
Semantics Service Composition
Using Conceptual Graph for

Addressing Imprecise Service
Requirements

William Song
Computer ScienceComputer Science
Durham University, UKDurham University, UK
w.w.song@durham.ac.ukw.w.song@durham.ac.uk

14 October 2008 DSV, KTH/SU 2

Introduction
• Web Services has become an important research topic

in the fields of the Service-Oriented Architecture (SOA).
• Automatic or semi-automatic service discovery,

invocation and composition techniques are on demand.
• The Semantic Web Services seems to be the most

promising way towards achieving automatic or semi-
automatic service discovery, invocation, and composition.

14 October 2008 DSV, KTH/SU 3

Problems
• Insufficient usage context information: The current

work are focusing on ontology based data type
semantics and do not sufficiently address how a service
is fitted into its usage context.

• Precise requirements required to locate services: In
order to locate the required services, the current work
requires precise service requirements which are difficult
to be specified at the preliminary stage of the service
discovery.

• Insufficient information about inter-relationship
among service: The current work has not addressed the
inter-relationships among services sufficiently, which
makes the service discovery in an isolated manner.

14 October 2008 DSV, KTH/SU 4

We try to describe services by

• using the inter-service relationships.
• Using the contextual information.
• so easing service composition process.

14 October 2008 DSV, KTH/SU 5

Our proposal

• A Context-based Semantic Description
Framework (CbSDF).
– To describe services by the usage context

aspect using Conceptual Graphs and Spider
Model.

– To use non-monotonic rules to describe the
pre-conditions and effects of services and the
conditions for service composition.

– To search for services based on imprecise
service requirements.

14 October 2008 DSV, KTH/SU 6

Example: Learning Resources
• A learning flow with learning

resource specifications, but not
the physical resources.

• Learning resources located
dynamically at learning time
based on the specifications.

• The diagram illustrates a
learning course with learning
resource specifications. The
dotted lines represent the links
dynamically established at
learning time

14 October 2008 DSV, KTH/SU 7

Context-based Semantic
Description Framework (CbSDF)

• The proposed CbSDF consists of four components:
– Definitions of atomic and composite services

• By having clear definitions of atomic service and composite service,
we can identify what kind of information is relevant to describing a
service

– Service Conceptual Graphs
• Give an overall and abstract description of the relationships

between services and their related concepts.
– Semantic Service Description Model (Spider Model)

• Semantically describes service itself and the relations with other
services.

– Non-monotonic Rules
• Describe the pre-conditions and effects of services and the

conditions for service composition.

14 October 2008 DSV, KTH/SU 8

Conceptual Graphs
• A conceptual graph (CG) is a finite, connected, bipartite

graph with nodes of one type called concepts and nodes
of the other type called conceptual relations
– The label of a concept node consists of two fields separated by a

colon, [type: referent] i.e. [class: instance].
– Conceptual Relations represent the relationships between

concept nodes.

• Projection of CG
– π: v → u, where πu v is a sub-graph of u called a projection of v

in u. π is called the projection operator. v describes a more
generalised concept than u, u≤v

– Projection concept is important in CG matching and reasoning.

14 October 2008 DSV, KTH/SU 9

Dependency Graph of Learning
Concept

• A learning concept dependency graph Gd is a CG where the
concept type is restricted to concepts within the Learning Object
ontology

– C: a set of learning concept nodes; type(C) returns a set of leaf node
concepts in the Learning Object ontology.

– R: a set of relation nodes that represent the relations among learning
concept nodes, including pre-requisite relation type and conceptual
relation type etc.

– : a set of arcs that associate relation nodes with concept nodes.
– O: the Learning Object ontology.

requireObject Oriented Theory

Java ProgrammingJava A-Z

apply-to Java Swing

similar-to

, , , ()dG C R E type C O
→

=< > ∈

• An example is illustrated
in the diagram

E
→

14 October 2008 DSV, KTH/SU 10

Four Types of Semantics in Web
Services

• Data Semantics
– Formal definition of data in Input and output message.

• Functional Semantics
– Formal definition of the web service capability.

• Non-functional Semantics
– Formal definition of quantitative or non-quantitative

constraints.
• Execution Semantics

– Formal definition of execution flow of services of a
process or of operations within a service.

14 October 2008 DSV, KTH/SU 11

Graphical Illustration of SSDM
• The notations used in the diagram are:

– Si =Servicei
– Service’ can be either the parent or ancestor of Servicei
– S1 , S2 , S3 , and S4 are any services.
– I, P is the Inputs and Pre-condition, and O, E is the Outputs and Effects.

Service’

Servicei

S3 -…-S4

Servicei -1 Servicei+1

S1 -Si -S2

Metadata Resource

has_parent

has_components

I, P O, E

consume

is_a_component_of

14 October 2008 DSV, KTH/SU 12

Learning Objects Ontology

• The ontology represents
the concepts of Learning
Objects

• Based on the ACM/IEEE
Computing Curriculum.

• Three levels: Area, Unit,
and Topic.

• The leaf node of the
ontology is a course or
part of a course that can
be directly taken by
learners.

Information Technology

Programming Foundation

Object-Oriented Programming

OO Design Classes and Objects Java Programming

Sub-Class Of

Sub-Class Of

Sub-Class Of

Domain

Area Level

Unit Level

Topic Level

......

......

......

14 October 2008 DSV, KTH/SU 13

Non-monotonic Rules
• Reason for using non-monotonic rules

– Handling unpredictable situation in a open service repository.
– Exception handling.

• The non-monotonic rules are described using Defeasible Logic. A
defeasible

theory

DT is a triple:

DT = (F, R, >)
– F: a set of facts;
– R: a finite set of rules;
– >: a superiority relation on R.

• The rules are divided into two categories:
– General rules
– Domain specific rules

• The rules are used in two ways:
– Describe services pre-conditions and effects.
– Validate service composition results: Trigger-able validation and

Compose-able validation.

14 October 2008 DSV, KTH/SU 14

General Rules
• The general rules are normally used to construct and

validate composite services and they are applicable to all
the services, for example :
– r1: if a service’s pre-condition is satisfied, then normally it can be

executed.

– r2: if a service is not available, then definitely it cannot be
executed.

– r3: if two services are composed through input and output data
flow, then normally the data types of the input and output are
compatible, i.e. one is a same or sub-type of the other.

– The r2 has higher priority than r1: r2 > r11 2 1 2(,) (.) (.)composable S S type S Opt type S Ipt⇒ ≤

() ()available S executable S¬ →¬

(.) ()satisfy S preCon executable S⇒

14 October 2008 DSV, KTH/SU 15

Domain Specific Rules

• The domain specific rules are normally used to
describe the pre-conditions and effects of
services and can only be applied to a specific
domain, for example:
– r1: if the service is supplied with a valid postcode,

then normally the correct result will be returned.

– r2: if the requested address is in UK, then this service
is definitely applicable.

() ()valid postcode result S⇒

() ()location UK applicable S→

14 October 2008 DSV, KTH/SU 16

Two-Step Service Discovery
Mechanism

• The first step is preliminary service
discovery step using the CG matching
technique.
– Requirement → CG
– Match with Service Conceptual Graphs

• The second step, validation and ranking
step, is to refine the results from the first
step based on the service requirements,
the SSDM, and the non-monotonic rules.

14 October 2008 DSV, KTH/SU 17

CG Similarity Calculation
• A CG similarity Sim is calculated through concept nodes similarity Sc and

relation node similarity Sr .

• ,

– is the union of all of the common generalisation graphs of G1 and G2 .
– is a function to calculate the semantic similarity between two

concepts.
– m(Gc) is the number of the relation nodes in the common overlaps of G1 and G2 .
– is the number of the relation nodes of the common overlaps in Gi and the

overlaps’ adjacent relation nodes.
– a is a value between 0 and 1 representing the impact factor of Sr , which make

sure that the overall similarity Sim will not be 0 unless both Sc and Sr are 0.

1 2

1 2

2 (() (,)) () ()c G G
c G c Gc O

S weight c c c weight c weight cβ π π
∈ ∈∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟= × +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ ∑
U

1 2

2 ()
() ()

c c

c
r

G G

m GS
m G m G

=
+

((1))c rSim S a a S= × + − ×

OU
1 2

(,)G Gc cβ π π

()
cG im G

14 October 2008 DSV, KTH/SU 18

Semantic Similarity Ranking
• In the second step of the service discovery, according to the service

requirement and the SSDM, the similarities between the services and the
requirement are calculated.

– λ: a set of all the semantic characteristics functions.
– λ(): a function that returns the number of semantic characteristics.
– α(): an element of λ

that returns a semantic characteristic which can be, e.g. an
element of the metadata in the SSDM or the inputs and outputs of a service.

– dist(): a function that calculate the semantic distance between two semantic
characteristic and its returned value is between 0 and 1.

– ω: a weight factor that specifies how important a semantic characteristic to a
learner is and its value is between 0 and 1.

– max(): a function returns the greater of its two arguments values.
– R and S: the service requirement and a candidate service.

((), ())
(,)

((), ())

dist R S
sim R S

max R S
α λ

ω α α

λ λ
∀ ∈

×
=
∑

14 October 2008 DSV, KTH/SU 19

Semantic Distance Calculation
Methods

• Tree Based Similarity
– the semantic similarity between two topics in a ontology is

defined as a function of the meaning shared by the topics and
the meaning of each of the individual topics.

• Semantic Cosine Similarity
– Two items ip

and iq

are considered as two column vectors in the
user requirement matrix. The similarity between items is
measured by computing the cosine of these two vectors.

1 () () () ()
(,) (1) () () () ()

2 () () ()c p q

if type p type q and instance p instance q
sim p q depth depth if type p type q and instance p instance q

d d d if type p type q

⎧ = =
⎪= + = ≠⎨
⎪ + ≠⎩

14 October 2008 DSV, KTH/SU 20

Conclusion
• A Context-based Semantic Description Framework (CbSDF) is

proposed for service description and a two-step service discovery
mechanism for service search.

• Aiming to provide a service description framework and a search
mechanism that can tolerant imprecise specified service
requirements.

• The key technologies used to capture the semantics from imprecise
requirements and validate the service discovery results are the CG
and the non-monotonic logic, i.e. Defeasible Logic.

• Continue future research on CG and non-monotonic rules in order to
improve service description, discovery, and composition techniques.

• Design a suitable evaluation model to evaluate our work.

	Semantics Service Composition Using Conceptual Graph for Addressing Imprecise Service Requirements
	Introduction
	Problems
	We try to describe services by
	Our proposal
	Example: Learning Resources
	Context-based Semantic Description Framework (CbSDF)
	Conceptual Graphs
	Dependency Graph of Learning Concept
	Four Types of Semantics in Web Services
	Graphical Illustration of SSDM
	Learning Objects Ontology
	Non-monotonic Rules
	General Rules
	Domain Specific Rules
	Two-Step Service Discovery Mechanism
	CG Similarity Calculation
	Semantic Similarity Ranking
	Semantic Distance Calculation Methods
	Conclusion

