
Pattern-based Analysis of BPMN
- an extensive evaluation of the Control-flow,

the Data and the Resource Perspectives?

Petia Wohed1??, Wil M.P. van der Aalst2,3, Marlon Dumas3

Arthur H.M. ter Hofstede3, Nick Russell3

1 The Department of Computer and Systems Sciences, Stockholm University/KTH
Forum 100, 164 40 Kista, Sweden

petia@dsv.su.se
2 Faculty of Information Technology, Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
{m.dumas, a.terhofstede, n.russell}@qut.edu.au

3 Department of Technology Management, Eindhoven University of Technology
GPO Box 513, NL5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. In this paper an evaluation of BPMN is presented, using the Workflow
Patterns as an analysis framework. The analysis provided for BPMN is part of a
larger effort aiming at an unbiased and vendor-independent survey of the expres-
sive power of some mainstream modelling languages for process-aware informa-
tion systems. It is a sequel to an analysis series where languages like BPEL and
UML 2.0 A.D were evaluated. The results from the survey could both be used
for the selection of a modelling technique, as well as for motivation and input to
further development of any of the surveyed languages.
Keywords: BPMN, Workflow Patterns, Evaluation

1 Introduction

The shift from data to process orientation and the focus on process-aware information
systems (PAIS) during the last decade, is closely tied to the development of a new gen-
eration of languages and tools for process description. Existing (mainstream) languages
for IS development have recently been revised, e.g. UML2.0 was released with major
updates on the behavioural part, i.e. UML Activity Diagrams (AD). In parallel, new
languages like BPMN and BPEL4WS have been developed and have rapidly spread.

The common feature of these three languages is their focus on providing a power-
ful and standardized notation for representing the behavioural aspects of an enterprise.
Among the differences it can be mentioned that while UML AD and BPMN are graph-
ical but not-formalised notations, BPEL4WS is an executable language (and therefore,
in principle, also formalized) which lacks a graphical notation.
? This work is funded in part by Interop NoE, IST-508011, and by the Australian Research

Council under the Discovery Grant ”Expressiveness Comparison and Interchange Facilitation
Between Business Process Execution Languages”.

?? Research conducted during a visit at the Queensland University of Technology.

These rough characteristics do not, however, provide any insights into the lan-
guages’ expressive capacity and into how they actually relate to each other. While some
perceive UML2.0 AD and BPMN as potential graphical notations for BPEL4WS and
hence as competitors [9], according to the following quotation,

“Where BPMN has a focus on business processes, the UML has a focus on
software design and therefore the two are not competing notations but are
different views on systems.” [3]

the proponents of BPMN, namely BPMI.org, obviously do not share this opinion. In
order to be able to support or discard such statements, and more importantly in order to
investigate the similarities and differences between the languages, a thorough analysis
and comparison is necessary. This is the focus of the work partially presented here. The
goal is to provide an unbiased survey of the expressive power of the process modelling
languages and notations available today. For achieving this a number of languages have
been analysed through one and the same analysis framework. This paper reports the
results from the analysis of BPMN. This analysis is unbiased and the results differ
from the results of a similar evaluation provided by White [17] (who is one of BPMN’s
developers). It is a sequel of reports in which corresponding evaluations of UML 2.0 AD
and BPEL4WS were presented. It also demonstrates how, based on these evaluations,
the languages can be compared and more precise conclusions about their similarities
and differences can be drawn.

The Workflow Patterns (www.workflowpatterns.com) framework provides
a reference analysis framework. This framework consists of a number of patterns which
provide a taxonomy of generic, recurring concepts and constructs relevant in the con-
text of process-aware information systems (PAIS). In accordance with Jablonski and
Bussler’s original classification [6], this framework spans the control-flow, data, and
resource perspectives and was gradually developed to incorporate 20 Control-flow pat-
terns [2], 40 Data patterns [13], and 43 Resource patterns [11]. Systematically inves-
tigating the possibility of expressing every pattern from the framework in a selected
language, builds up a comprehensive picture of the scope and suitability of this lan-
guage with respect to the three dimensions outlined above.

Our choice of the Workflow Patterns framework as an analysis framework is moti-
vated by several factors. First, it is a well accepted framework which has been widely
used both for the selection of workflow management systems (e.g., by UWV, the orga-
nization executing all regulations with respect to health and unemployment insurance in
the Netherlands, the Dutch Justice Department, ArboNed, etc.) as well as for vendors’
self-evaluations of products (e.g., COSA, FLOWer, Staffware, IBM, etc.)1. Second, this
framework has proven impact in the industry. It has triggered extensions to workflow
management systems (e.g., FLOWer 3.0, Staffware Process Suite, Pectra Technology
Inc’s tool) and inspired their development (e.g., OpenWFE, Zebra, Alphaflow). Third,
this framework is at a sufficiently detailed level of abstraction to provide an instrument
for assessing the capabilities of business process modelling languages. In contrast to the
Bunge, Wand and Weber’s (BWW) ontology [14], which is another framework widely

1 For references on the impact of the Workflow Patterns initiative, please, refer to www.
workflowpatterns.com.

used for evaluation of information systems’ modelling languages, the Workflow Pat-
terns framework was specifically tailored for the purposes of process language analysis.
While BWW would be classified according to [5] as a top-level ontology for informa-
tion systems, the Workflow Patterns framework would be classified as a fine-grained
top-level ontology for process aware information systems. Fourth, as the Workflow Pat-
terns framework spans the Control-flow, the Data and the Resource perspectives, it con-
stitutes the most comprehensive framework currently in existence. The contributions of
this paper are:

– Identification of limitations in BPMN, hence providing input for further develop-
ment of the language.

– Discussions on how to capture the patterns in BPMN which provide elements of
reusable knowledge for process designers that encounter these patterns.

– Outline of the differences from the evaluation provided by White [17] and discus-
sion of the problems identified in White’s evaluation2.

– Identification of ambiguities in the current version of the specification [16].
– Results that can be used for a direct comparison of the expressive capacity of

BPMN with other languages which have undergone a corresponding analysis, e.g.,
UML 2.0 AD, BPEL4WS, etc.

In the remainder of the paper we evaluate each of the three perspectives, starting by the
Control-flow perspective, and followed by the Data and Resource perspectives. Then
we discuss our findings and also compare these with earlier evaluations of UML 2.0
AD and BPEL.

2 Control-flow Patterns in BPMN

This section provides an analysis of BPMN in terms of the Control-flow patterns as
defined in [2]. The main symbols of BPMN are summarized in Figure 1. For a descrip-
tion of BPMN the reader is referred to the specification [16]. All page references in the
remainder of this paper refer to [16].

The Control-flow patterns are divided into five categories: Basic control-flow pat-
terns; Advanced branching and synchronisation patterns; Structural patterns; Multiple
instances patterns; State-based patterns; and Cancellation patterns.

2.1 Basic Control-flow Patterns

The basic Control-flow patterns define elementary aspects of process control. These are:

– CP1: Sequence – the ability to depict a sequence of activities;
– CP2: Parallel split – a split of a single thread of control into multiple threads of

control which can execute concurrently;
– CP3: Synchronisation – a convergence of multiple parallel sub-processes/activities

into a single thread of control thus synchronising multiple threads;
2 As the evaluation provided by White only covers the Control-flow patterns, this discussion is

limited to the Control-flow perspective only.

Task

Events Activities Gateways

Connectivity
Objects

Flow
Objects

Swimlanes

Description
Process/
Sub-process

Start

Intermediate

End

XOR

OR AND

Complex Event-
based

XOR P
oo

l
P

oo
l

La
ne

L
an

e

Artifacts

Sequence
flow

Message
flow

Association

Pool

Lane

Data Object

Group

Text
Annotation

Fig. 1. BPMN, main symbols

– CP4: Exclusive choice – a decision point in a workflow process where one of several
branches is chosen;

– CP5: Simple merge – a point in the workflow process where two or more alternative
branches come together without synchronisation.

These patterns correspond to control-flow constructs defined by the Workflow Man-
agement Coalition [15] and they are supported by basically all process modelling lan-
guages. For the sake of completeness and in order to outline the multiple ways of cap-
turing them, we briefly discuss their solutions in BPMN.

The CP1 Sequence is represented through a Sequence Flow between two Activities.
The CP2 Parallel Split is captured by an AND-split Gateway (see Figure 2a). Further-
more, the parallel split can also be modelled implicitly, by drawing the flows directly
from the action node and omitting the AND-gateway (see Figure 2b). The Expression
Type attribute of b1 and b2 have to be set to None (which is the default setting). A third
solution is to model the parallel Activities as Sub-Activities in a Process/Sub-Process
(see Figure 2c). This solution is inspired by Figure 10 on p. 68 in [16].

The CP3 Synchronisation is captured through an AND-join Gateway (see Fig-
ure 2d). Here too, a solution using Sub-Activities is offered (see Figure 2e which is
inspired by Figure 10 in [16]). However, this solution cannot be used in some complex
situations, for instance, the one depicted in Figure 2f, where only one of the subsequent
tasks requires synchronisation. For a detailed discussion on this topic we refer to [7].

The CP4 Exclusive Choice is captured through the XOR-split Gateway (see fig-
ures 2g and 2h). Optionally, one of the gates may be default. If used, the semantics of
the construct guarantees that no matter what conditions are specified, exactly one out-
going flow will be chosen. Furthermore, the behaviour of the Exclusive Choice pattern
can be achieved through the use of the attributes ConditionType and ConditionExpres-
sion of the Flows with the same source Activity. This is done by setting the value of the
ConditionType attributes to Expression and specifying mutually exclusive expressions
for the ConditionExpression attributes (see Figure 2i). Here too, it is up to the designer
to guarantee the totality of the set of the expressions (i.e., by for instance the use of the
default flow).

The CP5 Simple Merge pattern is expressed by using the XOR-join Gateway (see
figures 2j and 2k). Furthermore, supported by the statements “If the Sub-Process/Task
has multiple incoming Sequence Flow” and “... when a Token arrives from one of the

P
ar

al
le

l S
p

lit

b1
A

B1

B2

A

B1

B2

B

A

B1

B2

a) with AND-gateway b) Implicit c) through sub-Activities

b2

B

d) with AND-gatewayS
yn

ch
ro

n
is

at
io

n

C

B1

B2

C

B1

B2

e) through sub-Activities

A

B

C A

B

C

cond 1

cond 2

Ddefault

A

B

C

cond 1

cond 2

default D D

cond 1

cond 2

default

g) with XOR-gateway, alt 1 h) with XOR-gateway, alt 2 i) without XOR-gateway

CB1

B2 D

f) in a context

E

B

C

D

E

B

C

D

E

B

C

DM
er

g
e

j) with XOR-gateway, alt 1 k) with XOR-gateway, alt 2 l) Implicit

E
xc

lu
si

ve
 C

h
o

ic
e

Fig. 2. Basic Control-flow patterns in BPMN

Paths, the Sub-Process/Task will be initiated. [..] If another Token arrives from the same
path or another path, then a separate instance of the Sub-Process/Task will be created”
(p. 73 and p. 81) the construct in Figure 2l also provides a solution for the Simple Merge
pattern.

Note that, according to p. 86 in [16] the behaviour of the models in Figure 2j and
Figure 2l “are the same [only] if all the incoming flow are alternative”. Any further
explanation of the restriction on alternative flows is, however, not provided.

2.2 Advanced Branching and Synchronisation Patterns

This class of patterns corresponds to advanced branching and synchronisation scenarios
relatively common in real-life business processes. There are four of these patterns:

– CP6: Multiple Choice – the ability to represent a divergence of the thread of control
into several parallel branches on a selective basis;

– CP7: Synchronising merge– the ability to depict the synchronised convergence of
two or more alternative branches;

– CP8: Multiple Merge – the ability to represent the unsynchronised convergence
of two or more distinct branches. If more than one branch is active, the activity
following the merge is started for every activation of every incoming branch;

A

B

C

cond 1

cond 2

Ddefault

A

B

C

D

cond 1

cond 2

default

a) with OR-gateway b) without a gateway c) with Complex gateway

A

B

C

D

flow 1

flow 2

flow 3

Fig. 3. Multiple Choice in BPMN

– CP9: Discriminator– the ability to depict the convergence of two or more branches
such that the first activation of an incoming branch results in the subsequent activity
being triggered and subsequent activations of remaining incoming branches are
ignored. The discriminator is a special case of the N-out-of-M Join where N=1.

In the CP6 Multiple Choice pattern, in contrast to the Exclusive Choice pattern, zero,
one or multiple outgoing branches may be chosen. In BPMN there are three ways for
capturing this pattern: i) With an OR-split Gateway (see Figure 3a). “It is up to the
modeller to insure that at least one of the conditions will be TRUE” (p. 95), which
for instance can be achieved through the use of the default flow; ii) without any Gate-
way construct (see Figure 3b). The difference from the solution in Figure 2i is that the
Condition Expressions for the different flows are not exclusive; and iii) with a Com-
plex Gateway (see Figure 3c) where an expression specifies which set of flows will be
executed in different situations.

The CP7 Synchronising Merge pattern is captured partially through the OR-join
Gateway. The solution proposed by White in [17, 16] and redrawn in Figure 4a assumes
a structured workflow context. If the pattern appears in an unstructured workflow, for
instance the one depicted in Figure 4b3, the OR-join Gateway will not capture the de-
sired behaviour. Consider for instance the following scenario. After the completion of
activity A, both activity B and activity C are initiated. After completion of B, activity
E is selected and triggered. According to the semantics of the Synchronising Merge
pattern, after the completion of C, activity D should be enabled. This is because the
workflow will no longer be able to reach a state where the branch incoming to the merge
from activity F will be completed. However, according to the semantics of the OR-join

3 The scenario in this figure is taken from [4].

D

B

C

A

B

C

E

F

D
A

a) structured workflow b) Unstructured workflow

Fig. 4. Synchronising Merge in BPMN

D

B

C

A

Parallel Split
Uncontrolled Flow

Discriminator
Merging
Gateway

a) copy of Figure 76 from the BPMN specification b) copy of Figure 78 from the BPMN specification

D

B1

B3

A

Parallel Split
Uncontrolled Flow

N out of M Join
Complex
Gateway

B2

Fig. 5. Solutions proposed in the BPMN specification for the Discriminator pattern

Gateway, activity D will not be enabled because the OR-join gateway “will wait for
[synchronising] all Tokens that have been produced upstream”(p. 95). The flow will
deadlock because the token in E (produced upstream) is not merging into the OR-join
Gateway expecting it. For a more complete treatment of OR-joins see [20, 8].

The CP8 Multiple Merge pattern is expressed in the same way as the CP5 Simple
Merge pattern (see figures 2j, 2k and 2l).

The CP9 Discriminator pattern is a special case of the N-out-of-M Join pattern,
where N=1. N-out-of-M Join depicts the ability of synchronising a flow after N parallel
threads (out of M initiated threads) have completed. The solutions proposed by White
for the Discriminator and the N-out-of-M Join patterns are reprinted in figures 5a and
5b (cf. figures 76 and 78 in [16]), respectively. Note that both these solutions: (i) de-
limit the context in which the pattern is used by defining a parallel split preceding the
tasks involved in the join; and (ii) they rely fully on textual annotations, i.e., not a sin-
gle gateway or a split is left without a clarifying annotation. Furthermore, the textual
description explaining the Discriminator in figure 76, contradicts the definition of the
XOR-Gateway. E.g., the claim “In this situation [referring to Figure 76], the Gateway
will accept the first Token and immediately pass it on through to the activity [D]. When
the second Token arrives, it will be excluded from the remainder of the flow. This means
that the Token will not be passed on to the activity [D], but will be consumed.” (p. 133)
contradicts the statement “If there are multiple incoming Sequence Flow, all of them
will be used to continue the flow of the Process [..]. That is, Process flow SHALL con-
tinue when a signal (a Token) arrives from any of a set of Sequence Flow.” (p. 89) in
the definition of the XOR-Gateway. Because of this inconsistence, we discard the so-
lution for the Discriminator (Figure 5a) proposed in [16] and suggest instead the use
of the Complex-join Gateway for capturing this behaviour (see Figure 6a). The Incom-
ingCondition attribute must be an expression of the type “flow1 OR flow2 OR flow3”,
which evaluates to TRUE as fast as a token from one of the incoming flows is received.
If this expression is set to “(flow1 AND flow2) OR (flow1 AND flow3) OR (flow2 AND
flow3)”, the construct provides a solution for the 2-out-of-3 Join. This solution is fur-
ther generalizable to any N-out-of-M Join, but as the numbers N and M get higher the
complexity of the IncomingCondition expression increases. Note also that this attribute
is not shown graphically. A text annotation akin this in Figure 5b, is the only way of
“graphically” representing it.

Furthermore, in order to demonstrate the various ways for capturing this pattern in
BPMN, two more solutions are proposed in figures 6b and 6c. The solution in Figure 6b
utilises the notion of the XOR-join Gateway followed by an empty activity E with

B1

BM

D

...

B D

b) N-out-of-M Join c) Discriminator for a MI task

D

B1

B3
flow1 OR
flow2 OR
flow3

B2

flow 1

flow 2

flow 3

a) Discriminator

ActivityType: Task
LoopType: MI
MI_Condition: M
MI_Ordering: Parallel
MI_FlowCondition: One

StartQuantity=N

N completed

N completed

E

Fig. 6. Alternative Solutions for the Discriminator pattern

a StartQuantity attribute set to N , which is used to delay the execution of E until N
number of tokens from B1,...,BM are received4. In order to deal with the remaining
of the activities, the completions of which are not longer relevant (so that the solution
is general and works also for instance in the context of loops), this construct is placed
in a sub-process, which is cancelled immediately after the execution of E. We assume
that, even if there are two different outgoing flows, the process will allays continue
through the flow outgoing from the Error Event “catching” the N completed signal.
Furthermore, this solution assumes that an Error Event signal can be “thrown” from the
same sub-process which “catches” it.

The solution proposed in Figure 6c captures the Discriminator pattern in the con-
text of a multiple instances task. Task A has the following attribute settings: LoopType
= MultiInstance, MI Condition = M (defining the number of instances of A to be cre-
ated at run-time), MI Ordering = Parallel (defining parallel execution of the created
instances), MI FlowCondition = One. The setting of the last attribute implies that a
“Token SHALL continue past the activity [A] after only one of the activity instances
has completed” (p.65). The solution also works in the context of a loop, but is not gen-
eralisable to the N-out-of-M join pattern, as One is the only numerical value that can be
chosen for this attribute. Note the (non-trivial) attribute setting in this solution.

2.3 Structural Patterns

Structural patterns identify whether the modelling formalism has any restrictions in
regard to the way in which processes can be structured (particularly in terms of whether
loops are supported or whether a single terminating node is necessary). There are two
of these patterns:

– CP10: Arbitrary cycles – the support for multiple ways of entering end exiting the
areas with repetitive activities;

– CP11: Implicit termination – the ability to depict the notion that a given sub-process
should be terminated when there are no remaining activities to be completed.

BPMN provides direct support for the CP10 Arbitrary Cycles (also pointed out by
White [17]). Furthermore, BPMN also provides direct support for the CP11 Implicit

4 An alternative could be to use the attribute Quantity of the flow outgoing from the XOR-join
Gateway. However, the semantics of this attribute is not entirely clear.

Termination pattern which is captured by ending every thread within a Process with
an End Event. An End Event completes either a thread of control, or if it consumes the
last token generated by the Start Event of a process it completes the whole process.

2.4 Multiple Instances Patterns

The Multiple instances (MI) patterns refer to situations where there can be more than
one instance of a task active at the same time in the same case.

– CP12: MI without Synchronisation – the ability for one case to initiate multiple
instances of an activity;

– CP13: MI with a Priori Design Time Knowledge– the ability for one case to initiate
multiple instances of an activity and when completed to synchronise them. The
number of instances is known at design time;

– CP14: MI with a Priori Runtime Knowledge– As the previous pattern, but the num-
ber of instances to be created is first known at runtime before the instances must be
created;

– CP15: MI without a Priori Runtime Knowledge– As the previous pattern with the
extension that the number of instances to be created is not known a priori and new
instances can be created even while other instances are executing or have already
completed.

A solution for the CP12 MI without Synchronisation is provided in Figure 7a. M
number of instances of Task B will be “spawned-off” during execution. These instances
will execute in parallel. The setting None for the MI Flow Condition attribute, implies
that the initiated instances will not be synchronised but after completion every instance
of B will produce a Token which will continue downstream though the flow and trigger
an execution of the subsequent task C.

A setting All for the MI Flow Condition attribute (see Figure 7b) implies synchro-
nisation of the created instances and provides a solution for the CP13 MI with a Priori
Design Time Knowledge pattern. This solution is also applicable for the CP14 MI
with a Priori Runtime Knowledge pattern, with the difference that MI Condition is a
variable the assignment of which is made during run-time.

The solution proposed by White in [17] utilizes the notion of MI Activities that are
executed in Sequence. This means that evaluation of whether a new instance will be
spawned-off is done every time an existing instance is completed. This lack of support

B C

ActivityType: Task
LoopType: MI
MI_Condition: M
MI_Ordering: Parallel
MI_FlowCondition: None

A B C

ActivityType: Task
LoopType: MI
MI_Condition: M
MI_Ordering: Parallel
MI_FlowCondition: All

A

a) without Synchronisation b) with a Priory Design/Runtime Knowledge

Fig. 7. Multiple Instances in BPMN

A

B

C

EC Determines if
more copies of B
are needed

No more copies
of B needed

More copies of B needed

More copies
of B needed

All started copies
of B completed

b) incomplete solution

A

B

C

EC updates
nr_of_inst &
no_more_inst

StartQuantity=
nr_of_inst + 1

no_more_inst

no_more_inst = FALSE

a) workaround solution

Fig. 8. MI without a Priori Runtime Knowledge

for parallel execution of the multiple instances is considered as too strong a deviation
from the semantics of the pattern.

The CP15 MI without a Priori Runtime Knowledge pattern is not directly sup-
ported in BPMN. In Figure 8a a workaround solution is proposed. In this solution B is
the Activity for which multiple instances will be created. The number of instances to be
created is controlled through the activity C which is executing in a parallel flow to this
of B. In C the value of the variable no more inst can be changed. If FALSE the flow
loops back so that a new instance of B will be created. If TRUE, i.e., when no more
instances of B are needed, the flow continues to a merging point (i.e. the XOR-join
Gateway in the model). Furthermore, an additional variable nr of inst is introduced for
keeping track of the number of created instances of B. This number is later on neces-
sary for knowing how many instances there will be to synchronise. As the semantics of
the XOR-join Gateway is that “Process Flow SHALL continue when a signal (a Token)
arrives from any of a set of Sequence Flow.” (p. 89), the XOR-join Gateway will merge,
but not synchronise the completed instances. In order to synchronise them the attribute
StartQuantity of Activity E needs to be set to nr of inst + 1, so that E will be triggered
first when all created instances of B have completed (nr of inst plus one, because of
the merging token from activity C).

The solution for this pattern proposed by White in [17] and reprinted in Figure 8b
will deadlock in the situation when all necessary copies/instances of B are started and
they are running in parallel. The moment the first copy/instance completes the XOR-
join following B will deadlock because both Condition Expressions for its outgoing
branches will evaluate to FALSE. Another question this solution raises is how the con-
dition All started copies of B completed will be evaluated.

2.5 State-based patterns

This class of patterns characterises scenarios in a process where subsequent execution
is determined by the state of the process instance. There are three such patterns:

– CP16: Deferred Choice – the ability to depict a divergence point in a process where
one of several possible branches should be activated. The actual decision on which
branch is activated is made by the environment and is deferred to the latest possible
moment;

– CP17: Interleaved Parallel Routing – the ability to depict a set of activities that can
be executed in arbitrary order;

A

C

B

A

c (type
receive)

b (type
receive)

a) with Event-Based Exclusive Gateway b) with Receive actities

A

C

B

c) incorrect solutions

b

c

b

c

Fig. 9. Deferred Choice in BPMN

– CP18: Milestone – the ability to depict that a specified activity cannot be com-
menced until some nominated state is reached.

As the notion of Event is separated from the notion of Activity, the CP16 Deferred
Choice pattern is easily captured in BPMN. Three different solutions are presented
in [16]. The first one (see Figure 9a based on Figure 25 on p. 91 in [16]) utilizes the
construct of Event-Based Exclusive Gateway with Intermediate Events with the Trig-
ger attribute set to Message. “.. the basic idea is that this Decision [referring to the
Event-Based Exclusive Gateway] represents a branching point in the process where the
alternatives are based on events that occur at that point in the Process, rather than the
evaluation of expressions using process data.” (p. 90). The second solution (see Fig-
ure 9b which is based on Figure 24 on p. 90 in [16]) is similar to the first one, but
instead of Message Events, Receive Tasks (i.e. Tasks with the Task Type attributes set
to Receive) are used. Finally, the third solution utilizes the notion of XOR-Gateway
in combination with Message Events (see Figure 9c, which is based on Figure 72 on
p.131 in [16]). However, this solution is in conflict with the fact that every Sequence
Flow outgoing from an XOR-split Gateway “MUST have its Condition attribute set to
Expression and MUST have a valid Condition Expression.” (p. 88).

For capturing the CP17 Interleaved Parallel Routing pattern White proposes the
construct of an Ad Hoc Process consisting of a number of Sub-Processes [17] (see
Figure 10a). The attribute AdHocOrdering has to be set to Sequential. Also an Ad-
HocCompletionCondition expression (p. 70), specifying that the Process will complete
when all its Sub-Processes have completed, has to be defined (these two attributes do
not have any graphical representation).

This solution works as long as the activities to be interleaved are simple tasks (in the
example these are the tasks A and C). If, instead, sequences of activities need to be inter-
leaved, e.g. the sequence of activities A.B needs to be interleaved with the sequence of

a) b) c)

~

A

C

~

A

C

B

D

~

A

C

B

D

d)

~

A

C

B

D

Fig. 10. Solutions for Interleaved Parallel Routing

the activities C.D (which will allow any of the following execution sequences: A.B.C.D,
A.C.B.D, A.C.D.B, C.D.A.B, C.A.B.D, and C.A.D.B), the semantics of the AdHoc Pro-
cesses is not clear. If the solution in Figure 10b is used, the execution sequences will
probably be delimited into the following two orderings A.B.C.D and C.D.A.B. To avoid
this limitation, Intermediate Events of type Message can be included (see Figure 10c).
These Events will simulate States between the Activities and allow an execution se-
quence where switching between the flows is possible, preserving at same time the
sequencing within the flows. This solution assumes, however, that sequence flows can
be defined within AdHoc Activities. It also raises the question whether the model in
Figure 10d have the same behaviour as the model in Figure 10c.

The CP18 Milestone pattern is not easily captured because of the lack of support for
the notion of states. The solution proposed by White in [17] and reprinted in Figure 11a
does not model the expiration of the milestone. An activity (activity D in the example)
which potentially can be executed at a certain milestone (in the example, after B has
completed and before E has started) is always executed.

A workaround for this pattern is proposed in Figure 11b. In this solution activity
D, which can potentially be run at the nominated milestone, is modelled in a separate
process. A check (through a message exchange) whether the milestone is reached is
performed every time before D is started. The milestone is modelled by an Event-
Based Decision with two branches: one for capturing the expiration of the milestone
and continuing the process flow; and another one for taking care of the communication
and the inquiries on the “current state” of the process. A draw-back of this solution is
that the milestone is re-initialised at every entry of the loop. If relative time is used, the
milestone also needs to be re-calculated.

2.6 Cancellation Patterns

There are two cancellation patters:

– CP19: Cancel activity – the ability to depict that an enabled activity should be
disabled in some nominated circumstance;

– CP20: Cancel case – the ability to represent the cancellation of an entire process
instance (i.e. all activities relating to the process instance) in some nominated cir-
cumstance.

A

D

B C

E

B completed

B completed D

P
ro

ce
ss

 A

B

D

E

a

a

b

b c

c

a) incomplete solution b) workaround solution

B completed? D completed!B completed!

Fig. 11. Solutions for Milestone

AA

a) Cancel Activity b) Cancel Case

Cancel Cancel

c) Cancel Event d) Terminate Event

A A

Fig. 12. Cancellation concepts

In BPMN, the CP19 Cancel Activity pattern can be captured as shown in Figure 12a.
To achieve the desired behaviour, an Intermediate Event of type Error with ErrorCode
attribute set to Cancel is attached to the boundary of the activity to be cancelled, i.e.
activity A in the figure.

The same construct can also be used to capture the CP20 Cancel Case pattern,
with the difference that the Activity with a Cancellation Error Event is a Sub-Process
(see Figure 12b). As the BPMN specification [16] is not explicit about what happens
to the token(s) already existing within the Sub-Process, we assume that they are all
“consumed” in the moment an Error Event catches a Cancel error. The process proceeds
through the outgoing flow from the Error Event.

Another way to capture cancellation is through the notion of Transaction (see Fig-
ure 12c). Ending the outgoing flow from the Error Event with an End Event gives so-
lution for the Cancel Case pattern. Finally, the Cancel Case pattern can be captured
through the Terminate End Event (see Figure 12d). “This type of End indicates that
all activities in the process should be immediately ended.” (p. 54). The Terminate End
Event symbol is placed where cancellation should be signalled. This is in line with the
solutions proposed by White [17].

1 2 3 4 1 2 3 4

Basic Control–flow 11. Implicit Termination + + + +
1. Sequence + + + + Multiple Instances Patterns

2. Parallel Split + + + + 12. MI without Synchronization + + + +
3. Synchronisation + + + + 13. MI with a priori Design Time Knowledge + + + +
4. Exclusive Choice + + + + 14. MI with a priori Runtime Knowledge + + – +
5. Simple Merge + + + + 15. MI without a priori Runtime Knowledge – – – +/–
Advanced Synchronisation State-Based Patterns

6. Multiple Choice + + + + 16. Deferred Choice + + + +
7. Synchronising Merge +/– – + + 17. Interleaved Parallel Routing +/– – +/– –
8. Multiple Merge + + – – 18. Milestone – – – +/–
9. Discriminator + + – – Cancellation Patterns

Structural Patterns 19. Cancel Activity + + + +/–
10. Arbitrary Cycles + + – – 20. Cancel Case + + + +

Table 1. Support for the Control–flow Patterns in (1) BPMN, (2) UML2.0 AD [19, 12], (3)
BPEL4WS [18, 1] and (4) Oracle BPEL PM [10]

Table 1 summarises the results from this part of the evaluation. Note that the table not
only shows the evaluation of BPMN. It also shows the results for UML 2.0 Activity Di-
agrams (as evaluated in [19, 12]), BPEL4WS (cf. [18, 1]), and a concrete system based
on the latter language Oracle BPEL Process Manager (PM) Version 10.1.2 [10]5. In the
conclusion we will compare BPMN with these other languages.

3 Data Patterns in BPMN

The Data perspective focuses on identifying and defining generic constructs for data
representation and handling within process aware information systems [13]. In total 40
data patterns have been delineated in four distinct groups – data visibility, data interac-
tion, data transfer and data-based routing.

3.1 Data visibility patterns

Data visibility patterns characterise the various ways in which data elements can be
defined and utilised within the context of a process. In general, this is determined by
the main construct to which the data element is bound as it implies a particular scope in
which the data element is visible and capable of being utilised. There are eight patterns
which relate to data visibility:

– DP1: Task data – data elements defined and accessible in the context of individual
execution instances of a task or activity;

– DP2: Block data – data elements defined by block tasks (i.e. tasks which can be
described in terms of a corresponding decomposition) and accessible to the block
task and all corresponding components within the associated decomposition;

– DP3: Scope data – data elements bound to a subset of the tasks in a process in-
stance;

– DP4: Multiple instance data – data elements specific to a single execution instance
of a task (where the task is able to be executed multiple times);

– DP5: Case data – data elements specific to a process instance which are accessible
to all components of the process instance during execution;

– DP6: Folder data – data elements bound to a subset of the tasks in a process defi-
nition but accessible to all task instances regardless of the case to which they cor-
respond;

– DP7: Workflow data – data elements accessible to all components in all cases;
– DP8: Environment data – data elements defined in the operational environment

which can be accessed by process elements.

BPMN supports several of these patterns. The smallest operational unit in a BPMN
diagrams is Task. Task data is defined through the attribute Properties of a Task. These
properties are local, hence they are only for use within the Task (p. 63).

5 Note that there are some minor difference between the BPEL standard and the way it is im-
plemented in Oracle BPEL PM. Moreover, unlike the standard, support for the Resource per-
spective is given (i.e., work distribution, user tasks, etc.).

Sub-Processes and Processes serve as the main grouping mechanism in BPMN
and they have similar characteristics to the block construct and the concept of case in
process definitions. The Block Data Pattern is directly supported through the attribute
Properties of a Sub-Processes (p.63) which are local and accessible to all Sub-Process
components. Similarly the Case Data Pattern is directly supported through the attribute
Properties of a Process (p.43).

Scope data is not supported. The Group construct is purely used for visualization
purposes (p. 112) and it does not provide any data handling for the objects it groups
together.

Multiple instance data is only partially supported. There are three situations where
multiple instances of a given task may arise:

1. Where a task is specifically designated as having multiple instances in the process
model. The lack of any data attributes in Table 18, p.65 [16] makes that it is not
possible to handle any instance specific data for the different instances of a multiple
instances task.

2. Where a task can be triggered multiple times, e.g., it is part of a loop or it is a
task following after a multiple merge construct. These situations are allowable in
BPMN.

3. Where two tasks share the same decomposition. This is also supported in BPMN.
An activity decomposition can be captured through the notion of an Independent
Sub-Process. An Independent Sup-Process is an activity in a process diagram which
invokes another Process within the process diagram. Several Independent Sub-
Processes (i.e. activities) can invoke the same Process (p.70).

Folder, Workflow and Environment data patterns are not supported in BPMN.

3.2 Data interaction patterns

Data interaction patterns deal with the various ways in which data elements can be
passed between components within a process instance and also with the operating envi-
ronment (e.g., data transfer between a component of a process and an application, data
store or interface that is external to the process). They examine how the characteristics
of the individual components can influence the manner in which the trafficking of data
elements occurs. There are six internal data interaction patterns:

– DP9: Data elements flowing between task instances;
– DP10: Data elements flowing to a block;
– DP11: Data elements flowing from a block;
– DP12: Data elements flowing to a multiple instance task instance;
– DP13: Data elements flowing from a multiple instance task instance;
– DP14: Data elements flowing between process instances or cases.

Data interaction between tasks can be utilized in three different ways, namely: (i)
through integrated control and data channels or; (ii) through distinct control and data
channels or; (iii) through the support of global shared data. As BPMN supports global
shared data (through the Properties attribute for a Process, p. 43) the third alternative

is clearly supported. It also appears that the first two alternatives are supported. Data
interaction through distinct control and data channels is supported through the notion
of Data Object (p. 108) with its Properties attribute (see table 41 on p. 110 and fig. 40
on p. 109). Data interaction through integrated control and data channels is supported
through the construct of Data Objects associated to Sequence Flows (see fig. 39 on p.
109).

Furthermore, both the data interactions task to sub-workflow and sub-workflow to
task (DP10 and DP11) are directly supported. Three ways of doing this are possible:
(i) implicit data passing, (ii) explicit data passing via parameters, and (iii) explicit data
passing via channels. BPMN supports the first two of these alternatives. In the cases
when a decomposition is defined through an Embedded Sup-Process (see p. 69 and p.
43), the data passing to and from the Sub-Process are realised implicitly, i.e. through
global shared data. In the cases when a decomposition is defined through an Indepen-
dent Sub-Process (p.70), the data transfer is realised via parameters, i.e., it is defined
through the Input- and OutputPropertyMaps Expressions for the Sub-Process (see table
21 on p.71).

The Multiple Instances Activities constructs (pp. 63–65) allow nominated activities
of a process model to be executed multiple times in sequence (provided the MI Ordering
attribute is set to Sequential) or in parallel (provided the MI Ordering attribute is set to
Parallel). Data passing into and out of a Multiple Instance Activity is done either im-
plicitly, through general shared data, or through the Input- and OutputSets defined for
this activity. As any instance specific data can not be explicitly defined (see DP4), the
only possibility to handle such data would be to use Input and OutputSets as lists con-
taining instance specific data and to use the LoopCounter for indexing these lists so
that every instance gets its “own” data space. The instance specific data and the general
task data would in this case be divided into different Sets. This workaround solution is,
however, partial as it is only applicable to multiple instances executed sequentially (MI
activities executed in parallel does not have any LoopCounter attribute). Furthermore,
it is not clear how aggregation of instance specific data can be achieved. IORules which
can be used to “define the relationship between one InputSet and one OutputSet.” (Table
16, p. 64) are too limited to be used in the situation when the data from one OutputSet
needs to be aggregated and the aggregation itself is part of the activity’s general output.

The data interaction – case to case pattern (DP14) is not supported in BPMN.

In addition to the internal data interaction patterns, there are 12 external data interaction
patterns. These are characterised by three dimensions:

– The type of process element – task, case or complete process – that is interacting
with the environment;

– Whether the interaction is push or pull-based;
– Whether the interaction is initiated by the process element or the environment.

The Patterns Task to Environment, Push and Pull, and Environment to Task, Push and
Pull, (i.e., DP 15, 16, 17 and 18) are supported in BPMN. They are captured through one
or a pair of Message Flow(s) flowing to, from, or to and from a Task and the boundary
of a Pool representing the Environment. Note that for these patterns the environment is
modelled explicitly.

The patterns Case to Environment, Push and Pull, as well as Environment to Case,
Push and Pull (i.e., the DP 19–22) are not supported. Message Flows can indeed be
drawn between the boundaries of two Pools (p. 116) where one of the Pools repre-
sents a Process and the other one the Environment. However, “If the Message Flow
is connected to the boundary to the Expanded Sub-Process, then this is equivalent to
connecting to the Start Event for incoming Message Flow or the End Event for outgo-
ing Message Flow.” (p. 117). Hence, this construct does not provide support for data
exchange of case data at any moment during the execution of a case.

Finally, the Workflow to Environment, Push and Pull, and Environment to Work-
flow, Push and Pull patterns, (i.e., DP 23-26), are not supported, as workflow data is not
supported in BPMN (see DP 7 above).

3.3 Data transfer patterns

Data transfer patterns focus on the way in which data elements are actually transferred
between one process element and another. They aim to capture the various mechanisms
by which data elements can be passed across the interface of a process element. There
are seven distinct patterns in this category:

– DP27: Data transfer by value – incoming –incoming data elements passed by value;
– DP28: Data transfer by value – outgoing – outgoing data elements passed by value;
– DP29: Data transfer – copy in/copy out – where a process element synchronises

data elements with an external data source at commencement and completion;
– DP30: Data transfer by reference – without lock – data elements are communicated

between components via a reference to a data element in some mutually accessible
location. No concurrency restrictions are implied;

– DP31: Data transfer by reference – with lock – similar to DP30 except that concur-
rency restrictions are implied with the receiving component receiving the privilege
of read-only or dedicated access to the data element;

– DP32: Data transformation – input – where a transformation function is applied to
a data element prior to it being passed to a subsequent component;

– DP33: Data transformation – output – where a transformation function is applied
to a data element prior to it being passed from a previous component.

In BPMN, the DP 27 and 28 patterns are supported through the notion of the Input
and OutputSets (p.63). The DP 29 Data transfer copy in/copy out is partially supported.
It occurs when a decomposition is realised with Independent Sub-Processes. The data
attributes to be copied into/out of the Independent Sub-Process are specified through
the Input- and OutputPropertyMaps attributes (p. 71). As these PropertyMaps are in
the form of Expressions we assume that also different transformation functions can be
captured through them. These implies that patterns DP32 and DP33 are also partially
supported. Once again, the support is considered to be partial because it only applies
for data transfer to and from a (Independent) Sub-Process, and not between any couple
of Activities.

Finally, the DP 31 data transfer by reference – with lock is supported. As BPMN
adopts a token-oriented approach to data passing, the parameters – which typically re-
late to objects – are effectively consumed at activity commencement and only become

visible and accessible to other activities once the specific activity to which they were
passed has completed and returned them.

3.4 Data-based routing patterns

Data-based routing patterns capture the various ways in which data elements can inter-
act with other perspectives and influence the overall execution of the process. There are
seven (relatively self-explanatory) patterns in this category:

– DP34: Task precondition – data existence;
– DP35: Task precondition – data value;
– DP36: Task postcondition – data existence;
– DP37: Task postcondition – data value;
– DP38: Event-based task trigger;
– DP39: Data-based task trigger;
– DP40: Data-based routing.

BPMN does not directly support pre- and postcondition definitions. Hence, the patterns
35 and 37 are not supported. In the cases data transfer is realised though Data Objects,
the boolean attributes RequiredForStart and ProducedAtCompletion (p. 110) capture
the pre- and postconditions for data existence (i.e., patterns 34 and 36).

The Message, Timer, Error and Cancel Event constructs (see Table 14 on p.58) pro-
vide direct support for the event-based task triggering pattern. The Rule Event construct
(Table 14, p. 58) provides support for the Data-based task trigger pattern. Finally, the
Data-based routing is supported, as Condition Expressions are possible to specify for
Sequence Flows (see Table 45 on p. 115).

Table 2 shows a summary of the results from the Data perspective.

4 Resource Patterns in BPMN

The Resource perspective focuses on the manner in which work is distributed amongst
and managed by the resources in a process-aware information system (PAIS). Forty
three workflow resource patterns are identified in [11] and classified into seven distinct
groups:

– Creation patterns – which correspond to restrictions on the manner in which spe-
cific work items can be advertised, allocated and executed by resources;

– Push patterns – which describe situations where a PAIS proactively offers or allo-
cates work to resources;

– Pull patterns – which characterise scenarios where resources initiate the identifica-
tion of work that they are able to undertake and commit to its execution;

– Detour patterns – which describe deviations from the normal sequence of state
transitions associated with a business process either at the instigation of a resource
or the PAIS;

– Auto-start patterns – which relate to situations where the execution of work is trig-
gered by specific events or state transitions in the business process;

Data Visibility 1 2 3 4 Data Interaction (External) (cont.) 1 2 3 4

1. Task Data + +/– +/– +/– 21. Env. to Case – Push-Oriented – – – –
2. Block Data + + – – 22. Case to Env. – Pull-Oriented – – – –
3. Scope Data – – + + 23. Workflow to Env. – Push-Oriented – – – –
4. Multiple Instance Data +/– + – +/– 24. Env. to Workflow – Pull-Oriented – – – –
5. Case Data + – + + 25. Env. to Workflow – Push-Oriented – – – –
6. Folder Data – – – – 26. Workflow to Env. – Pull-Oriented – – – –
7. Workflow Data – + – – Data Transfer

8. Environment Data – – + + 27. by Value – Incoming + – + +
Data Interaction (Internal) 28. by Value – Outgoing + – + +
9. between Tasks + + + + 29. Copy In/Copy Out +/– – – +
10. Block Task to Sub-wf Decomp. + + – – 30. by Reference – Unlocked – – + +
11. Sub-wf Decomp. to Block Task + + – – 31. by Reference – Locked + + +/– –
12. to Multiple Instance Task – + – +/– 32. Data Transformation – Input +/– + – –
13. from Multiple Instance Task – + – +/– 33. Data Transformation – Output +/– + – –
14. Case to Case – – +/– – Data-based Routing

Data Interaction (External) 34. Task Precondition – Data Exist. + + +/– –
15. Task to Env. – Push-Oriented + – + + 35. Task Precondition – Data Val. – + + +
16. Env. to Task – Pull-Oriented + – + + 36. Task Postcondition – Data Exist. + + – –
17. Env. to Task – Push-Oriented + – +/– + 37. Task Postcondition – Data Val. – + – –
18. Task to Env. – Pull-Oriented + – +/– + 38. Event-based Task Trigger + + + +
19. Case to Env. – Push-Oriented – – – – 39. Data-based Task Trigger + – +/– –
20. Env. to Case – Pull-Oriented – – – – 40. Data-based Routing + + + +

Table 2. Support for the Data Patterns in (1) BPMN, (2) UML2.0 AD [19, 12], (3) BPEL4WS [18,
1] and (4) Oracle BPEL PM [10]

– Visibility patterns – which describe the ability of resources to view the status of
work within the PAIS;

– Multiple resource patterns – which describe scenarios where there is a many to
many relationship between specific work items and the resources undertaking those
work items.

In BPMN, the association of a particular action or set of actions with a specific resource
is illustrated through the use of the Pools and Lanes constructs, commonly called Swim-
lanes (pp. 102-106). “A Pool represents a Participant in the Process. A Participant can
be a specific business entity (e.g. a company) or can be a more general business role.” (p.
103). “A Lane is a sub–partition within a Pool...” (p. 106). Hence, the direct allocation
pattern (RP1) as well as the role–based allocation pattern (RP2) are directly supported.
Furthermore, a partitioning of a Process into Pools and Lanes is not required, i.e., the
resource allocation for the different activities is not necessarily done during design time.
This means that automatic execution pattern (RP11) is also supported in BPMN.

None of the other Creation Patterns are supported within BPMN. This is a conse-
quence of the restrictive manner in which Swimlanes are specified (i.e., only by specify-
ing their Names, and in case of sub-division, the sub-division hierarchy) and the lack of
support for relationships between distinct Swimlanes. Lack of a capability specification,

integrated authorisation framework, organisational model or access to some execution
history, rules out any form of support for capability–based allocation (RP8), the autho-
risation (RP4), organisational allocation (RP9) and history-based allocation (RP5, RP6
and RP7) patterns respectively.

Furthermore, there is no notion of scheduling work execution or of resources se-
lecting the work they wish to undertake, hence there is minimal support for the Push,
Auto-start or Multiple Resource patterns within BPMN. Only the following minimal
set of patterns from these classes are supported:

– RP14: Distribution by allocation - single resource – the resource(s) associated with
a given Swimlane is immediately allocated a Task/Sub-Process once it is triggered.

– RP19: Distribution on enablement – all activities in a Swimlane are associated with
the resource responsible for the Swimlane when they are triggered.

– RP36: Commencement on creation – an activity is assumed to be live as soon as it
receives the specified StartQuantity control-flow tokens.

– RP39: Chained execution – once an activity is completed, subsequent activity(ies)
receive a control-flow token and are triggered immediately when the specified
StartQuantity of tokens is reached.

– RP42: Simultaneous execution – there are no constraints on how many instances of
a task specified for one Swimlane can be active at any time.

None of the Pull, Detour or Visibility patterns are supported. The results from this part
of the evaluation are summarised in Table 3.

5 Conclusions

There are inherent difficulties in assessing a language that does not have a commonly
agreed upon formal semantics nor an execution environment.8 However, we hope that
the analysis reported here, where different solutions were carefully discussed will serve
to point out ambiguities, and thereby motivate further improvements of the language.

Tables 1, 2 and 3 summarise the results from the evaluation in terms of the Control-
flow, Data and Resource patterns. A ‘+’ indicates a direct support for a pattern, a ‘+/–’
indicates a partial support, and a ‘–’ indicates lack of support. For the purposes of
comparison, these tables also includes the results from the evaluations of UML 2.0 AD
(reprinted from [19, 12]), as well as the results for BPEL4WS (cf. [18, 1]) and Oracle’s
implementation of BPEL4WS in Oracle BPEL PM (cf. [10]), obtained during earlier
phases of this work.

As it can be seen from the tables BPMN provides support for the majority of the
Control-flow patterns. For the data perspective it provides support for nearly half of the
patterns and it provides only very limited support for the resource perspective.

A general observation is that many of the Control-flow patterns (e.g. Parallel Split,
Exclusive Choice, Simple Merge, Multiple Merge, Multiple Choice, Deferred Choice

7 BPEL does not cover the resource perspective and is therefore omitted from Table 3.
8 Note that BPMI.org claims that more than 30 vendors support BPMN. However, most support

just a small subset of the language reported in [16] and assume different semantics when
executing BPMN.

Creation Patterns 1 2 4 Pull Patterns (cont.) 1 2 4

1. Direct Allocation + + + 24. System-Determ. Work Queue Content – – –
2. Role-Based Allocation + + + 25. Resource-Determ. Work Queue Content – – +
3. Deferred Allocation – – + 26. Selection Autonomy – – +
4. Authorization – – – Detour Patterns

5. Separation of Duties – – – 27. Delegation – – +
6. Case Handling – – + 28. Escalation – – +
7. Retain Familiar – – + 29. Deallocation – – +
8. Capability-based Allocation – – + 30. Stateful Reallocation – – +
9. History-based Allocation – – +/– 31. Stateless Reallocation – – –
10. Organizational Allocation – – +/– 32. Suspension/Resumption – – +
11. Automatic Execution + + + 33. Skip – – +
Push Patterns 34. Redo – – –
12. Distribution by Offer-Single Resource – – + 35. Pre-Do – – –
13. Distribution by Offer-Multiple Resources – – + Auto-start Patterns

14. Distribution by Allocation-Single Resource + + + 36. Commencement on Creation + + –
15. Random Allocation – – +/– 37. Commencement on Allocation – – –
16. Round Robin Allocation – – +/– 38. Piled Execution – – –
17. Shortest Queue – – +/– 39. Chained Execution + + –
18. Early Distribution – – – Visibility Patterns

19. Distribution on Enablement + + + 40. Config. Unallocated Work Item visibility – – –
20. Late Distribution – – – 41. Config. Allocated Work Item visibility – – –
Pull Patterns Multiple Resource Patterns

21. Resource-Init. Allocation – – – 42. Simultaneous Execution + + +
22. Resource-Init. Exec. - Allocated Work Item – – + 43. Additional Resources – – +
23.Resource-Init. Execution - Offered Work Item – – +

Table 3. Support for the Resource Patterns in (1) BPMN, (2) UML2.0 AD [19, 12] and (4) Oracle
BPEL PM [10]7

and Cancel Case) have several representations. Another observation is that detailed
knowledge of the non-graphically represented attributes of the modelling constructs
in BPMN is required in order to solve some of the patterns. This is exemplified through
the solutions of the Discriminator Pattern (CP9) and Multiple Instances Patterns (CP12-
CP14) where essential parts of the semantics are captured through attribute settings.
Providing a rich graphical notation as well as support for an extensive set of non-
graphical elements leads to an increased complexity. For BPMN, the existence of such
complexity is revealed in the discussions for the patterns CP15 Multiple Instances with-
out a Priory Runtime Knowledge and CP18 Milestone, where solutions earlier presented
in [17] by one of BPMN’s founders were discarded as insufficient and new workaround
solutions were proposed.

Regarding comparison of BPMN with UML 2.0 AD and BPEL, the following observa-
tions can be made.

– In the Control-flow perspective, BPMN and UML 2.0 AD are almost fully overlap-
ping. BPMN is slightly stronger when it comes to the representation of the CP17

Interleaved Parallel Routing and the CP7 Synchronising Merge patterns, but these
are only minor differences. Based on the overlap in this perspective, we support the
viewpoint that BPMN and UML 2.0 AD are competing languages which are quite
similar.

– For the Data perspective the support of the patterns in BPMN and UML 2.0 AD
is rather different. Only nine of the Data patterns are supported by both languages,
while for 18 of the patterns the support differ. For both BPMN and UML 2.0 AD
the support provided is less than half of the Data patterns.

– Even less is the support of BPMN, UML 2.0 AD and BPEL4WS for the patterns
in the Resource perspective. The presence of concepts specific to the Resource
perspective (e.g., Lanes and Pools in BPMN and Partitions in UML 2.0 AD) reveals
the intention of the languages for supporting this perspective. However, providing
support for a minimal set of patterns only exposes the immaturity of these languages
for adequately covering this perspective. Note that in the tables we added a column
for Oracle BPEL PM (4). This is a concrete implementation of BPEL (with minor
differences in the control-flow part) but with an implementation for the Resource
perspective. Different types of user tasks are supported by the system.

– By comparing BPMN to BPEL4WS for the Control-flow perspective, it can be
observed that some patterns (e.g., CP8, CP10 and CP14) are supported in BPMN
but not in BPEL4WS. This implies that the appearance of these patterns in a BPMN
model would require special care when translating the model into BPEL4WS.

Acknowledgement: Thanks to Chun Ouyang, for valuable discussions on BPMN dur-
ing the work.

References

1. W.M.P. van der Aalst, M. Dumas, A. H.M. ter Hofstede, N. Russell, H. M.W Verbeek, and
P. Wohed. Life After BPEL? In M. Bravetti et al., editor, In Proc. of the 2nd Int. Workshop on
Web Services and Formal Methods (WS-FM), volume 3670 of LNCS, pages 35–50. Springer
Verlag, 2005.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

3. BPMI.org. Business Process Modeling Notation (BPMN) Information: Frequently Asked
Questions. http://www.bpmn.org/Documents/FAQ.htm, October 2004. accessed
15 November 2005.

4. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede, editors. Process-Aware Infor-
mation Systems: Bridging People and Software Through Process Technology. John Wiley
and Sons, 2005.

5. N. Guarino. Formal Ontology and Information Systems. In Proc. of Formal Ontology in
Information Systems (FOIS’98), pages 3–15. IOS PRess, 1998.

6. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

7. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Workflow Modelling.
In B. Wangler and L. Bergman, editors, Proc. of the 12th Int. Conference on Advanced In-
formation Systems Engineering (CAiSE00), volume 1789 of LNCS, pages 431–445. Springer
Verlag, 2000.

8. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. Data
and Knowledge Engineering, 56(1):23–40, 2006.

9. A. Miheev and M. Orlov. Perspectives of Workflow Systems, in Russian. http://www.
russianenterprisesolutions.com/reviews/04/112.html, 2004. accessed
15 November 2005.

10. N.A. Mulyar. Pattern-based Evaluation of Oracle-BPEL (v.10.1.2). Technical report, Center
Report BPM-05-24, BPMcenter.org, 2005.

11. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Re-
souce Patterns: Identification, Representation and Tool Suppport. In O. Pastor and J. Falcão
e Cunha, editors, Proc. of 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE05), volume 3520 of LNCS, pages 216–232. Springer, 2005.

12. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and P. Wohed. On the Suitability of
UML 2.0 Activity Diagrams for Business Process Modelling. In to appear in Proc. of The
3rd Asia-Pacific Conf. on Conceptual Modelling (APCCM 2006). Springer Verlag, Jan 2006.

13. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Data
Patterns. In L. Delcambre et al., editor, Proc. of 24th Int. Conf. on Conceptual Modeling
(ER05), volume 3716 of LNCS, pages 353–368. Springer Verlag, Oct 2005.

14. T. Wand and R. Weber. An Ontological Model of an Information System. IEEE Transactions
on Software Engineering, 16(11):1282–1292, 1990.

15. WfMC. Workflow Management Coalition Terminology & Glossary, Document Number
WFMC-TC-1011, Document Status - Issue 3.0. Technical report, Workflow Management
Coalition, Brussels, Belgium, 1999.

16. S. White. Business Process Modeling Notation (BPMN). Version 1.0 - May 3, 2004,
BPMI.org, 2004. www.bpmi.org.

17. S. White. Process Modeling Notations and Workflow Patterns. In L. Fischer, editor, Workflow
Handbook 2004, pages 265–294. Future Strategies Inc., Lighthouse Point, FL, USA, 2004.

18. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In Il-Y. Song et al., editor, Proc.
of 22nd Int. Conf. on Conceptual Modeling (ER 2003), volume 2813 of LNCS, pages 200–
215. Springer, 2003.

19. P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell. Pattern-
Based Analysis of the Control-Flow Perspective of UML Activity Diagrams. In L. Delcam-
bre et al, editor, Proc. of 24th Int. Conf. on Conceptual Modeling (ER05), volume 3716 of
LNCS, pages 63–78. Springer Verlag, 2005.

20. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a
General, Formal and Decidable Approach to the OR-Join in Workflow Using Reset Nets. In
G. Ciardo and P. Darondeau, editors, Proc. of 26th Int. Conf. on Applications and Theory of
Petri Nets 2005, volume 3536 of LNCS, pages 423–443. Springer, 2005.

