Analysis of Web Services Composition
Languages: The Case of BPEL4WS

Petia Wohed'* Wil M.P. van der Aalst? Marlon Dumas?
Arthur H.M. ter Hofstede?

! Department of Computer and Systems Sciences
Stockholm University/The Royal Institute of Technology, Sweden
petia@dsv.su.se
2 Department of Technology Management
Eindhoven University of Technology, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl
3 Centre for Information Technology Innovation
Queensland University of Technology, Australia
{m.dumas, a.terhofstede}@qut.edu.au

Abstract. Web services composition is an emerging paradigm for appli-
cation integration within and across organizational boundaries. A land-
scape of languages and techniques for web services composition has
emerged and is continuously being enriched with new proposals from
different vendors and coalitions. However, little effort has been dedi-
cated to systematically evaluate the capabilities and limitations of these
languages and techniques. The work reported in this paper is a step in
this direction. It presents an in-depth analysis of the Business Process
Execution Language for Web Services (BPEL4WS) with respect to a
framework composed of workflow and communication patterns.
Keywords: web services composition, business process modeling, inter-
organizational workflow, BPEL4WS

1 Introduction

Web Services is a rapidly emerging paradigm for architecting and imple-
menting business collaborations within and across organizational bound-
aries. In this paradigm, the functionalities provided by business appli-
cations are encapsulated within web services: software components de-
scribed at a semantical level, which can be invoked by application pro-
grams or by other services through a stack of Internet standards including
HTTP, XML, SOAP, WSDL, and UDDI [6]. Once deployed, web services
provided by various organizations can be inter-connected in order to im-
plement business collaborations, leading to composite web services.
Business collaborations require long-running interactions driven by
explicit process models [1]. Accordingly, it is a natural choice to cap-
ture the logic of a composite web service using business process modeling

* Research conducted while at the Queensland University of Technology.

languages tailored for web services. Many such languages have recently
emerged, including WSCI [20], BPML [5], BPEL4WS [7], BPSS [19], and
XPDL [22], with little effort being dedicated to their evaluation with re-
spect to common benchmarks. The comparative evaluation of these lan-
guages would contribute to ongoing standardization and development ef-
forts, by identifying their relative strengths and weaknesses, delimiting
their capabilities and limitations, and detecting ambiguities.

As a step in this direction, this paper analyses one of these emerging
languages, namely BPEL4AWS. An evaluation of BPML can be found
in [2] and is briefly summarized in Section 4. Similar evaluations of other
languages for web services composition will be conducted in the future.

Approach The reported analysis is based on a framework composed of
patterns: abstracted forms of recurring situations encountered at various
stages of software development [12]. Specifically, the framework brings
together a set of workflow patterns documented in [4], and a set of com-
munication patterns documented in [16].

The workflow patterns (WPs) have been compiled from an analysis
of workflow languages. They capture typical control flow dependencies
encountered in workflow modeling. More than 12 commercial Workflow
Management Systems (WFMS) as well as the UML Activity Diagrams no-
tation, have been evaluated in terms of their support for these patterns [4,
9]. Since the functionalities abstracted by the WPs are also required for
capturing interactions between web services, these patterns are arguably
suitable for analysing languages for web services composition.

The Communication Patterns (CPs) on the other hand, are related
to the way in which system modules interact in the context of Enter-
prise Application Integration (EAI). Given the strong overlap between
EAT and web services composition, both requiring the representation of
communication flows between distributed processes, the communication
patterns defined for EAI provide an arguably suitable framework for the
analysis of web services composition languages.

The evaluation framework therefore focuses on the control-flow and
the communication perspectives. In particular, it excludes the data ma-
nipulation and the resource allocation perspectives (e.g. partner selec-
tion). The argument is that data manipulation and resource allocation
can be treated separately from control-flow and communication, and that
a separate framework could be designed for evaluating languages with
respect to these other perspectives. Although data manipulation (e.g.
counters and boolean variables used as flags) can be used for captur-

ing control-flow aspects, this is undesirable, not only because it breaks
the principle of separation of concerns, but more importantly, because
it hinders the applicability of verification and analysis techniques to the
resulting process models [13].

Overview of BPEL4WS BPEL4WS builds on IBM’s WSFL (Web Ser-
vices Flow Language) and Microsoft’s XLANG (Web Services for Busi-
ness Process Design). Accordingly, it combines the features of a block
structured process language (XLANG) with those of a graph-based pro-
cess language (WSFL). BPEL4AWS is intended for modeling two types
of processes: executable and abstract processes. An abstract process is
a business protocol specifying the message exchange behavior between
different parties without revealing the internal behavior of any of them.
An ezecutable process specifies the execution order between a number of
constituent activities, the partners involved, the messages exchanged be-
tween these partners, and the fault and ezception handling mechanisms.

A BPEL4WS process specification is a kind of flow-chart. Each ele-
ment in the process is called an activity. An activity is either primitive or
structured. The primitive activity types are: invoke (to invoke an opera-
tion of a web service described in WSDL); receive (to wait for a message
from an external source); reply (to reply to an external source); wait (to
remain idle for some time); assign (to copy data from one data container
to another); throw (to indicate errors in the execution); terminate (to ter-
minate the entire service instance); and empty (to do nothing).

To enable the representation of complex structures the following struc-
tured activities are provided: sequence, for defining an execution order;
switch, for conditional routing; while, for looping; pick, for race conditions
based on timing or external triggers; flow, for parallel routing; and scope,
for grouping activities to be treated by the same fault-handler. Struc-
tured activities can be nested. Given a set of activities contained within
the same flow, the execution order can further be controlled through (con-
trol) links, which allow the definition of dependencies between two activi-
ties: the target activity may only start when the source activity has ended.
Activities can be connected through links to form directed acyclic graphs.

Related work BPEL4WS was released as part of a trio of proposals,
together with WS-Coordination (WS-C) and WS-Transaction (WS-T).
However, WS-C and WS-T deal with issues orthogonal to control-flow
and communication and hence fall outside the scope of this paper. WS-C
and WS-T are concerned with the coordination of distributed processes,

in particular for the purpose of performing ACID and long-running trans-
actions. A comparison of WS-C and WS-T with a competing proposal,
namely the Business Transaction Protocol (BTP), is reported in [8].

Existing frameworks for comparing process modeling languages [11,
18,17] are coarse-grained and syntactical in nature, answering questions
such as: “does a language offer more operators than another and which
ones?”, or “does it integrate a given ontological construct?”. This con-
trasts with the functional nature of the workflow patterns approach which
addresses questions such as: “does a language provide a given functional-
ity and how?”. As a result, the above frameworks are more appropriate
for IS/IT-managers requiring a high-level view of business processes [18].
They are therefore complementary to the analysis presented here.

2 The Workflow Patterns in BPEL4WS

Web services composition and workflow management are related in the
sense that both are concerned with executable processes. Therefore, much
of the functionality in workflow management systems [3, 10, 15] is also rel-
evant for web services composition languages like BPEL4AWS, XLANG,
and WSFL. In this section, we consider the 20 workflow patterns pre-
sented in [4], and we discuss how and to what extent these patterns can
be captured in BPELAWS. Most of the solutions are presented in a sim-
plified BPEL4WS notation, which is rich enough for capturing the key
ideas of the solutions, while avoiding irrelevant coding details.

WP1 Sequence An activity in a workflow process is enabled after the
completion of another activity in the same process. Example: After the
activity order registration the activity customer notification is executed.

Solution, WP1 This pattern is directly supported by the construct se-
quence.

WP2 Parallel Split A point in the process where a single thread of
control splits into multiple threads which can be executed in parallel,
thus allowing activities to be executed simultaneously or in any order [21].
Example: After activity new cellphone subscription order, the activity
insert new subscription in Home Location Registry application and insert
new subscription in Mobile answer application are executed in parallel.

WP3 Synchronization A point in the process where multiple parallel
branches converge into one single thread of control, thus synchronizing
multiple threads [21]. It is an assumption of this pattern that after an

incoming branch has been completed, it cannot be completed again while
the merge is still waiting for other branches to be completed. Also, it is
assumed that the threads to be synchronized belong to the same global
process instance (i.e., to the same “case” in workflow terminology). Ex-
ample: Activity archive is executed after the completion of both activity
send tickets and activity receive payment. Obviously, the send tickets and
receive payment relate to the same client request.

Solutions, WP2 & WP3 The Parallel Split is realized by defining the
activities to be run in parallel as components of an activity of type flow
(Listing 1, lines 2-5). If no link is defined within a flow, the activities
within it are executed in parallel. Adding an activity after the flow, e.g.
activity B in line 6, yields the solution to the Synchronization pattern.

Alternative solutions using control links are given in Listing 2. Links
L1 and L2 are defined in a flow F which consists of activities Al, A2
and B. The sources of L1 and L2 are Al and A2 respectively (lines 7
and 9) and the target for both links is activity B (lines 12 and 13). In
order to ensure that B is only executed after both A1 and A2, an AND
joinCondition is included (line 11).

Listing 1 Listing 2

1 <sequence> 1 <flow name="F">

2 <flow> 2 <links>

3 activityAl 3 <link name="L1"/>

4 activityA2 4 <link name="L2"/>

5 </flow> 5 </links>

6 activityB 6 activityAl

7 </sequence> 7 <source linkName="L1"/>...
s activityA2
9 <source linkName="L2"/>...
10 activityB
11 joinCondition="L1 AND L2"
12 <target linkName="L1"/>
13 <target linkName="L2"/>...
14 </flow>

Listings 1 and 2 illustrate the two styles of process modeling sup-
ported by BPEL4WS. Listing 1 shows the “XLANG-style” of modeling
(i.e., routing through structured activities). Listing 2 shows the “WSFL-
style” of modeling (i.e., using links instead of structured activities). It is
also possible to mix both styles by having links crossing the boundaries
of structured activities. An example is given in Listing 3, where the se-

* However, in order to prevent deadlocks, links are not allowed to cross the boundaries
of while loops, serializable scopes, or compensation handlers.

© 0 N O Ot s W N

11
12
13
14
15

quences Sa and Sb are defined to run in parallel. The definition of link
L (lines 3, 7 and 13) implies that activity B2 (which follows B1) can be
executed only after activity Al has completed. In other words, link L cap-
tures an intermediate synchronization point between the parallel threads
Sa and Sb. This inter-thread synchronization cannot be expressed using
structured activities only (for a proof see [14]), so that the solution of the
pattern that uses links, is more general than the one without. Figure 1
illustrates the example in graphical form.

Listing 3 Figure 1
<flow name="F"> Flow F
<links>
<link name="L"/> Sa \Sb
</links> Al Bl
<sequence name="Sa"> l \\\L\\ l
activityAl =
<source linkName="L"/> A2 B2
activityA2 \/
</sequence>
<sequence name="Sb"> Legend:
aCtJ..VJ..tyBl O] Activity
activityB2
<target linkName="L"/> |< Flow
</sequence> — Sequence
</flow> -» Link

WP4 Exclusive Choice A point in the process where, based on a de-
cision or control data, one of several branches is chosen. Example: The
manager is informed if an order exceeds $600, otherwise not.

WP5 Simple Merge A point in the workflow process where two or
more alternative branches come together without synchronization. It is
an assumption of this pattern that none of the alternative branches is
ever executed in parallel (if it is not the case, then see the patterns Multi-
Merge and Discriminator). Example: After the payment is received or
the credit is granted, the car is delivered to the customer.

Solutions, WP4 & WP5 As in the previous patterns, two solutions
are proposed. The first one relies on the activity switch inherited from
XLANG (Listing 4). Each case specifies the activity to be performed when
a condition is fulfilled. The second solution uses control links (see Listing 5
and Figure 2). The different conditions (C1 and C2 in the example) are
specified as transitionConditions, one for each corresponding link (L1 or
L2). This implies that the activities specified as targets for these links

(A1l and A2 in the example) will be executed only if the corresponding
conditions are fulfilled. An empty activity is the source of links L1 and
L2, implying that conditions C1 and C2 are evaluated as soon as the flow
is initiated. Activity C is the target of links L1s and L2s whose sources
are A1l and A2 respectively, thereby capturing the Simple Merge pattern.

Listing 4 Listing 5
<switch> 1 <flow>
<case condition="C1"> 2 <links>
activityAl 3 <link name="L1"/>
</case> 4 <link name="L2"/>
<case condition="C2"> 5 <link name="L1s"/>
activityA2 6 <link name="L2s"/>
</case> 7 </links>
</switch> g <empty>
activityC 9 <source linkName="L1"
10 transitionCondition="C1"/>
11 <source linkName="L2"
Figure 2 12 transitionCondition="C2"/>
13 </empty>
Flow 14 activityAl
I 15 <target linkName="L1">
Empty 16 <source linkName="L1s'">
L1:CL - ~.12:C2 17 activityA2 .
V' A 18 <target linkName="L2">
Al A2 19 <source linkName="L2s'">
20 activityC
L1s ~OR - 25 21 joinCondition="L1s OR L2s"
C 22 <target linkName="L1s">
v 23 <target linkName="L2s"> ...
24 </flow>

A difference between these two solutions is that in the solution of
Listing 4 only one activity is triggered, the first one for which the spec-
ified condition evaluates to true. Meanwhile, in the solution of Listing 5
multiple branches may be triggered if more than one of the conditions
evaluates to true. To ensure that only one of the branches is triggered,
the conditions have to be disjoint.

WP6 Multi-Choice A point in the process, where, based on a decision
or control data, a number of branches are chosen and executed as parallel
threads. Example: After executing the activity evaluate damage the ac-
tivity contact fire department or the activity contact insurance company
is executed. At least one of these activities is executed. However, it is also
possible that both need to be executed.

WP7 Synchronizing Merge A point in a process where multiple paths
converge into a single one. Some of these paths are executed and some
are not. If only one path is executed, the activity after the merge is trig-
gered as soon as this path completes. If more than one path is executed,
synchronization of all executed paths needs to take place before the next
activity is triggered. It is an assumption of this pattern that a branch that
has already been executed, cannot be executed again while the merge is
still waiting for other branches to complete. Example: After one or both
of the activities contact fire department and contact insurance company
have completed (depending on whether they were executed at all), the
activity submit report needs to be performed (exactly once).

Solutions, WP6 & WPT The solution of WP6 and WP7 are identical to
the WSFL-style solutions of WP4 and WP5 (Listing 5). This follows from
the dead-path elimination principle, according to which the truth value
of an incoming link is propagated to its outgoing link. In the example of
Listing 5, if condition C1 (C2) evaluates to true, activity A1l (A2) receives
a positive value and is therefore executed. On the other hand, if condition
Cl (C2) evaluates to false, activity Al (A2) receives a negative value,
and it is not executed but still propagates the negative value through
its outgoing link L1s (L2s). In particular, both Al and A2 are executed
if the two conditions C1 and C2 evaluate to true. In any case, the OR
joinCondition attached to C, ensures that C is always executed, provided
that one of the activities A1 or A2 is executed.

WP8 Multi-Merge A point in a process where two or more branches
reconverge without synchronization. If more than one incoming branch is
executed, the activity following the merge is started once for each comple-
tion of an incoming branch. Example: Two activities audit application
and process applications running in parallel should both be followed by an
activity close case. Activity close case should be executed twice if both
activities audit application and process applications are executed.

Solution, WP8 BPEL4WS offers no direct support for WP8. Neither
XLANG nor WSFL allow multiple (possibly concurrent) activations of an
activity following a point where multiple paths converge. In the example,
the close case activity cannot be activated once after completion of audit
application, and again after completion of process applications.

WP9 Discriminator A point in the workflow process that waits for one
of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to

complete and ’ignores’ them. Once all incoming branches have been trig-
gered, it resets itself so that it can be triggered again (which is important
otherwise it could not really be used in the context of a loop). Example:
To improve query response time a complex search is sent to two different
databases over the Internet. The first one that comes up with the result
should proceed the flow. The second result is ignored.

Solution, WP9 This pattern is not directly supported in BPEL4WS.
Neither is there a structured activity construct which can be used for
implementing it, nor can links be used for capturing it. The reason for
not being able to use links with an OR joinCondition is that a joinCondition
is only evaluated when the status of all incoming links are determined and
not, as required in this case, when the first positive link is determined.

WP10 Arbitrary Cycles A point where a portion of the process (in-
cluding one or more activities and connectors) needs to be “visited” re-
peatedly without imposing restrictions on the number, location, and nest-
ing of these points.

Solution, WP10 This pattern is not supported in BPEL4WS. The while
activity can only capture structured cycles, i.e. loops with one entry point
and one exit point. The restrictions made in BPEL4WS that links should
not cross the boundaries of a loop, and that links should not create cycles,
entails that there is no support for arbitrary cycles. Note that there exist
non-structured cycles that cannot be unfolded into structured ones [14].

WP11 Implicit Termination A given subprocess is terminated when
there is nothing left to do, i.e. termination does not require an explicit
termination activity.

Solution, WP11 The pattern is directly supported since in BPEL4AWS
there is no need to explicitly specify a termination activity.

WP12 MI without Synchronization Within the context of a single
case multiple instances of an activity may be created, i.e. there is a facility
for spawning off new threads of control, all of them independent of each
other. The instances might be created consecutively, but they will be able
to run in parallel, which distinguishes this pattern from the pattern for
Arbitrary Cycles. Example: When booking a trip, the activity book flight
is executed multiple times if the trip involves multiple flights.

Solution, WP12 Multiple instances of an activity can be created by
using the invoke activity embedded in a while loop (see Listing 6). The
invoked process, i.e., process B, has to have the attribute createlnstance
within its receive activity assigned to “yes” (see Listing 7).

WP13-WP15 MI with Synchronization A point in a workflow where
a number of instances of a given activity are initiated, and these instances
are later synchronized, before proceeding with the rest of the process. In
WP13 the number of instances to be started/synchronized is known at
design time. In WP14 the number is known at some stage during run
time, but before the initiation of the instances has started. In WP15 the
number of instances to be created is not known in advance: new instances
are created on demand, until no more instances are required. Example of
WP15: When booking a trip, the activity book flight is executed multiple
times if the trip involves multiple flights. Once all bookings are made, an
invoice is sent to the client. How many bookings are made is only known
at runtime through interaction with the user.

Solutions, WP13-WP15 If the number of instances to be synchronized
is known at design time (WP13), a solution is to replicate the activity as
many times as it needs to be instantiated, and run the replicas in parallel
by placing them in a flow activity. The solution becomes more complex if
the number of instances to be created and synchronized is only known at
run time (WP14), or not known (WP15) — see Listing 8. In this solution
a pick activity within a while loop is used, enabling repetitive processing
triggered by three different messages: one indicating that a new instance is
required, one indicating the completion of a previously initiated instance,
and one indicating that no more instances need to be created. Depending
on the message received an activity is performed/invoked in each iteration
of the loop. However, this is only a work-around solution since the logic of
these patterns is encoded by means of a loop and a counter: the counter is
incremented when a new instance is created, and decremented each time
that an instance is completed. The loop is exited when the value of the
counter is zero and no more instances need to be created.

WP16 Deferred Choice A point in a process where one among sev-
eral alternative branches is chosen based on information which is not
necessarily available when this point is reached. This differs from the
normal exclusive choice in that the choice is not made immediately when
the point is reached, but instead several alternatives are offered, and the
choice between them is delayed until the occurrence of some event. Ex-
ample: When a contract is finalized, it has to be reviewed and signed
either by the director or by the operations manager. Both the director
and the operations manager would be notified and the first one who is
available will proceed with the review.

Listing 6 Listing 8

1 <processA> 1 moreInstances:=True
2 <while cond="C1"> 21:=0
3 <invoke processB ... > 3 <while morelInstances OR i>0>
4 </invoke> 4 <pick>
5 </while> 5 <onMessage StartNewActivityA>
6 </process> 6 invoke activityA
7 ir=i+l
8 </onMessage>
9 <onMessage ActivityAFinished>
Listing 7 10 i:=1-1
1 <processB> 11 </onMessage>
9 <receive processA ... 12 <onMessage NoMoreInstances>
3 createlnstance="yes"> 13 morelnstances:=False
4 </receive> 14 </onMessage>
5 </process> 15 </pick>

16 </while>

Solution, WP16 This pattern is realized through the pick construct. The
semantics of pick, i.e. awaiting the receipt of one of a number of messages
and continuing the execution according to the received message, captures
the key idea of this pattern, namely a choice is not made immediately
when a certain point (i.e. the pick activity) is reached, but delayed until
receipt of a message.

WP17 Interleaved Parallel Routing A set of activities is executed
in an arbitrary order. Each activity in the set is executed exactly once.
The order between the activities is decided at run-time: it is not until
one activity is completed that the decision on what to do next is taken.
In any case, no two activities in the set can be active at the same time.
Example: At the end of each year, a bank executes two activities for each
account: add interest and charge credit card costs. These activities can be
executed in any order. However, since they both update the account, they
cannot be executed at the same time.

Solution, WP17 It is possible to capture this pattern in BPEL4WS us-
ing the concept of serializable scopes (see Listing 9). A serializable scope is
an activity of type scope whose containerAccessSerializable attribute is set
to “yes”, thereby guaranteeing concurrency control on shared containers.
The activities to be interleaved are placed in different containers which
all write to a single shared container (container C in Listing 9). Since
the activities are placed in different containers, they can potentially be
executed in parallel. On the other hand, since the serializable scopes that
contain the activities write to the same container, no two of them will be
“active” simultaneously, but instead, they will be executed one after the

© 00 N O O s W N

11
12
13
14
15
16
17
18

other. Three things are worth pointing out with respect to this solution.
Firstly, the semantics of serializable scopes in BPEL4AWS is not clearly
defined. The BPEL4WS specification only states that this semantics is
“similar to the standard isolation level ‘serializable’ of database transac-
tions”, but it does not specify where the similarity stops (e.g. how does
the underlying transaction model deal with or prevent serialization con-
flicts?). Secondly, it is not possible in this solution to externally influence
(at runtime) the order in which the activities are executed: instead, this
order is fixed by the transaction manager of the underlying BPEL4WS
engine. Finally, since serializable scopes are not allowed to be nested,
this solution is not applicable if one occurrence of the interleaved parallel
routing pattern is embedded within another occurrence.

To overcome these limitations, a work-around solution using deferred
choice (i.e. pick) as proposed in [4] can be applied (see Listing 10). The
drawback of this solution is its complexity, which increases exponentially
with the number of activities to be interleaved.

Listing 9 Listing 10
<flow> 1 <pick>
<scope name=51 2 <onMessage ml>
containerAccessSerializable:="yes"> 3 <sequence>
<sequence> 4 activity Al
write to container C 5 activity A2
activityAl 6 </sequence>
write to container C 7 </onMessage>
</sequence> 8 <onMessage m2>
</scope> 9 <sequence>
<scope name=S2 10 activity A2
containerAccessSerializable:="yes"> 11 activity Al
<sequence> 12 </sequence>
write to container C 13 </onMessage>
activityA2 14 </pick>
write to container C
</sequence>
</scope>
</flow>

WP18 Milestone A given activity E can only be enabled if a certain
milestone has been reached which has not yet expired. A milestone is a
point in the process where a given activity A has finished and a subsequent
activity B has not yet started. Example: After having placed a purchase
order, a customer can withdraw it at any time before the shipping takes
place. To withdraw an order, the customer must complete a withdrawal
request form, and this request must be approved by a customer service

representative. The execution of the activity approve order withdrawal
must therefore follow the activity request withdrawal, and can only be
done if: (i) the activity place order is completed, and (ii) the activity ship
order has not yet started.

Solution, WP18 BPEL4WS does not provide direct support for captur-
ing this pattern. Therefore, a work-around solution using deferred choice,
as proposed in [4], has to be applied.

WP19 Cancel Activity & WP20 Cancel Case A cancel activity
terminates a running instance of an activity, while canceling a case leads
to the removal of an entire workflow instance. Example of WP19: A
customer cancels a request for information. Example of WP20: A cus-
tomer withdraws his/her order.

Solutions, WP19 & WP20 WP20 maps directly to the basic activity
terminate, which is used to abandon all execution within a business process
instance. All currently running activities must be terminated as soon as
possible without any fault handling or compensation behavior. WP19 is
supported through fault and compensation handlers.

3 The Communication Patterns in BPEL4WS

In this section we evaluate BPEL4AWS with respect to the communication
patterns presented in [16]. Since communication is realized by exchanging
messages between different processes, it is explicitly modeled by sending
and receiving messages. Two types of communications are distinguished,
namely synchronous and asynchronous communication.

3.1 Synchronous Communication

CP1 Request/Reply Request/Reply communication is a form of syn-
chronous communication where a sender makes a request to a receiver and
waits for a reply before continuing to process. The reply may influence
further processing on the sender side.

CP2 One-Way A form of synchronous communication where a sender
makes a request to a receiver and waits for a reply that acknowledges the
receipt of the request. Since the receiver only acknowledges the receipt,
the reply is empty and only delays further processing on the sender side.

Solutions, CP1 & CP2 The way in which synchronous communication
is modeled in BPEL4WS is by the invoke activity included in the request-
ing process, process A (see Listing 11) and a couple of receive and reply

activities in the responding process, process B (see Listing 12). Further-
more, two different containers need to be specified in the invoke activity
within process A: one inputContainer, where the outgoing data from the
process is stored (or input data for the communication); and one output-
Container, where the incoming data is stored (or the output data from the
communication). The One-Way pattern differs from Request/Reply only
by B sending its reply (i.e., confirmation) immediately after the message
from A has been received.

Listing 11 Listing 12
<process name="processA"> 1 <process name="processB"> ...
<sequence> 2 <sequence>
3 <receive partner='"processA" ...
<invoke partner="processB" ... 4 container="Request">
inputContainer="Request" 5 </receive>
outputContainer="Response'"> 6 N
</invoke> 7 <reply partner="processA" ...
. 8 container="Response">
</sequence> 9 </reply>
</process> 10 </sequence>

11 </process>

CP3 Synchronous Polling Synchronous Polling is a form of synchronous
communication where a sender dispatches a request to a receiver, but in-
stead of blocking, continues processing. At intervals, the sender checks
to see if a reply has been received. When it detects a reply it processes
it and stops any further polling. Example: During a game session, the
system continuously checks if the customer has terminated the game.

Solution, CP3 This pattern is captured through two parallel flows: one
for the receipt of the expected response, and one for the sequence of the
activities not depending on this response (see Listing 13, lines 4 to 7). The
initiation of the communication is done beforehand through an invoke ac-
tion (line 3). To be able to proceed, the invoke action is specified to send
data and not wait for a reply. This is indicated by omitting the spec-
ification of an outputContainer. The communication for the responding
process is the same as for the previous pattern (Listing 12).

3.2 Asynchronous Communication

CP4 Message Passing Message passing is a form of asynchronous com-
munication where a request is sent from a sender to a receiver. When the
sender has made the request it continues processing. The request is de-
livered to the receiver and is processed. Example: When an order is
received, a log is notified, before the system executes the order.

1

2
3
4
5
6
7
8
9
10

Listing 13
<process name="A"
<sequence>
<invoke partner="processB" ... inputContainer="Request"...> </invoke>
<flow>
<sequence> ... </sequence>
<receive partner="processB" ... container="Result" ...> </receive>
</flow>
access container "Result" ...
</sequence>
</process>

Solution, CP4 The solution for this pattern has already been demon-
strated as part of the solution for CP3, namely an invoke activity with an
inputContainer only (line 3 in Listing 13).

CP5 Publish/Subscribe A form of asynchronous communication where
a request is sent by a process and the receivers are determined by a previ-
ous declaration of interest. Example: An organization offers information
about products to its customers. If the customers are interested in receiv-
ing such information, they have to notify a system, which keeps track of
interested customers. When product information is going to be distributed
to the customers, the organization requests the current list, including the
customers’ addresses.

CP6 Broadcast A form of asynchronous communication in which a
request is sent to all participants, the receivers, of a network. Each par-
ticipant determines whether the request is of interest by examining the
content. Example: Before a system is shut down for maintenance, every
client connected to it is informed about the situation.

Solutions, CP5 & CP6 Publish/Subscribe and Broadcast are not di-
rectly supported in BPEL4WS.

4 Conclusion

A comparison of BPEL4AWS with XLANG, WSFL, BPML and WSCI is
given in Table 4. The ratings for BPML and WSCI in the table are taken
from [2]. The ratings for BPEL4WS, XLANG and WSFL are based on
the discussions in this paper. A '+’ in a cell of the table refers to direct
support (i.e. there is a construct in the language which directly supports
the pattern). A = indicates that there is no direct support. This does
not mean though that it is not possible to realize the pattern through
some work-around solution. In fact, any of the patterns can be realized

using a standard programming language but this is irrelevant.® Sometimes
there is a feature that only partially supports a pattern, e.g. a construct
that directly supports the pattern but imposes some restrictions on the
structure of the process. In such cases, the support is rated as '+/-".

pattern product/standard

BPEL |[XLANG WSFL | BPML | WSCI

Sequence

Parallel Split
Synchronization
Exclusive Choice
Simple Merge

Multi Choice
Synchronizing Merge
Multi-Merge +
Discriminator - - - -
Arbitrary Cycles - - -
Implicit Termination

MI without Synchronization

MI with a Priori Design Time Knowledge
MI with a Priori Runtime Knowledge

MI without a Priori Runtime Knowledge - - - -
Deferred Choice
Interleaved Parallel Routing +/-
Milestone -
Cancel Activity
Cancel Case

B R
L+
L+ 4+t
L+

I+ + +
I+ +
L+ 4+
I+ + + -
[e \i‘\ I+ + + + +

+
+
|
+

Request/Reply
One-Way
Synchronous Polling
Message Passing
Publish/Subscribe
Broadcast

L+ |+
L+ |+
o+ |+ +
L+ |+
L+ |+

Table 1. Comparison of BPEL4AWS, XLANG, WSFL, BPML and WSCI using both
workflow and communication patterns.

The following observations can be made from the table:

® In 1936 Alan Turing defined the “Turing machine”: A model of a computer consisting
of a tape, state register, and action table. BPEL4AWS, XLANG, WSFL, and BPML
are Turing complete assuming perfect technology, e.g. unlimited storage. They can be
used to emulate a Turing machine, and therefore, do any calculation. Unfortunately,
this observation is not relevant in the context at hand: Any programming language
is Turing-complete, but this does not imply suitability for web services composition.
Hence, we consider “direct support” rather than Turing-completeness.

— As the first five patterns correspond to the basic routing constructs,
they are directly supported by all languages.

— BPEL4WS as a language integrating the features of the block struc-
tured language XLANG and the directed graphs of WSFL, indeed
supports the union of patterns supported by XLANG and WSFL.

— BPEL4WS, in contrast to BPML, does offer direct support for the
Multi Choice and Synchronizing Merge. This is a consequence of the
“dead-path elimination” characteristic inherited from WSFL.

— BPEL4WS does not support the Multi-Merge pattern, while BPML
directly supports it with some restrictions. This is due to the fact that
BPML, unlike BPEL4WS, supports invocation of sub-processes.

— Most of these languages support the Deferred Choice. This distin-
guishes them from many mainstream workflow languages.

— BPEL4WS, through the concept of serializable scopes, is the only one
of the above languages to support the Interleaved Parallel Routing
pattern, although with some restrictions.

— None of the compared languages supports arbitrary cycles.

BPEL4WS is an expressive language when compared to other languages
for business process modeling, in particular those supported by workflow
management systems which in general provide direct support for less than
half of the workflow patterns [4]. On the negative side, BPELAWS is a
complex language in the sense that it offers many overlapping constructs
(i.e. it lacks orthogonality). This is illustrated through the multiplicity of
possible solutions for some of the patterns, i.e. “XLANG-style” solutions,
“WSFL-style” solutions, and solutions combining both these styles. In
addition, the semantics of BPEL4WS is not always clear, especially for
advanced constructs such as serializable scopes. A simplification of the
language and a formalization in terms of formal process modeling lan-
guages (e.g. m—calculus or Petri nets) are therefore desirable.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72-76, January/February 2003.

2. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-
Based Analysis of BPML (and WSCI). Technical Report FIT-TR-2002-05, Faculty
of IT, Queensland University of Technology, Brisbane, Australia, 2002. www.citi.
qut.edu.au/pubs/technical/pattern_based_analysis_BPML.pdf.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT press, Cambridge, Massachusetts, 2002.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Technical Report FIT-TR-2002-02, Faculty of IT, Queens-
land University of Technology, Brisbane, Australia, 2002. http://www.citi.qut.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

edu.au/pubs/technical/workflow_patterns.pdf. To appear in Distributed and
Parallel Databases 14:5-51, 2003.

BPML.org. Business Process Modeling Language. Accessed November 2002 from
www.bpmi.org/, 2002.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2):86-93, March 2002.

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services. http://
dev2dev.bea.com/techtrack/BPEL4WS. jsp.

S. Dalal, S. Temel, M. Little, M. Potts, and J. Webber. Coordinating Busi-
ness Transactions on the Web. IEEE Internet Computing, 7(1):30-39, Jan-
uary/February 2003.

M. Dumas and A.H.M. ter Hofstede. UML Activity Diagrams as a Workflow
Specification Language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int.
Conference on the Unified Modeling Language (UML01), volume 2185 of LNCS,
pages 76-90, Toronto, Canada, October 2001. Springer Verlag.

L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

P. Green and M. Rosemann. An Ontological Analysis of Integrated Process Mod-
elling. In Proc. of the 11th International Conference on Advanced Information
Systems Engineering (CAiSE), pages 225-240, Heidelberg, Germany, June 1999.
Springer Verlag.

Hillside.net. Patterns Home Page. http://hillside.net/patterns, 2000-2002.
B. Kiepuszewski. Ezpressiveness and Suitability of Languages for Con-
trol Flow Modelling in Workflows (submitted). PhD thesis, Queens-
land University of Technology, Brisbane, Australia, 2002. Available via
http://www.tm.tue.nl/it /research/patterns.

B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Workflow
Modelling. In B. Wangler and L. Bergman, editors, Proc. of the 12th Int. Confer-
ence on Advanced Information Systems Engineering (CAiSE00), volume 1789 of
LNCS, pages 431-445, Stockholm, Sweden, June 2000. Springer Verlag.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.

W.A. Ruh, F.X. Maginnis, and W.J. Brown. Enterprise Application Integration:
A Wiley Tech Brief. John Wiley and Sons, Inc, 2001.

R. Shapiro. A Comparison of XPDL, BPML and BPEL4WS. Accessed February
2003, http://xml.coverpages.org/Shapiro-XPDL.pdf.

E. Séderstrom, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler. To-
wards a framework for comparing process modelling languages. In Proceedings of
the 14th International Conference on Advanced Information Systems Engineering
(CAiSE), volume 2348 of LNCS, Toronto, Canada, May 2002. Springer.
UN/CEFACT and OASIS. ebXML Business Process Specification Schema (Version
1.01). Accessed November 2002 from www.ebxml.org/specs/ebBPSS.pdf, 2001.
W3C. Web Service Choreography Interface (WSCI) 1.0. Accessed November 2002
from www.w3.org/TR/wsci/, 2002.

WIEMC. Terminology and Glossary. Document WEFMC-TC-1011 Issue 3.0, Febru-
ary 1999 http://wuw.wfmc.org.

WIMC. Workflow Process Definition Interface - XML Process Definition Lan-
guage. Accessed November 2002 from www.wfmc.org/standards/docs/TC-1025_
10_beta_xpdl_073002.pdf, 2002.

