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Introduction
• Web Services has become an important research topic 

in the fields of the Service-Oriented Architecture (SOA). 
• Automatic or semi-automatic service discovery, 

invocation and composition techniques are on demand.
• The Semantic Web Services seems to be the most 

promising way towards achieving automatic or semi- 
automatic service discovery, invocation, and composition. 
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Problems
• Insufficient usage context information: The current 

work are focusing on ontology based data type 
semantics and do not sufficiently address how a service 
is fitted into its usage context.

• Precise requirements required to locate services:  In 
order to locate the required services, the current work 
requires precise service requirements which are difficult 
to be specified at the preliminary stage of the service 
discovery.

• Insufficient information about inter-relationship 
among service: The current work has not addressed the 
inter-relationships among services sufficiently, which 
makes the service discovery in an isolated manner. 
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We try to describe services by

• using the inter-service relationships. 
• Using the contextual information.
• so easing service composition process.
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Our proposal

• A Context-based Semantic Description 
Framework (CbSDF). 
– To describe services by the usage context 

aspect using Conceptual Graphs and Spider 
Model.

– To use non-monotonic rules to describe the 
pre-conditions and effects of services and the 
conditions for service composition. 

– To search for services based on imprecise 
service requirements.
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Example: Learning Resources
• A learning flow with learning 

resource specifications, but not 
the physical resources.

• Learning resources located 
dynamically at learning time 
based on the specifications.

• The diagram illustrates a 
learning course with learning 
resource specifications. The 
dotted lines represent the links 
dynamically established at 
learning time
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Context-based Semantic 
Description Framework (CbSDF)

• The proposed CbSDF consists of four components:
– Definitions of atomic and composite services

• By having clear definitions of atomic service and composite service, 
we can identify what kind of information is relevant to describing a 
service 

– Service Conceptual Graphs 
• Give an overall and abstract description of the relationships 

between services and their related concepts.
– Semantic Service Description Model (Spider Model) 

• Semantically describes service itself and the relations with other 
services.

– Non-monotonic Rules 
• Describe the pre-conditions and effects of services and the 

conditions for service composition. 
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Conceptual Graphs
• A conceptual graph (CG) is a finite, connected, bipartite 

graph with nodes of one type called concepts and nodes 
of the other type called conceptual relations 
– The label of a concept node consists of two fields separated by a 

colon, [type: referent] i.e. [class: instance].
– Conceptual Relations represent the relationships between 

concept nodes.

• Projection of CG
– π: v → u, where πu v is a sub-graph of u called a projection of v 

in u. π is called the projection operator. v describes a more 
generalised concept than u, u≤v

– Projection concept is important in CG matching and reasoning.
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Dependency Graph of Learning 
Concept

• A learning concept dependency graph Gd is a CG where the 
concept type is restricted to concepts within the Learning Object 
ontology 

– C: a set of learning concept nodes; type(C) returns a set of leaf node 
concepts in the Learning Object ontology.

– R: a set of relation nodes that represent the relations among learning 
concept nodes, including pre-requisite relation type and conceptual 
relation type etc.

– : a set of arcs that associate relation nodes with concept nodes.
– O: the Learning Object ontology.

requireObject Oriented Theory

Java ProgrammingJava A-Z

apply-to Java Swing

similar-to

, , , ( )dG C R E type C O
→

=< > ∈

• An example is illustrated 
in the diagram

E
→
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Four Types of Semantics in Web 
Services

• Data Semantics
– Formal definition of data in Input and output message.

• Functional Semantics
– Formal definition of the web service capability.

• Non-functional Semantics
– Formal definition of quantitative or non-quantitative 

constraints.
• Execution Semantics

– Formal definition of execution flow of services of a 
process or of operations within a service. 
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Graphical Illustration of SSDM 
• The notations used in the diagram are:

– Si =Servicei
– Service’ can be either the parent or ancestor of Servicei
– S1 , S2 , S3 , and S4 are any services.
– I, P is the Inputs and Pre-condition, and O, E is the Outputs and Effects.

Service’

Servicei

S3 -…-S4

Servicei -1 Servicei+1

S1 -Si -S2

Metadata Resource

has_parent

has_components

I, P O, E

consume

is_a_component_of
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Learning Objects Ontology 

• The ontology represents 
the concepts of Learning 
Objects

• Based on the ACM/IEEE 
Computing Curriculum.

• Three levels: Area, Unit, 
and Topic.

• The leaf node of the 
ontology is a course or 
part of a course that can 
be directly taken by 
learners.

Information Technology

Programming Foundation

Object-Oriented Programming

OO Design Classes and Objects Java Programming

Sub-Class Of

Sub-Class Of

Sub-Class Of

Domain

Area Level

Unit Level

Topic Level

......

......

......
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Non-monotonic Rules 
• Reason for using non-monotonic rules

– Handling unpredictable situation in a open service repository.
– Exception handling.

• The non-monotonic rules are described using Defeasible Logic. A 
defeasible

 
theory

 
DT is a triple:

DT = (F, R, >)
– F: a set of facts;
– R: a finite set of rules; 
– >: a superiority relation on R. 

• The rules are divided into two categories:
– General rules
– Domain specific rules

• The rules are used in two ways:
– Describe services pre-conditions and effects.
– Validate service composition results: Trigger-able validation and 

Compose-able validation.
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General Rules
• The general rules are normally used to construct and 

validate composite services and they are applicable to all 
the services, for example :
– r1: if a service’s pre-condition is satisfied, then normally it can be 

executed. 

– r2: if a service is not available, then definitely it cannot be 
executed.

– r3: if two services are composed through input and output data 
flow, then normally the data types of the input and output are 
compatible, i.e. one is a same or sub-type of the other.

– The r2 has higher priority than r1: r2 > r11 2 1 2( , ) ( . ) ( . )composable S S type S Opt type S Ipt⇒ ≤

( ) ( )available S executable S¬ →¬

( . ) ( )satisfy S preCon executable S⇒
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Domain Specific Rules

• The domain specific rules are normally used to 
describe the pre-conditions and effects of 
services and can only be applied to a specific 
domain, for example:
– r1: if the service is supplied with a valid postcode, 

then normally the correct result will be returned.

– r2: if the requested address is in UK, then this service 
is definitely applicable. 

( ) ( )valid postcode result S⇒

( ) ( )location UK applicable S→
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Two-Step Service Discovery 
Mechanism

• The first step is preliminary service 
discovery step using the CG matching 
technique. 
– Requirement → CG
– Match with Service Conceptual Graphs

• The second step, validation and ranking 
step, is to refine the results from the first 
step based on the service requirements, 
the SSDM, and the non-monotonic rules. 
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CG Similarity Calculation 
• A CG similarity Sim is calculated through concept nodes similarity Sc and 

relation node similarity Sr .

• ,

– is the union of all of the common generalisation graphs of G1 and G2 .
– is a function to calculate the semantic similarity between two 

concepts.
– m(Gc ) is the number of the relation nodes in the common overlaps of G1 and G2 . 
– is the number of the relation nodes of the common overlaps in Gi and the 

overlaps’ adjacent relation nodes. 
– a is a value between 0 and 1 representing the impact factor of Sr , which make 

sure that the overall similarity Sim will not be 0 unless both Sc and Sr are 0.  
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Semantic Similarity Ranking 
• In the second step of the service discovery, according to the service 

requirement and the SSDM, the similarities between the services and the 
requirement are calculated. 

– λ: a set of all the semantic characteristics functions.
– λ(): a function that returns the number of semantic characteristics. 
– α(): an element of λ

 

that returns a semantic characteristic which can be, e.g. an 
element of the metadata in the SSDM or the inputs and outputs of a service.

– dist(): a function that calculate the semantic distance between two semantic 
characteristic and its returned value is between 0 and 1.

– ω: a weight factor that specifies how important a semantic characteristic to a 
learner is and its value is between 0 and 1.

– max(): a function returns the greater of its two arguments values.
– R and S: the service requirement and a candidate service.

( ( ), ( ))
( , )

( ( ), ( ))

dist R S
sim R S

max R S
α λ

ω α α

λ λ
∀ ∈

×
=
∑
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Semantic Distance Calculation 
Methods

• Tree Based Similarity
– the semantic similarity between two topics in a ontology is 

defined as a function of the meaning shared by the topics and 
the meaning of each of the individual topics.

• Semantic Cosine Similarity
– Two items ip

 

and iq
 

are considered as two column vectors in the 
user requirement matrix. The similarity between items is 
measured by computing the cosine of these two vectors.

1 ( ) ( ) ( ) ( )
( , ) ( 1) ( ) ( ) ( ) ( )

2 ( ) ( ) ( )c p q

if type p type q and instance p instance q
sim p q depth depth if type p type q and instance p instance q

d d d if type p type q

⎧ = =
⎪= + = ≠⎨
⎪ + ≠⎩
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Conclusion
• A Context-based Semantic Description Framework (CbSDF) is 

proposed for service description and a two-step service discovery 
mechanism for service search. 

• Aiming to provide a service description framework and a search 
mechanism that can tolerant imprecise specified service 
requirements. 

• The key technologies used to capture the semantics from imprecise 
requirements and validate the service discovery results are the CG 
and the non-monotonic logic, i.e. Defeasible Logic. 

• Continue future research on CG and non-monotonic rules in order to 
improve service description, discovery, and composition techniques.

• Design a suitable evaluation model to evaluate our work.
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