Part II: Learning from EHR data

Stockholms universitet

Panagiotis Papapetrou, PhD Professor, Stockholm University Adjunct Professor, Aalto University

Panagiotis Papapetrou

Who are we?

DSV @ Stockholm University

- DSV: Data- och SystemVetenskap (Computer and Systems Sciences)
- # of students: approx. 5400
- # of staff members: 176 (60 profs. / associate profs. / lecturers)

Stockholms universitet

Our AI research arena @ DSV

Research at DSV – data science group

Main research areas:

- Sequential and temporal data mining
- Interpretability and explainability of machine learning methods
- Ethics and bias in machine learning
- Machine learning for healthcare applications
- Clinical text mining and natural language processing

Current projects:

- **EXTREMUM (2020-2024):** explainable and ethical ML for healthcare
- Covid-Sim (2020-2021): reinforcement learning for simulation of pandemics
- **TEMPOMiner (2017-2020):** temporal data mining for detecting ADEs in healthcare

Part II - Outline

- **Temporal abstractions** for EHR data
- Actionable models and counterfactual explanations for EHR data
- Attention-based deep learning for healthcare event prediction
- Interpretable ranking and classification of radiography exams

Electronic Health Records: content

Longitudinal collection of electronic health information about individual patients and populations

- Diagnoses
- Drug prescriptions
- Clinical tests
- More complex structures
 - clinical notes
 - medical images
 - o MRIs
 - ECGs

0 ...

I25.110

A01AD05

ICD10* codes

- 10th revision of the International Classification of Diseases and Related Health Problems
- a classification system that is used to record medical activity
- the system enables classification and quantification of diseases and other health-related issues

ICD10 codes: examples (total of 22 chapters)

1A00-B991,056Certain infectious and parasitic diseases2C00-D491,620Neoplasms3D50-D89238Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism4E00-E89675Endocrine, nutritional and metabolic diseases5F01-F99724Mental, Behavioral and Neurodevelopmental disorders6G00-G99591Diseases of the eye and adnexa7H00-H592,452Diseases of the eye and adnexa8H60-H95642Diseases of the eirculatory system10J00-J99336Diseases of the respiratory system	Chapter	Code Range	Estimated # of Codes	Description
3D50-D89238Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism4E00-E89675Endocrine, nutritional and metabolic diseases5F01-F99724Mental, Behavioral and Neurodevelopmental disorders6G00-G99591Diseases of the nervous system7H00-H592,452Diseases of the eye and adnexa8H60-H95642Diseases of the ear and mastoid process9I00-I991,254Diseases of the circulatory system	1	A00-B99	1,056	Certain infectious and parasitic diseases
4E00-E89675Endocrine, nutritional and metabolic diseases5F01-F99724Mental, Behavioral and Neurodevelopmental disorders6G00-G99591Diseases of the nervous system7H00-H592,452Diseases of the eye and adnexa8H60-H95642Diseases of the ear and mastoid process9I00-I991,254Diseases of the circulatory system	2	C00-D49	1,620	Neoplasms
5F01-F99724Mental, Behavioral and Neurodevelopmental disorders6G00-G99591Diseases of the nervous system7H00-H592,452Diseases of the eye and adnexa8H60-H95642Diseases of the ear and mastoid process9I00-I991,254Diseases of the circulatory system	3	D50-D89	238	
6G00-G99591Diseases of the nervous system7H00-H592,452Diseases of the eye and adnexa8H60-H95642Diseases of the ear and mastoid process9I00-I991,254Diseases of the circulatory system	4	E00-E89	675	Endocrine, nutritional and metabolic diseases
7H00-H592,452Diseases of the eye and adnexa8H60-H95642Diseases of the ear and mastoid process9I00-I991,254Diseases of the circulatory system	5	F01-F99	724	Mental, Behavioral and Neurodevelopmental disorders
8H60-H95642Diseases of the ear and mastoid process9I00-I991,254Diseases of the circulatory system	6	G00-G99	591	Diseases of the nervous system
9 I00-I99 1,254 Diseases of the circulatory system	7	H00-H59	2,452	Diseases of the eye and adnexa
	8	H60-H95	642	Diseases of the ear and mastoid process
10 J00-J99 336 Diseases of the respiratory system	9	100-199	1,254	Diseases of the circulatory system
	10	J00-J99	336	Diseases of the respiratory system
11K00-K95706Diseases of the digestive system	11	K00-K95	706	Diseases of the digestive system

ICD10 codes: examples

Code	Description							
Combinati	Combination Codes							
I25.110	Atherosclerotic heart disease of native coronary artery with unstable angina pectoris							
Increased	Specificity							
S72.044G	Non-displaced fracture of base of neck of right femur, subsequent encounter for closed fracture with delayed healing							
Laterality								
C50.511	Malignant neoplasm of lower-outer quadrant of right female breast							
C50.512	Malignant neoplasm of lower-outer quadrant of left female breast							
"X" Placeholder								
H40.11X2	Primary open-angle glaucoma, moderate stage							
	10 Panagiotis Pap	10 0 10 04						

ATC* codes

- Anatomical Therapeutic Chemical codes, first published in 1976
- Used for classification of active ingredients of drugs
- Based on the organ/system on which they act
 therapeutic
 - pharmacological and chemical properties
- Controlled by the World Health Organization Collaborating Centre (WHOCC) for drug statistics methodology

* http://www.whocc.no/atc_ddd_index/

OH

acetylsalicylic acid (aspirin)

ATC codes – example: A10BA02

ATC codes classify drugs into five different levels

Level	Content	Туре	Example
Ι	anatomical main group	1 letter	A: alimentary tract and metabolism
II	therapeutic subgroup	2 digits	A10: diabetes drugs
Ш	pharmacological subgroup	1 letter	A10B: blood glucose lowering drugs, excl. insulins
IV	chemical subgroup	1 letter	A10BA: biguanides
V	chemical substance	2 digits	A10BA02: metformin

Extracting features from EHRs

Mainly two lines of approaches:

- o static features
- o temporal features

Static features

- Mainly two lines of approaches:
 - o static features
 - o temporal features

The class labels assigned depending on task at hand, e.g., ADE detection

- Existing out-of-the-box classifiers are used
 - Decision trees, random forests, SVMs, deep learning architectures [Chazard2011, Zhao2013, Karlsson2013, Shickel2018, Bampa2019]

Temporal features

• Mainly two lines of approaches:

- o static features
- o temporal features

Clinical measurements:

- different units
- times of measurement
- sparsity

Temporal abstractions of EHRs

- Database: EHRs of Patients
- Each EHR:
 - Multiple temporal variables registered and evolving concurrently
 - Each variable with multiple readings until a critical time point t_i, e.g., glucose, creatinine, cholesterol
 - **Class label:** Disease/symptom detected at time t_i (event of interest)

Temporal abstractions of EHRs

- Database: EHRs of Patients
- Each EHR:
 - Multiple temporal variables registered and evolving concurrently
 - Each variable with multiple readings until a critical time point t_i, e.g., glucose, creatinine, cholesterol
 - **Class label:** Disease/symptom detected at time t_i (event of interest)

Two types of temporal abstractions

• Trend abstraction:

- o e.g., decreasing, steady, increasing
- time series segmentation + identify slopes

• Value abstraction

- o e.g., very low, low, normal, high, very high
- o use 10th, 25th, 75th, and 90th percentiles on the lab values to define [Batal2012]

Temporal abstractions of EHRs

- Supervised temporal prediction [Batal2012, Rebane2019]
 - Given a labeled dataset of temporal instances up to time t_i
 - Find frequently occurring "temporal patterns" for each label
 - \circ Given a sample instance \rightarrow predict its label

Event of interest

Temporal abstraction patterns

Mining temporal abstraction patterns

Temporal abstractions of sparse EHRs

ID	с	M1	M2	МЗ	
P1	1	\sim	•	NA	
P2	0	•	\checkmark	•	
P3	1	1	NA	$\sim \sim$	

Hielscher et al. Mining Longitudinal Epidemiological Zhao et al. Learning from Heterogeneous Temporal Bagattini et al. A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records, BMC Medical Informatics and Decision Making, 2019

Rebane et al. **SMILE: a feature-based temporal abstraction framework for event-interval sequence classification**, Data Mining and Knowledge Discovery, accepted [pre-print online]

Phase A: normalization

- Z-normalization
 - Each multi-variate feature *S* is z-normalized:

$$S := \frac{\sum_{i=1}^{|S|} \{s_i - \mu(S)\}}{\sigma(S)}$$

ID	С	M1	M2	М3	
P1	1	\sim	•	NA	
P2	0	•	\checkmark	•	
P3	1	1	NA	$\checkmark \rightarrow \checkmark$	

Phase A: summarization

- Z-normalization
 - Each multi-variate feature *S* is z-normalized:

$$S := \frac{\sum_{i=1}^{|S|} \{s_i - \mu(S)\}}{\sigma(S)}$$

- Summarization
 - Piecewise Aggregate Approximation (PAA)
 - $\,\circ\,$ Dimensionality reduction from d to w

$$\overline{S} = \{\overline{s}_1, \dots, \overline{s}_w\}$$

$$\overline{s}_i = \frac{w}{d} \sum_{j=\frac{d}{w}(j-1)+1}^{\frac{d}{w}i} s_j$$

Phase A: symbolic representation

- SAX mapping
 - each record is mapped to a string using SAX
 - length: number of measurements
 - alphabet: 2 5, or set using domain knowledge

Discretize into a vector of symbols

breakpoints map to small alphabet *a* of symbols

Phase B: mapping to real features

Phase B: subsequence enumeration

- *s-shapelet* generation:
 - random subsequences *s* of length $t \in [1, l_{max}]$

l_{max}: max length of a feature sequence

- *s-shapelet* evaluation:
 - each s is converted to a real value based on its distance to each multi-variate feature sequence

$$Dist\left(s,\widehat{S}\right) := \min_{s' \subseteq \widehat{S}, |s'| = |s|} \left\{ D\left(s, s'\right) \right\}$$

Phase B: subsequence selection

• For each mutli-variate feature:

 \circ select the s-shapelet *s** with the max utility:

$$s^* := \arg \max_{s \in \widehat{\mathcal{L}}} Gain\left(s, \delta_{osp}(s), \widehat{\mathcal{L}}\right) \qquad s^*_{\alpha} := \arg \max_{s \in \mathcal{S}_{\alpha}} Gain\left(s, \delta_{osp}(s), \widehat{\mathcal{L}}\right)$$

select the alphabet size with the max utility

$$\alpha^* := \arg \max_{\alpha \in \mathcal{I}} Gain\left(s^*_{\alpha}, \delta_{osp}(s^*_{\alpha}), \widehat{\mathcal{L}}\right)$$

• Final set of s-shapelets:

$$\mathcal{Z}^* = \left\{ s^* \left(\widehat{\mathcal{A}}_1 \right), \dots, s^* \left(\widehat{\mathcal{A}}_m \right) \right\}$$

Phase C: transformation

- A function τ^* is learned:
 - transform any data object of the original multi-variate space to a set of real-valued features

$$au^*:\mathcal{A} o\mathbb{R}^m$$

• Each data example is transformed using τ^* :

$$\tilde{O} = \tau^*(O)$$

Dataset	Class label description	Pos.	Neg.	Feat.
D611	Drug-induced aplastic anaemia	593	105	285
D642	Drug-induced secondary sideroblastic anaemia	217	9673	513
D695	Secondary thrombocytopenia	1246	2148	450
E273	Drug-induced adrenocortical insufficiency	70	259	229
G620	Drug-induced polyneuropathy	96	783	258
I952	Drug-induced hypotension	115	1287	324
L270	Drug-induced generalized skin eruption	182	468	314
L271	Drug-induced localized skin eruption	151	498	311
M804	Drug-induced osteoporosis with pathological fracture	52	1170	282
M814	Drug-induced osteoporosis	57	5097	434
O355	Maternal care for (suspected) damage to fetus by drugs	146	260	148
R502	Drug-induced fever	80	6434	498
T782	Adverse effects: anaphylactic shock	131	856	293
T783	Adverse effects: angioneurotic oedema	283	720	293
T784	Adverse effects: allergy	574	415	294
T801	Vascular complications following infusion, transfusion	66	609	229
	and the rapeutic injection			
T808	Other complications following infusion, transfusion	538	138	229
	and the rapeutic injection			
T886	Drug-induced anaphylactic shock	89	1506	363
T887	Unspecified adverse effect of drug or medicament	1047	550	363

Dataset	Class label description	Pos.	Neg.	Feat.				
D611	Drug-induced aplastic anaemia		105	285				
D642	Drug-induced secondary sideroblastic anaemia	217	9673	513				
D695	Secondary thrombocytopenia	1246	2148	450				
E273	Drug-induced adrenocortical insufficiency	70	259	229				
G620	Drug-induced polyneuropathy	96	783	258				
I952	Drug-induced hypotension	115	1287	324				
L270	Drug-induced generalized skin eruption	182	468	314				
F • The AD	 Adverse Drug Events (ADEs) are injuries that occur from the use of a drug, such as overdoses or dose reductions, or drug interactions They account for 3.7% of hospital admissions around the world ADEs have been estimated to come at a cost of \$3.5 billion/year in the U.S alone, despite ADEs being preventable 							
T808	Other complications following infusion, transfusion and the rapeutic injection	538	138	229				
T886	Drug-induced anaphylactic shock	89	1506	363				
T887	Unspecified adverse effect of drug or medicament	1047	550	363				

- As the % of **feature sparsity** increases, **AUC** also increases!
- Shorter s-shapelets (i.e., 2-8) are preferable to longer ones (> 20)

Temporal abstractions of sparse EHRs

ID	с	M1	M2	МЗ	
P1	1	\sim	•	NA	
P2	0	•	\checkmark	•	
P3	1	1	NA	$\sim \sim$	

Hielscher et al. Mining Longitudinal Epidemiological Zhao et al. Learning from Heterogeneous Temporal Bagattini et al. A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records, BMC Medical Informatics and Decision Making, 2019

Rebane et al. **SMILE: a feature-based temporal abstraction framework for event-interval sequence classification**, Data Mining and Knowledge Discovery, accepted [pre-print online]

The notion of e-lets

Dataset	Accuracy				Area under ROC			
	RF	LR	DT	SVM	RF	LR	DT	SVM
AUSLAN2	0.485	0.335	0.465	0.305	0.686	0.668	0.674	0.696
BLOCKS	1.000	0.995	0.995	0.986	1.000	0.994	0.975	1.000
CONTEXT	0.988	0.979	0.963	0.996	1.000	0.999	0.969	0.997
HEPATITIS	0.831	0.735	0.769	0.823	0.890	0.789	0.788	0.813
PIONEER	0.988	0.981	0.950	0.969	1.000	1.000	0.894	0.969
SKATING	0.977	0.970	0.972	0.847	0.999	0.999	0.973	0.966
D611	0.945	0.874	0.921	0.929	0.878	0.744	0.628	0.523
D642	0.988	0.976	0.981	0.976	0.991	0.943	0.897	0.793
D695	0.745	0.726	0.688	0.729	0.813	0.793	0.659	0.726
E273	0.586	0.619	0.581	0.607	0.690	0.628	0.580	0.517
G620	0.854	0.750	0.854	0.816	0.902	0.661	0.767	0.500
I952	0.876	0.751	0.826	0.876	0.670	0.543	0.568	0.500
L270	0.672	0.611	0.605	0.561	0.734	0.637	0.611	0.509
L271	0.746	0.647	0.709	0.692	0.800	0.611	0.624	0.521
O355	0.875	0.713	0.839	0.826	0.944	0.773	0.826	0.853
R502	0.977	0.964	0.975	0.977	0.816	0.591	0.507	0.500
T801	0.917	0.892	0.896	0.913	0.819	0.623	0.716	0.501
T782	0.750	0.763	0.727	0.723	0.508	0.628	0.575	0.500
T783	0.857	0.686	0.732	0.796	0.750	0.568	0.642	0.558
T886	0.771	0.788	0.838	0.786	0.834	0.759	0.696	0.502
Avg.	0.841	0.788	0.814	0.807	0.836	0.748	0.728	0.672

ADE prediction (Yes/No)

• Main task:

predict the presence or absence of an ADE in a patient's next visit given EHR data entries from all previous visits!

V_1	•••••	Vj	•••••	V_{i-1}	V_i
•		•		•	•
		Adverse drug event ICD-10	codes		
	D611	Drug-induced aplastic anaemia			
	D642	Drug-induced secondary sideroblastic	anaemia		
	D695	Secondary thrombocytopenia			
	E273	Drug-induced adrenocortical insufficie	ncy		
	G620	Drug-induced polyneuropathy	-		
	I952	Drug-induced hypotension			
	L270	Drug-induced generalized skin eruptio	n		
	L271	Drug-induced localized skin eruption			
	M804	Drug-induced osteoporosis with patho	logical fracture		
	M814	Drug-induced osteoporosis	-		
	O355	Maternal care for (suspected) damage	to fetus by drugs		
	R502	Drug-induced fever			
	T782	Adverse effects: anaphylactic shock			
	T783	Adverse effects: angioneurotic edema			
	T784	Adverse effects: allergy			
	T801	Vascular complications following inf	usion, transfusion and		
		therapeutic injection			
	T886	Drug-induced anaphylactic shock			

Main goals

- Empirically evaluate which <u>code-level</u> interpretable <u>deep</u> learning <u>architecture</u> provides the best performance for ADE prediction
- Examine which <u>data sources</u> (diagnoses, medications, lab tests) best aid in ADE predictive performance and medical interpretability
- Determine the extent in which code-level attention mechanisms contribute to interpretability for ADE predictions

Methods (Vanilla RNN)

Limitations of Vanilla RNN

- Standard seq2seq models are normally composed of an encoderdecoder architecture
- Encoder: processes the input sequence and summarizes the information into a context vector of fixed length
- This representation is expected to be a good summary of the entire input sequence
- **Decoder:** initialized with the context vector and uses it to generate the transformed output

Limitations of Vanilla RNN

- Structrural limitation:
 - fixed-length context vector
- Why?
 - inability of remembering longer sequences
 - earlier parts of the sequence are forgotten once the entire sequence is processed
 - The attention mechanism concept was born to resolve this problem
 - Attention mechanism: keep the intermediate encoder states and utilize all of them in order to construct the context vectors required by the decoder to generate the output sequence

Medical "attention"

- We may want the decoder to focus more on, e.g., visits 1 and 3, while paying less attention to the remaining visits of the patient
- Solution:
 - Train a feed forward neural network
 - learn to identify relevant encoder states
 - generate a high score for the visits for which attention is to be paid while low score for the visits which are to be ignored

Methods (Timeline, Bai 2018)

Experimental Setup

- RETAIN and Timeline:
 - proven to be competitive state-of-the-art architectures which permit thorough interpretability down to the code-level
 - trained for ADE prediction using an original data source consisting of information for 1,4 million patients obtained from HealthBank at Stockholm University

Experimental Setup

- Non-ADE ICD-10 and ATC codes were reduced to higher level hierarchical categories by selecting only the first three characters
- Such categories correspond to main categories of ICD-10 codes and to therapeutic subgroups in the case of ATC codes
- # of ICD-10 categories: **1692**
- # of ATC subgroups: 109
- Visits defined on a monthly basis
- Patients also needed at least three such visits to be included
- Two data sets: including or excluding medication data

Results: AUC / F1

Dataset	Area under ROC		Micro F1-Score			
	RETAIN	Timeline	RETAIN	Timeline		
Without medication	0.765	0.668	0.789	0.699		
With medication	0.759	0.693	0.775	0.754		

RETAIN was determined to be the best performing architecture under the conditions of using diagnoses data

Interpretability of RETAIN

Code	Description	Score	
	Visit 1		
L50	Urticaria	0.214	
	Visit 2		Rebane et al. Exploiting Complex
R42	Dizziness and giddiness	0.034	Medical Data with Interpretable
A02†	Drugs for acid related disorders	0.049	
	Visit 3		Deep Learning for Adverse Drug
L50	Urticaria	0.239	Event Prediction. Journal of Al in
R06 [†]	Antihistamines for systemic use	0.344	Event i rediction. Journal of Al in
H02 [†]	Corticosteroids for systemic use	0.321	Medicine
	Visit 4		
L50	Urticaria	0.225	
R06†	Antihistamines for systemic use	0.322	
C01 [†]	Cardiac therapy	0.205	
H02 [†]	Corticosteroids for systemic use	0.230	
	Prediction		
T784	Adverse effects: allergy	0.891	
			_
		Very high ri	sk from given history
		49	

explainable time series tweaking. In

Knowledge and Information Systems 2020

Solution outline

- Consider *S* as an m-dimensional point
- Define an m-sphere with S as its center and radius θ

The transformed time series counterpart
 of S is given by the following equation:

$$\tau_{\mathcal{S}}(\mathbf{S}, p_{ik}^{j}, \epsilon) = \mathcal{S}_{k}^{j} + \frac{\mathcal{S}_{k}^{j} - \mathbf{S}}{\|\mathcal{S}_{k}^{j} - \mathbf{S}\|_{2}} (\theta_{k}^{j} + (\epsilon \delta_{ik}^{j}))$$

Diagnostic text: The cardiac contours are normal. XXXX basilar atelectasis. The lungs are clear. Thoracic spondylosis. Lower cervical XXXX arthritis.

Abnormality tags: Atelectases, Cervical Arthritis, Atelectasis, Spondylarthritis, Thoracic Spondylosis.

Diagnostic text: The cardiac contours are normal. XXXX basilar atelectasis. The lungs are clear. Thoracic spondylosis. Lower cervical XXXX arthritis.

Abnormality tags: Atelectases, Cervical Arthritis, Atelectasis, Spondylarthritis, Thoracic Spondylosis.

Diagnostic text: The cardiac contours are normal. XXXX basilar atelectasis. The lungs are clear. Thoracic spondylosis. Lower cervical XXXX arthritis.

Abnormality tags: Atelectases, Cervical Arthritis, Atelectasis, Spondylarthritis, Thoracic Spondylosis.

Closing remarks

- Security and privacy issues
- Hard to convince public authorities to make more data available to researchers
- Hard to convince doctors to adopt new "black box" models
- Cloud solutions are in many cases unacceptable
- Need to **federated learning** solutions
- Many players/systems are used by practitioners
- Need for a unified cross-border database of medical records

Thanks to...

Isak Karlsson

Jon Rebane

Maria Bampa

Aristides Gionis

Hans E. Persson

Henrik Boström

Hercules Dalianis

We are hiring!

- **Postdoc position:** two years full-time
- **Deadline:** January 15 2021
- Apply here:

https://www.su.se/english/about-the-university/work-atsu/available-jobs?rmpage=job&rmjob=13760&rmlang=UK

• More information about **our group:**

https://datascience.dsv.su.se

Bibliography

- Gunter TD, Terry NP, The Emergence of National Electronic Health Record Architectures in the United States and Australia: Models, Costs, and Questions. J Med Internet Res 2005;7(1):e3
- H.Dalianis, M. Duneld and S. Velupilai, The Stockholm EPR Corpus Characteristics and Some Initial Findings, Swedish Language Technology Conference, (SLTC), 2009
- Skeppstedt, M., Kvist, M., Dalianis, H., Nilsson, G.H. Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study. *Journal of Biomedical Informatics*, 2014
- Iyad Batal, Dmitriy Fradkin, James Harrison, Fabian Moerchen, and Milos Hauskrecht. Mining recent temporal patterns for event detection in multivariate time series data. In ACM SIGKDD, 2012
- Henriksson, A., Kvist, M., Hassel, M., Dalianis, H. Exploration of Adverse Drug Reactions in Semantic Vector Space Models of Clinical Text. In Proc. of ICML Workshop on Machine Learning for Clinical Data Analysis, 2012
- Karlsson, I., Zhao, J., Asker, L. & Boström, H. *Predicting adverse drug events by analyzing electronic patient records.* Proc. of the 14th conference on Artificial Intelligence in Medicine (AIME), Murcia, Spain, 2013

Bibliography

- Karlsson, I., and Zhao, J. Dimensionality reduction with random indexing: an application on adverse drug events detection, Submitted to CBMS, 2014
- Zhao, J., Karlsson, I., Asker, L. & Boström, H. Applying methods for signal detection in spontaneous reports to electronic patient records. KDD 2013 Workshop on Data Mining for Health care (DMH), Chicago, USA, 2013
- Asker, L., Boström, H., Karlsson, I., Panagiotis, P., & Zhao, J. Mining candidates for adverse drug interactions in electronic patient records, Submitted to PETRA, 2014
- Henriksson, A., Conway, M., Duneld, M., Chapman, W. Identifying Synonymy between SNOMED Clinical Terms of Varying Length Using Distributional Analysis of Electronic Health Records. In Proc. of Annual Symposium of the American Medical Informatics Association (AMIA), 2013
- Tran T, Luo W, Phung D, Gupta S, Rana S, Kennedy RL, Larkins A,_Venkatesh S, "A framework for feature extraction from hospital medical data with applications in risk prediction", BMC Bioinformatics, 2014

Bibliography

- Klimov, D., Shknevsky, A. & Shahar, Y., Exploration of patterns predicting renal damage in diabetes type II patients using a visual temporal analysis laboratory. Journal of the American Medical Informatics Association, 22(2), pp.275-289, 2015
- Moskovitch, R. & Shahar, Y. Classification of multivariate time series via temporal abstraction and time intervals mining. Knowledge and Information Systems, 45(1), pp.35-74, 2015
- Moskovitch, R. & Shahar, Y., Classification-driven temporal discretization of multivariate time series. Data Mining and Knowledge Discovery, 29(4), pp.871-913, 2015
- S. Wu, Y. Chen, Mining Non-ambiguous Temporal Patterns for Inter-val-Based Events, IEEE Transactions on Knowledge and Data Engineering, 19 (6), 2007
- Sacchi, L. et al., Data mining with Temporal Abstractions: learning rules from time series. Data Mining and Knowledge Discovery, 15(2), pp.217-247, 2007
- C. Yi-Cheng, J. Ji-Chiang, P. Wen-Chih, L. Suh-Yin, An Efficient Algorithm for Mining Time Interval-based Patterns in Large Databases, CIKM, 2010

Extra slides

Panagiotis Papapetrou

Solution

- Let x be a true-negative instance
- **Goal:** minimum number of feature tweaks (changes) so that x becomes true-positive, x'

Observe:

- If the prediction of the RF is -1, then at least half of its trees predict -1
- If the prediction of <u>a tree</u> is -1, then the example is passed through a negative path, i.e., a path that predicts the class to be -1
- **Solution:** revert these paths and consequently the trees!

Note: if a single transformation results in changing another tree's decision, then ignore it!

- Focus on the trees that predict -1
- For each tree: explore the positive paths,
 i.e., those that predict +1
- Apply the transformations imposed by the positive path

 $\mathbf{x}_{j(\epsilon)}^{+}[i] = \begin{cases} \theta_{i} - \epsilon & \text{if the } i\text{-th condition is } (x_{i} \le \theta_{i}) \\ \theta_{i} + \epsilon & \text{if the } i\text{-th condition is } (x_{i} > \theta_{i}) \end{cases}$

 Choose the transformation with the minimum cost

$$\mathbf{x}' = \operatorname*{arg\,min}_{\mathbf{x}_{j(\epsilon)}^+ \in \Gamma \mid \hat{f}(\mathbf{x}_{j(\epsilon)}^+) = +1} \left\{ \delta(\mathbf{x}, \mathbf{x}_{j(\epsilon)}^+) \right\}$$

Time series tweaking

What is the minimum number of changes to apply to a time series *T* so that a given opaque classifier changes its prediction?

 $\mathcal{T} \rightarrow \mathcal{T}^1 \rightarrow \mathcal{T}^2 \rightarrow \ldots \rightarrow \mathcal{T}'$

- **Reversible tweaking:** each subsequent transformation can override a previous one
- Irreversible tweaking: each subsequent transformation cannot override a previous one

Random Shapelet Forests

Time series tweaking: solution

- Focus on the trees that predict -1
- For each tree, explore the positive paths, i.e., those that **predict +1**
- Try to force those trees to predict +1 by "tweaking" shapelet features of T

Given a non-leaf node (S_k^j, θ_k^j)

- Increase distance:
 - If S_k^j exists in T, that is $d_s(S_k^j, \mathcal{T}) \leq \theta_k^j$
 - and the current node condition demands otherwise
 - ✓ Increase the distance of all matching instances of S_k^i , so that they all fall above the distance threshold θ_k^i

Time series tweaking: solution

- Focus on the trees that **predict** -1
- For each tree, explore the positive paths, i.e., those that predict +1
- Try to force those trees to predict +1 by "tweaking" features of T

Given a non-leaf node (S_k^j, θ_k^j)

- Decrease distance:
 - If \mathcal{S}_k^j does not exist in T, that is $d_s(\mathcal{S}_k^j, \mathcal{T}) > \theta_k^j$
 - o and the current node condition demands otherwise
 - ✓ Decrease the distance of the best matching instance of S_k^i , so that it falls below the distance threshold θ_k^i

How to transform the time series?

- Consider *S* as an m-dimensional point
- Define an m-sphere with S as its center and radius θ

The transformed time series counterpart
 of S is given by the following equation:

$$\tau_{\mathcal{S}}(\mathbf{S}, p_{ik}^{j}, \epsilon) = \mathcal{S}_{k}^{j} + \frac{\mathcal{S}_{k}^{j} - \mathbf{S}}{\|\mathcal{S}_{k}^{j} - \mathbf{S}\|_{2}} (\theta_{k}^{j} + (\epsilon \delta_{ik}^{j}))$$

Experimental setup

• UCR time series repository:

o all binary classification datasets (26 datasets)

• Competitor:

 \odot 1-NN under the Euclidean distance

$$\tau_{NN}(\mathcal{T}, y') = \operatorname*{arg\,min}_{\{\mathcal{T}' | (\hat{y}, \mathcal{T}') \in \mathcal{D}, \hat{y} = y'\}} d_E(\mathcal{T}, \mathcal{T}')$$

Evaluation – metrics

Average cost of successful transformation, i.e.,

how costly is the transformation?

$$c_{\mu}(\tau, y') = \frac{1}{n} \sum_{i=1}^{n} c(\mathcal{T}_i, \tau(\mathcal{T}_i, y'))$$

Compactness of transformation, i.e.,

how much of the time series is changed?

$$compact(\mathcal{T}, \mathcal{T}') = \frac{1}{|\mathcal{T}|} \sum_{i=1}^{|\mathcal{T}|} diff(T_i, T'_i) ,$$

where

$$diff(T_i, T'_i) = \begin{cases} 1, \text{ if } |T_i - T'_i| \le e \\ 0, \text{ otherwise.} \end{cases}$$

Evaluation – result

	Cost		Compactness			Accuracy		
Dataset	$ au_{RT}$	$ au_{IRT}$	$ au_{NN}$	$ au_{RT}$	$ au_{IRT}$	$ au_{NN}$	RSF	NN(1)
	7.3810	7.3810	26.6223	0.5737	0.5737	1.0000	0.8750	0.750
Reversible tweaking	4.5071	4.5098	15.6695	0.5048	0.5169	1.0000	1.0000	0.625
•	1.1447	1.1846	1.9178	0.3824	0.1809	1.0000	1.0000	1.000
results in the least	2.2197	2.5132	22.4809	0.4123	0.4044	1.0000	0.7000	0.490
costly transformations	0.9314	1.1150	1.1704	0.5917	0.4466	0.9999	0.7886	0.714
costly transformations	2.2725	3.1455	30.0943	0.7449	0.7577	1.0000	0.7826	0.663
	1.8730	1.9080	4.1428	0.7976	0.7686	1.0000	0.8750	0.950
ECGFiveDays	1.9722	2.0158	4.2143	0.5215	0.4913	1.0000	1.0000	0.994
GunPoint	1.9787	1.9942	3.6975	0.4712	0.4460	0.9998	1.0000	0.925
ττ	2.1744	2.2187	7.8253	0.6791	0.6621	0.9999	0.8605	0.790
	1.2492	1.2488	3.5817	0.4563	0.4060	0.9999	0.5000	0.384
Irreversible tweaking	1.1791	1.2645	1.3088	0.7262	0.6397	0.9998	0.9726	0.958
results in the most	3.2741	3.9266	18.9703	0.7470	0.7071	1.0000	0.6667	0.666
results in the most	0.6685	0.9877	0.6791	0.6182	0.4493	0.9999	0.8258	0.775
compact transformations	2.4413	2.5313	6.0249	0.5602	0.4834	1.0000	0.9685	0.921
	0.6979	0.9568	0.7574	0.6186	0.5116	0.9998	0.8421	0.778
ProximalPhalanxOutlineCorrect	0.5895	1.0056	0.5326	0.6552	0.4121	0.9997	0.8315	0.809
SonyAIBORobotSurface1	1.7384	1.7260	4.7213	0.4429	0.4394	1.0000	0.9919	1.000
SonyAIBORobotSurface2	1.8601	1.8566	5.6126	0.4133	0.3584	1.0000	0.9796	0.994
	1.2082	1.3628	1.2802	0.6644	0.5464	0.9999	0.9695	0.979
The baseline is too naive	3.1200	3.1436	14.7768	0.3871	0.3718	1.0000	0.9259	0.740
	5.4407	5.8238	17.8733	0.6173	0.5705	1.0000	0.9697	0.787
IWOLEAUECO	0.9112	1.0671	1.3517	0.4966	0.4028	0.9999	1.0000	0.995
Wafer	3.0135	3.1419	8.6207	0.7152	0.6676	0.9999	0.9958	0.997
Wine	0.5052	0.9301	0.1708	0.7529	0.3452	0.9996	1.0000	1.000
WormsTwoClass	5.7723	7.2023	28.7383	0.4416	0.4219	1.0000	0.8269	0.730
Avg.	2.3132	2.5329	8.9552	0.5733	0.4942	0.9999	0.8924	0.824