activities, replacing each occurrence of aContract in
an activity label with the name of a specific Contract, replacing each occurrence of
anEconomicEvent in an activity label with the name of a specific EconomicEvent, and
replacing each occurrence of aCommitment in an activity label with the name of a
specific Commitment.

3.2 Transaction Patterns (TPs)

In the following sections three basic Contract Negotiation and two Execution TPs are
suggested based on the framework described above.

3.2.1. Contract Negotiation TPs
The Contract-Offer TP models one Agent proposing an offer (<propose, Create,
aContract>) to another Agent who acknowledges receiving the offer. The acceptance
or rejection of an offer is modeled in the Contract-Accept/Reject TP, see Fig. 5.

C
on

tr
ac

t O
ffe

r T
P R
eq

t.
A

c t
iv

ity
R

e s
p .

A
ct

iv
i ty

G
lo

ba
l

In
t e

r e
st

G
l o

b a
l

I n
t e

re
st

R
eq

t.
A

ct
iv

ity
R

e s
p .

A
ct

i v
it y

C
on

tr
ac

t A
cc

ep
t/R

ej
ec

t T
P

<<propose, create, aContract>>

<<acknowledge, propose,
aContract>>

Contract
Proposed

Contract
Established
or Rejected

<<accept/reject, create, aContract>>

<<acknowledge, accept/reject,
aContract>>

Fig. 5 TPs for Contract Negotiation: Contract-Offer and Contract-Accept/Reject

C
on

tr
ac

t R
eq

ue
st

 T
P R
eq

t.
Ac

tiv
ity

R
es

p.

A
ct

iv
ity

<<request, create, aContract>>

<<acknowledge, request, aContract>>

Contract RequestedG
lo

ba
l

In
te

re
st

Fig. 6 TP for Contract Negotiation: Contract-Request

Fig. 6 models the Contract Request case where an Agent requests of other Agents to
make an offer for aContract on certain Resources.

3.2.2 Execution TPs
We introduce two Execution TPs (see Fig. 7) that specify the execution of an
Economic Event, i.e. the transfer of Resource control from one Agent to another. An
example is a Chicken Distributor selling Chickens (a Resource) for $3 (another
Resource).

<< propose, create, anEconomicEvent>>

Economic
Event

Proposed

Ec
on

om
ic

 E
v e

nt
O

ffe
r T

P
G

lo
b a

l
In

t e
r e

s t

<< accept/reject, create, anEconomicEvent>>

<< acknowledge, propose,
anEconomicEvent>>

G
l o

b a
l

I n
te

re
st Economic

Event
Created

<< acknowledge, accept/ reject,
anEconomicEvent >>

R
e q

t.
A

ct
iv

ity
R

es
p.

A
c t

iv
ity

R
eq

t.
A

c t
iv

ity
R

e s
p .

A
ct

iv
i tyEc

on
om

ic
 E

ve
nt

A

cc
ep

t/R
ej

ec
t T

P

Fig. 7 TPs for Execution: Economic Event Offer and Economic Event Accept.

3.3 Assembling Transactions patterns into Collaboration patterns

An issue is how to combine the transaction patterns described in the previous section,
i.e. how to create larger sequences of patterns. For this purpose, collaboration patterns
define the orchestration of Activities by assembling a set of transaction patterns and/or
more basic collaboration patterns based on rules for transitioning from one
transaction/collaboration to another.

To hide the complexity when TPs are combined into arbitrarily large collaboration
patterns, we use a layered approach where the TPs constitute activities in the BPMN
diagram of the collaboration patterns.

Definition: A collaboration pattern (CP) is a BPMN diagram where the activities
consist of transaction and collaboration pattern(s). A CP has exactly two end events
representing success or failure of the collaboration, respectively. All end events are
labeled according to the Intention and Business Entity of the Activity prior to the
sequence flow that led to the end event.

3.3.1 Contract Negotiation CPs
The Contract Establishment CP, see Fig. 8, is assembled from the Contract-Offer and
Contract-Accept/Reject TPs. An example scenario is a Chicken Distributor proposing
an offer to a customer on certain terms. The contract is formed (or rejected) by the
customers acceptance or rejection of the proposed offer.

Contract
Proposed

R
eq

t.
A

c t
iv

ity
R

es
p.

A
ct

i v
it y

G
lo

ba
l

In
te

r e
s t

X Contract
Established

Contract
Rejected

Contract Offer TP

Contract Accept TPC
on

tr
ac

t E
st

ab
lis

hm
en

t
C

ol
la

bo
ra

tio
n

Pa
tte

rn

Counter Offer

Bidding/Auctioning
Fig. 8 Contract Establishment CP

The two recursive paths when a contract offer/request has been rejected have a natural
correspondence in the business negotiation concepts ‘Counter Offer’ and ‘Bidding’

(or ‘Auctioning’) respectively. ‘Counter Offer’ refers to the switch of roles between
Agents, i.e. when the responding Agent has rejected the requesting Agents offer, the
former makes an offer of her own. ‘Bidding’ is modeled via the other sequence Flow
from the gateway, i.e. when the responding Agent has turned down a contract offer,
the requesting Agent immediately initiates a new Business Transaction with a new
(changed) offer for Contract.

The Contract-Proposal collaboration pattern, Fig. 92, is assembled from the
Contract-Request TP and the Contract-Establishment CP defined above.

C
on

tra
ct

 P
ro

po
se

C

P Contract Request TP

Contract
Requested

+

Contract
Establishment CP

X

Contract Rejected

Contract
Established

Fig. 9 Contract Propose CP

3.3.2 Execution CP

The execution collaboration pattern specifies relevant TPs and rules for sequencing
among these within the completion of an Economic Event. The pattern is assembled
from the Offer-Event and Accept/Reject Event TPs.

RejectedEconomic Event
Proposed

G
lo

b a
l

I n
t e

re
st

X EE
Created

EE

Economic Event Offer TP

Economic Event Accept TP

R e
s p

.
A

ct
i v

it y
R

eq
t.

A c
tiv

ity

Ex
ec

ut
io

n
C

ol
la

bo
ra

tio
n

Pa
tte

rn

Fig. 10 Execution CP

4 Action Dependencies

The process patterns introduced in the previous section provide a basis for a partial
ordering of the activities taking place in a business process, in particular the ordering
based on contract negotiation and execution. We will refer to the activities involved in
the different phases of a process as contract negotiation or execution activities
respectively. However, the ordering derived from the process patterns only provide a
starting point for designing complete process models, i.e. it needs to be complemented
by additional interrelationships among the activities. These interrelationships should
have a clear business motivation, i.e. every interrelationship between two activities
should be explainable and motivated in business terms. We suggest to formalize this
idea of business motivation by introducing the notion of action dependencies. An
action dependency is a pair of actions (either economic events or activities), where the
second action for some reason is dependent on the first one. We identify the following
four kinds of action dependencies.

2 When a CP is composed of other CPs, no lanes can be shown as the Requesting and

Responding Activities are already encapsulated.

Flow dependencies. A flow dependency, [12], is a relationship between two
Economic Events, which expresses that the Resources obtained by the first Economic
Event are required as input to the second Economic Event. An example is a retailer
who has to obtain a product from an importer before delivering it to a customer.
Formally, a flow dependency is a pair <A, B>, where A and B are Economic Events
from different Dualities.

Trust dependencies. A trust dependency is a relationship between two Economic
Events within the same Duality, which expresses that the first Economic Event has to
be carried out before the other one as a consequence of low trust between the Agents.
Informally, a trust dependency states that one Agent wants to see the other Agent do
her work before doing his own work. An example is a car dealer who requires a down
payment from a customer before delivering a car. Formally, a trust dependency is a
pair <A, B>, where A and B are Economic Events from the same Duality.

Control dependencies. A control dependency is a relationship between an
execution Activity and a contract negotiation Activity. A control dependency occurs
when one Agent wants information about another Agent before establishing a Contract
with that Agent. A typical example is a company making a credit check on a potential
customer (i.e. an exchange of the Resources information and money in two
directions). Formally, a control dependency is a pair <A, B>, where A is an execution
Activity and B is a contract negotiation Activity and where A and B belong to different
Dualities.

Negotiation dependencies. A negotiation dependency is a relationship between
Activities in the contract negotiation phase from different Dualities. A negotiation
dependency expresses that an Agent is not prepared to establish a contract with
another Agent before she has established another contract with a third Agent. One
reason for this could be that an Agent wants to ensure that certain Resources can be
procured before entering into a Contract where these Resources are required. Another
reason could be that an Agent does not want to procure certain Resources before there
is a Contract for an Economic Event where these Resources are required. Formally, a
negotiation dependency is a pair <A, B>, where A and B are contract negotiation
Activities in different Dualities.

5 A Designers Assistant

In this section, we will show how a process model can be designed based on process
patterns and action dependencies. Designing a process model is not a trivial task but
requires a large number of design decisions. In order to support a designer in this task,
we propose an automated designers assistant that guides the designer through the task
by means of a sequence of questions, divided into four steps, followed by a fifth step
where the process model is generated based on the answers to questions in step 1-4,
see Fig. 11.

Step 1. during which information is gathered about the Agents involved in the business
process, the Resources exchanged between them, and the Economic Events through
which these Resources are exchanged. The result from this step is a business model.

Step 2. during which information about the (partial) order between the Economic Events is
gathered. The result from this step is an ordering of the Activities in the Execution
phase of a process model.

Step 3. during which information about existing negotiation dependencies is gathered. The
result from this step is an ordering of the Activities in the Negotiation phase.

Step 4. during which inter phase and inter pool dependencies are established. The result from
this step is an ordering of Activities that crosses the Negotiation and Execution phases.

Step 5. during which a set of production rules are applied on the results of the previous steps
in order to generate a process model.

Q-A Session Q-A Session Q-A Session Q-A Session Auto Generation

Business Model Execution Order Negotiation Order Refined Order ProcessModel
Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 11 Steps of the Designers Assistant

5.1 Step 1 - Business Model

In order to produce a business model the following four questions need to be
answered. Answers according to the running case are given after every question.

1. Who are the Agents? Answers: Customer (Cust), Distributor (Dist),
Chicken Supplier (Supp), Carrier (Carr)

2. What are the Resources? Answers: Money, Chicken, Delivery

3. What are the Economic Events? Specify them by filling in the following table.
Name of Economic event Transferred Resource From Agent To Agent
DownPayToDist DownPayment Cust Dist
FinalPayToDist FinalPayment Cust Dist
ChickenToCust Chicken Dist Cust
DownPayToSupp DownPayment Dist Supp
FinalPayToSupp FinalPayment Dist Supp
ChickenToDist Chicken Supp Dist
DeliveryToDist Delivery Carr Dist
PayToCarr Payment Dist Carr

Table 1 Answers to question 3.

4. Group the Economic Events into Dualities by filling in the following table.
Economic event Duality
DownPayToDist
FinalPayToDist
ChickenToCust

Chicken Sales

DownPayToSupp
FinalPayToSupp
ChickenToDist

Chicken Purchase

DeliveryToDist
PayToCarr Chicken Delivery

Table 2 The answers to question 4.

The answers to these four questions provide sufficient information to produce the
business model shown in Fig. 2.

5.2 Step 2 – Execution Phase Order

Having identified the Economic Events, the designer is prompted to determine the
dependency orders. In this step only flow and trust dependencies are considered.

5. Specify Flow and Trust Dependencies by filling in the table below (where the

row and column headings are Economic Events identified in question 4). If an
EconomicEventi (in row i) precedes an EconomicEventj (in column j): put a ’<’
symbol in the corresponding cell (cell <i,j>). The ‘<’ symbol is to be subscripted with
‘f’ or ‘t’ depending on the type of dependency.

 DPTD FPTD CTC DPTS FPTS CTD DTD PTC

DownPayToDist (DPTD) <t <f(1)

FinalPayToDist (FPTD) <f(5) <f(4)
ChickenToCust (CTC) <t

DownPayToSupp (DPTS) <t
FinalPayToSupp (FPTCS)
ChickenToDist (CTD) <f(2) <t

DeliveryToDist (DTD) <f(3) . <t
PayToCarr (PTC)

Table 3 Answers to the question 5 in the assistant.

The input from this step will be sufficient to roughly sketch the Execution phase in
the BPMN diagram See the shaded area in Fig. 12 where for every Duality a pool is
created. The numerical notes in the table are used to refer to the resulting sequence
and message flows in the model. However, some dependencies, e.g. “<f(1)” are later
on overridden by refined orders and are then reduced from the final model.

5.3 Step 3 – Contract Negotiation Phase Order

After having gathered sufficient information to produce the BPMN diagram for the
Execution phase, the analysis continues for the Contract Negotiation phase. As there
are two ways for initiating a binary Business Collaboration according to the suggested
collaboration patterns in Section 3, it is first necessary to identify which of these
patterns to use for each binary collaboration.

6. For each binary Business Collaboration, ask whether
(a) a quotation already exists when the binary collaboration starts, or

 (b) the binary collaboration is started by a partner requesting a quotation.

If the answer is (a) then the contract establishment collaboration pattern of Fig. 8 will
be chosen. If the answer is (b) then the contract proposal collaboration pattern of Fig.
9 will be chosen.

Below, the answers to question 6 for the running case are given in bold.

6.1 (a) Does a quotation already exist when the Cust-Dist collaboration starts, or
 (b) is the Cust-Dist collaboration started by a partner requesting a quotation?

6.2 (a) Does a quotation already exist when the Dist–Supp collaboration starts, or
 (b) Is the Dist–Supp collaboration started by a partner requesting a quotation?
6.3 (a) Does a quotation already exist when the Dist-Carr collaboration starts, or
 (b) is the Dist-Carr collaboration started by a partner requesting a quotation?

Note that abbreviated Agent names are used here in naming the collaborations above.
The answers from this question are used to derive the beginning of each binary
collaboration (see the white area in Fig. 12). We continue by identifying the
negotiation and control dependencies.

7. Specify the Control and Negotiation Dependencies by filling in the following

table, (where the row and column headings are pattern instantiations identified in
questions 4 and 6). If an Activity3 (in row i) precedes an Activity (from column j) put
a ’<n’ symbol (for negotiation dependency) or a ’<c’ symbol (for control dependency)
in the corresponding cell (i.e. cell <i,j> in the table).

Due to space restrictions and since the running case does not contain any control
dependencies, we depict contract negotiation Activities only in Table 4.

 C
O

C
D

C
EC

D

C
R

D
S

C
O

D
S

C
ED

S

C
R

D
C

C
O

D
C

C
ED

C

Contract-Offer:Cust-Distr (COCD) <n(a) <n(b)
Contract-Accept/Reject:Cust-Distr (CECD)

Contract-Request:Distr-Supp (CRDS)
Contract-Offer:Distr-Supp (CODS) <n(c)

Contract-Accept/Reject:Distr-Supp (CEDS)
Contract-Request:Distr-Carr (CRDC)

Contract-Offer: Distr-Carr (CODC) <n(d)
Contract-Accept/Reject: Distr-Carr (CEDC)

Table 4. Answers to the running case for question 7
Note, that the relationships within a binary collaboration are given by the process
patterns and we have therefore crossed out the corresponding cells. The results from
this question will give input for ordering of the activities from the Contract
Negotiation phase across the binary collaborations. The alphabetical notes in the table
refer to the resulting flows in the process model in Fig. 12.

5.4 Step 4 - Refined Order

In the first three steps, the Agents and Economic Events were identified. Furthermore,
the activities in the Execution phase were ordered within and between binary
Business Collaborations as well as the activities in the Contract Negotiation phase. In
this step, we identify relationships that cross binary collaborations as well as
Execution and Contract Negotiation phases.

8. For each pair of Economic Events <EEi, EEj> (see Table 3), such that EEi
<f EEj : Is it required to perform EEi before making a contract acceptance
for EEj, (i.e. a Contract Establishment between the Agents in EEj)?

3 Formally the contents of the rows are TP instances (see Section 3.1), but for simplicity, we

have referred to each TP instance by its first Activity.

The intuition behind this question is that an Agent may want to ensure that she has
definite access to certain Resources before she is prepared to enter into a Contract for
some product where these Resources are needed as input. It is possible to think about
this question as a strengthening of a flow dependency – we say not only that EEj
cannot be performed before we have got the Resources from EEi, but even that we are
not prepared to enter into a Contract for EEj before we have got the Resources from
EEi.
Below, the implementation of question 8 for the running case is given with answers.

8.1 Must DownPayToDist be done before establishment of Dist-Supp Contract? Yes

8.2 Must FinalPayToDist be done before establishment of Dist-Supp Contract? No

8.3 Must FinalPaytToDist be done before establishment of Dist-Carr Contract? No

8.4 Must ChickenToDist be done before establishment of Dist-Cust Contract? No

8.5 Must DeliveryToDist be done before establishment of Dist-Cust Contract? No

9. For each triple of Economic Events in table 3, EEi, EEj, EEk, such that EEi

<t EEj and EEk <f EEJ: Is it required to perform EEi before making a
contract acceptance for EEk (i.e a Contract Establishment between the
Agents in EEk)?

This question can be seen as a strengthening of a trust dependency. It says not only
that we want to see another Agent perform EEi before we perform EEj, but that we
want to see our partner to perform EEi before we even start acquiring resources
needed to perform EEj.

Below, the implementation of question 9 for the running case with answers.
9.1 Must DeliveryToDist be done before establishment of Cust-Dist Contract? No
9.2 Must ChickenToDist be done before establishment of Cust-Dist Contract? No

9.3 Must DownPayToDist be done before establishment of Dist-Supp Contract4? No

9.4 Must DownPayToDist be done before establishment of Dist-Carr Contract? Yes

5.5 Business Process Generation

The final step of the proposed designers assistant is the generation of a BPMN
diagram based on the answers from steps 1 – 4. This is achieved using the binary
collaboration patterns introduced in Section 3 and a set of production rules to
interconnect those instantiated binary collaborations into a multi-party collaboration.
The set of production rules that are proposed can be categorized into four groups:
Rules for Binary Collaborations (within a pool), Rules for Inter-Collaborations
(between pools), Reduction Rules, and Deadlock Prevention Rules. However, due to
space limitations, only the first two categories are summarized informally here.

Rules for Binary Collaborations

1. For each duality, introduce a binary collaboration contained in one pool. Such
a collaboration will start with an instantiation of the BPMN diagram Contract
Propose CP, (Fig. 9), if the answer to question 6 is a), otherwise the binary
collaboration starts with an instantiation of the Contract Establish CP, (Fig. 8).

2. The BPMN diagram in a pool continues with instantiations of the Fig. 10
pattern, one for each Economic Event identified through question 5 in the
designers assistant. These collaborations will initially be in parallel.

4 Case 9.3 is already covered by case 8.1 and is only shown here for reasons of completeness.

3. For each trust dependency between two Economic Events, introduce a
sequence flow between the corresponding execution activities.

Rule for Inter-Collaborations

1. For each flow dependency between two Economic Events, introduce a
message flow between the corresponding execution activities.

2. For each control and negotiation dependency between two activities, introduce
a message flow between these activities.

3. For each positive answer to questions 8 and 9, introduce a message flow
between the relevant activities.

The BPMN diagram generated by these rules for the running case is shown in Fig. 12.
(A formal definition of the generation via the production rules is found in Chapter 7
of [9])

6 Conclusions and Further Work

In this paper, we have proposed an approach for building process models on a
declarative foundation. A starting point of the approach is that the process modeling
task can be supported by gradually gathering domain knowledge, initially for the
construction of business models and subsequently for their refinement and
transformation into process models. The proposed designers assistant is structured on
a division of e-commerce interactions into two phases: a Contract Negotiation Phase
where a contract for exchanging economic resources is established; and an Execution
Phase where the actual exchanges of the economic resources take place. We believe
that this phase division provides an adequate starting point, but a topic for further
work is to investigate more refined phase divisions, [6], [15].

The proposed approach is based on the concept of process patterns. A framework
for representing process patterns is introduced, together with a number of basic
process patterns. Two kinds of process patterns are identified: transaction patterns,
basically capturing small communication chunks between two agents; and
collaboration patterns, which are compositions of transaction patterns facilitating the
representation of complex interactions. The value of this framework is not only that it
provides an instrument for precise and unambiguous pattern definitions, but also that
it gives a basis for motivating design choices in process modeling.

Finally, we also introduce the notion of action dependencies for capturing
relationships between the activities within a process. Four kinds of dependencies are
identified: flow, trust, control and negotiation dependencies. They can be stated
declaratively, have a clear business motivation, and are used for the final derivation of
a process model. A topic for further work is to investigate whether additional kinds of
action dependencies are required.

A further line of future work is to examine the quality of the produced models,
during which their completeness as well as their logical soundness should be
investigated. While the work on completeness can primarily be done through
empirical studies, the work on logical soundness can be supported by theoretical work
like the one given in [5].

C
us

to
m

er
+D

is
tri

bu
to

r
C

on
tra

ct
 P

ro
po

se
d

Customer+Distributor
Collaboration

X

C
ou

nt
er

 O
ffe

r

B
id

di
ng

/A
ct

io
ni

ng

C
us

to
m

er
+

D
is

tri
bu

to
r

C
on

tra
ct

Es
ta

bl
is

he
d

<<
Ex

ec
ut

io
n

C
P

>>
D

ow
nP

ay
To

D
is

tri
bu

to
r

+ D
ow

nP
ay

To
D

is
tri

bu
to

r
C

om
pl

et
ed

C
hi

ck
en

To
C

us
to

m
er

C

om
pl

et
ed

<<
Ex

ec
ut

io
n

C
P>

>
Fi

na
lP

ay
To

D
is

tri
bu

to
r

Fi
na

lP
ay

To
D

is
tri

bu
to

r
C

om
pl

et
ed

+
D

is
tri

bu
to

r+
C

hi
ck

en
 S

up
pl

ie
r

C
on

tra
ct

 P
ro

po
se

d

D
is

tri
bu

to
r+

C
ar

rie
r

C
on

tra
ct

 P
ro

po
se

d

+
C

hi
ck

en
To

D
is

tri
bu

to
r

C
om

pl
et

ed

D
el

iv
er

yT
oD

is
tri

bu
to

r
C

om
pl

et
ed

+
<<

C
on

tra
ct

 A
cc

ep
t/R

ej
ec

t T
P>

>
C

us
to

m
er

+D
is

tri
bu

to
r C

on
tra

ct
<<

Ex
ec

ut
io

n
C

P
>>

C
hi

ck
en

To
C

us
to

m
er

+

D
is

tri
nu

to
r+

C
hi

ck
en

 S
up

pl
ie

r
C

on
tra

ct
 P

ro
po

se
d

Distributor+Chicken
Supplier Collaboration

X

C
ou

nt
er

 O
ffe

r

Bi
dd

in
g/

Ac
tio

ni
ng

D
is

tri
nu

to
r+

C
hi

ck
en

Su

pp
lie

r C
on

tra
ct

E
st

ab
lis

he
d

<<
Ex

ec
ut

io
n

C
P>

>
D

ow
nP

ay
To

C
hi

ck
en

Su
pp

lie
r

+

D
ow

nP
ay

To
C

hi
c

ke
nS

up
pl

ie
r

C
om

pl
et

ed

C
hi

ck
en

To
D

is
tri

b
ut

or
 S

up
pl

ie
d

Fi
na

lP
ay

To

C
hi

ck
en

S
yp

pl
ie

r
C

om
pl

et
ed

+
+

D
is

tri
bu

to
r+

C
hi

ck
en

Su

pp
lie

r C
on

tra
ct

R

eq
ue

st
ed

C
us

to
m

er
+D

is
tri

bu
to

r
C

on
tra

ct
 P

ro
po

s e
d

+
Fi

na
lP

ay
To

D
is

tri
bu

to
r C

om
pl

et
ed

<<
C

on
tra

ct
 O

ffe
r T

P>
>

C
us

to
m

er
+D

is
tri

bu
to

r C
on

tra
ct

<<
C

on
tra

ct
 R

eq
ue

st
 T

P>
>

D
is

tri
nu

to
r+

C
hi

ck
en

Su
pp

lie
r C

on
tra

ct

<<
E

xe
cu

tio
n

C
P

>>
C

hi
ck

en
To

D
is

tri
bu

to
r

+

D
is

tri
nu

to
r+

C
ar

rie
r

C
on

tra
ct

 P
ro

po
se

d

Distributor+Carrier
Collaboration

X

C
ou

nt
er

 O
ffe

r

B
id

di
ng

/A
ct

io
ni

ng

D
is

tri
nu

to
r+

C
ar

rie
r

C
on

tra
ct

Es

ta
bl

is
he

d

D
el

iv
er

yT
oD

is
tri

bu
to

r
C

om
pl

et
ed

P
ay

To

C
ar

rie
r

C
om

pl
et

ed

+
D

is
tri

bu
to

r+
C

ar
rie

r
C

on
tra

ct
 R

eq
ue

st
ed

C
us

to
m

er
+D

is
tri

bu
t o

r
C

on
tra

ct
 P

ro
po

se
d

+
Fi

na
lP

ay
To

D
is

tri
bu

to
r C

om
pl

et
ed

<<
C

on
tra

ct
 R

eq
ue

st
 T

P>
>

D
is

tri
nu

to
r+

C
ar

rie
r C

on
tra

ct
<<

C
on

tra
ct

 O
ffe

r T
P

>>
D

is
tri

nu
to

r+
C

ar
rie

r C
on

tra
ct

<<
C

on
tra

ct
 A

cc
ep

t/R
ej

ec
t T

P>
>

D
is

tri
nu

to
r+

C
ar

rie
r C

on
tra

ct
<<

Ex
ec

ut
io

n
C

P
>>

D
el

iv
er

yT
oD

is
tri

bu
to

r
+

<<
Ex

ec
ut

io
n

C
P>

>
Pa

yT
oC

ar
rie

r
+

<<
C

on
tra

ct
 O

ffe
r T

P>
>

D
is

tri
nu

to
r+

C
hi

ck
en

Su
pp

lie
r C

on
tra

ct

<<
C

on
tra

ct
 A

cc
ep

t/R
ej

ec
t T

P>
>

D
is

tri
nu

to
r+

C
hi

ck
en

S
up

pl
ie

r C
on

tra
ct

<<
E

xe
cu

tio
n

C
P>

>
Fi

na
lP

ay
To

C
hi

ck
en

Su
pp

lie
r

+

D
ow

nP
ay

To
D

is
tri

bu
to

r
C

om
pl

et
ed

(c
)

(d
)

(a
)

(b
)

(9
.4

)
(4

)

(5
)

(8
.1

)

(2
)

(3
)

D
ow

nP
ay

To
D

is
tri

bu
to

r
C

om
pl

et
ed

Ex
ec

ut
io

n
Ph

as
e

Ex
ec

ut
io

n
Ph

as
e

Ex
ec

ut
io

n
Ph

as
e

C
on

tra
ct

 N
eg

ot
ia

tio
n

Ph
as

e

C
on

tra
ct

 N
eg

ot
ia

tio
n

Ph
as

e

C
on

tra
ct

 N
eg

ot
ia

tio
n

Ph
as

e

Fig. 12 Final BPNM diagram for Fried Chicken Case

References

1. Bergholtz M., Jayaweera P., Johannesson P., Wohed P., “Reconciling Physical,
Communicative and Social/institutional Domains in Agent Oriented Information Systems
– a Unified Framework”, in Proc. of AOIS’03, held in conjunction with the 22nd, Int.
Conference on Conceptual Modeling (ER’2003),Chicago, Illinois, USA

2. Business Process Execution Language for Web Services, OASIS WS-BPEL Technical
Committee, Valid on 20040419, http://www.ebpml.org/bpel4ws.htm

3. Business Process Management Initiative (BPMI), Valid on 20040419,
http://www.bpmi.org/

4. Business Process Modeling Notation (BPMN), http://www.bpmn.org/, Valid on 20040419
5. Chrzastowski-Wachtel P., Benatallah B., Hamadi R., O’Dell M., and Susanto A., “A Top-

Down Petri Net-Based Approach for Dynamic Workflow Modeling”, in Proc. of Business
Process Management Int. Conf., van der Aalst W., ter Hofstede A. and Weske M. (Eds.),
LNCS 2678, pp.336-353, Springer, 2003

6. Dietz J., “Deriving Use Cases from Business Process Models”, in Proc. of 22nd Int.
Conference on Conceptual Modeling (ER’2003),Chicago, Illinois, USA. LNCS 2813, pp.
131-143, 2003

7. Gordijn J., Akkermans J. M. and Vliet J. C., “Business Modeling, is not Process
Modeling”, Proc. of the 1st Int. Workshop on Conceptual Modeling Approaches for e-
Business (eCOMO’2000), at 19th Int. Conference on Conceptual Modeling (ER’2000), Salt
Lake City, Utah, USA

8. Haugen B., Fletcher T., “Multi-Party Electronic Business Transactions”, Valid on
20040419, http://www.ebpml.org/archive1.htm

9. Jayaweera P., “A Unified Framework for e-Commerce Systems Development: Business
Process Patterns Perspective”, PhD thesis, ISBN 91-7265-938-6, Valid on 20040924,
http://www.dsv.su.se/~prasad/Publications/Thesis.pdf

10. Jayaweera P., Johannesson P., Wohed P., “Collaborative Process Patterns for e-Business”,
ACM SIGGROUP Bulletin 2001/Vol 22, No. 2

11. Larman C., “Applying UML and patterns: an introduction to object oriented analysis and
design”, ISBN 0-13-74880-7

12. Malone et al.: “Towards a handbook of organizational processes”, MIT eBusiness Process
Handbook, Valid on 20040419, http://ccs.mit.edu/21c/mgtsci/index.htm

13. McCarthy W. E., “REA Enterprise Ontology”, Valid on 20040419,
http://www.msu.edu/user/mccarth4/rea-ontology/

14. Moore S. A., “A foundation for flexible automated electronic communication”,
Information Systems Research, 12:1 (March 2001)

15. Open-EDI phases with REA, UN-Centre for Trade Facilitation and Electronic Business,
Valid on 20040419, http://www.unece.org/cefact/docum/download/02bp_rea.doc

16. The workflow patterns, Valid on 20040419, http://tmitwww.tm.tue.nl/research/patterns/
17. UN/CEFACT Modeling Methodology (UMM-N090 Revision 10), Valid on 20040419,

http://webster.disa.org/cefact-groups/tmg/doc_bpwg.html
18. van der Aalst W.M.P., ter Hofstede A.H.M., Kiepuszewski B., and Barros A.P.,

“Workflow Patterns”, Distributed and Parallel Databases, 14(3), pages 5-51, July 2003
19. van Dijk A., “Contracting Workflow and Protocol Patterns”, in Proc. of Business Process

Management Int. Conf., van der Aalst W., ter Hofstede A. and Weske M. (Eds.), LNCS
2678, pp.152-167, Springer, 2003

http://www.ebpml.org/bpel4ws.htm
http://www.bpmi.org/
http://www.bpmn.org/
http://www.ebpml.org/archive1.htm
http://www.dsv.su.se/~prasad/Publications/Thesis.pdf
http://ccs.mit.edu/21c/mgtsci/index.htm
http://www.msu.edu/user/mccarth4/rea-ontology/
http://www.unece.org/cefact/docum/download/02bp_rea.doc
http://tmitwww.tm.tue.nl/research/patterns/
http://webster.disa.org/cefact-groups/tmg/doc_bpwg.html

