
©1981–2004, Deitel & Associates, Inc. All rights reserved.

37
JavaServer Pages (JSP):

Bonus for Java
Developers

Objectives
• To be able to create and deploy JavaServer Pages.
• To use JSP’s implicit objects and scriptlets to create

dynamic Web pages.
• To specify global JSP information with directives.
• To use actions to manipulate JavaBeans in a JSP, to

include resources dynamically and to forward
requests to other JSPs.

A tomato does not communicate with a tomato, we believe.
We could be wrong.
Gustav Eckstein

A donkey appears to me like a horse translated into Dutch.
Georg Christoph Licthtenberg

Talent is a question of quantity. Talent does not write one
page: it writes three hundred.
Jules Renard

Every action must be due to one or other of seven causes:
chance, nature, compulsion, habit, reasoning, anger, or
appetite.
Aristotle

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1329

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.1 Introduction1

Our discussion of client–server networking continues in this chapter with JavaServer Pag-
es (JSP)—an extension of servlet technology. JavaServer Pages simplify the delivery of
dynamic Web content. They enable Web application programmers to create dynamic con-
tent by reusing predefined components and by interacting with components using server-
side scripting. JavaServer Page programmers can reuse JavaBeans and create custom tag
libraries that encapsulate complex, dynamic functionality. Custom-tag libraries even en-
able Web-page designers who are not familiar with Java to enhance Web pages with pow-
erful dynamic content and processing capabilities.

In addition to the types for programming servlets (Chapter 36), classes and interfaces
specific to JavaServer Pages programming are located in packages javax.servlet.jsp
and javax.servlet.jsp.tagext. We discuss many of these classes and interfaces
throughout this chapter as we present JavaServer Pages fundamentals. For a complete
description of JavaServer Pages, see the JavaServer Pages 1.2 specification, which can be
downloaded from java.sun.com/products/jsp/download.html. We also include
other JSP resources in Section 37.9. [Note: The source code, images and the examples in
this chapter can be found on the CD that accompanies this book and at www.deitel.com.]

Outline

37.1 Introduction
37.2 JavaServer Pages Overview
37.3 First JavaServer Page Example
37.4 Implicit Objects
37.5 Scripting

37.5.1 Scripting Components
37.5.2 Scripting Example

37.6 Standard Actions
37.6.1 <jsp:include> Action
37.6.2 <jsp:forward> Action
37.6.3 <jsp:useBean> Action

37.7 Directives
37.7.1 page Directive
37.7.2 include Directive

37.8 Case Study: Guest Book
37.9 Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. We include this chapter as a bonus for Java developers who also are familiar with Java Database
Connectivity (JDBC). Readers interested in learning to program in Java may want to refer to our
books Java How To Program, Fifth Edition and Advanced Java 2 Platform How to Program.

1330 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.2 JavaServer Pages Overview
There are four key components to JSPs: directives, actions, scriptlets and tag libraries.
Directives are messages to the JSP container that enable the programmer to specify page
settings, to include content from other resources and to specify custom tag libraries for use
in a JSP. Actions encapsulate functionality in predefined tags that programmers can embed
in a JSP. Actions often are performed based on the information sent to the server as part of
a particular client request. They also can create Java objects for use in JSP scriptlets. Script-
lets, or scripting elements, enable programmers to insert Java code that interacts with com-
ponents in a JSP (and possibly other Web application components) to perform request
processing. Tag libraries are part of the tag extension mechanism that enables program-
mers to create custom tags. Such tags enable programmers to manipulate JSP content.
These JSP component types are discussed in detail in subsequent sections.

In some ways, Java Server Pages look like standard XHTML or XML documents. In
fact, JSPs normally include XHTML or XML markup. Such markup is known as fixed-
template data or fixed-template text. Fixed-template data often help a programmer
decide whether to use a servlet or a JSP. Programmers tend to use JSPs when most of the
content sent to the client is fixed template data and only a small portion of the content is
generated dynamically with Java code. Programmers typically use servlets when only a
small portion of the content sent to the client is fixed-template data. In fact, some servlets
do not produce content. Rather, they perform a task on behalf of the client, then invoke
other servlets or JSPs to provide a response. Note that in most cases, servlet and JSP tech-
nologies are interchangeable. As with servlets, JSPs normally execute as part of a Web
server. The server component that executes them often is referred to as the JSP container.

Software Engineering Observation 37.1
Literal text in a JSP becomes string literals in the servlet that represents the translated JSP.37.1

When a JSP-enabled server receives the first request for a JSP, the JSP container trans-
lates that JSP into a Java servlet that handles the current request and future requests to the
JSP. If there are any errors compiling the new servlet, these errors result in translation-
time errors. The JSP container places the Java statements that implement the JSP’s
response in method _jspService at translation time. If the new servlet compiles properly,
the JSP container invokes method _jspService to process the request. The JSP may
respond directly to the request or may invoke other Web application components to assist
in processing the request. Any errors that occur during request processing are known as
request-time errors.

Performance Tip 37.1
Some JSP containers translate JSPs to servlets at installation time. This eliminates the trans-
lation overhead for the first client that requests each JSP. 37.1

Overall, the request/response mechanism and life cycle of a JSP is the same as that of
a servlet. JSPs can define methods jspInit and jspDestroy (similar to servlet methods
init and destroy), which the JSP container invokes when initializing a JSP and termi-
nating a JSP, respectively. JSP programmers can define these methods using JSP declara-
tions—part of the JSP scripting mechanism.

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1331

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.3 First JavaServer Page Example
We begin our introduction to JavaServer Pages with a simple example (Fig. 37.1) in which
the current date and time are inserted into a Web page using a JSP expression.

As you can see, most of clock.jsp consists of XHTML markup. In cases like this,
JSPs are easier to implement than servlets. In a servlet that performs the same task as this
JSP, each line of XHTML markup typically is a separate Java statement that outputs the
string representing the markup as part of the response to the client. Writing code to output
markup can often lead to errors. Most JSP editors provide syntax coloring to help program-
mers check that their markup follows proper syntax.

Software Engineering Observation 37.2
JavaServer Pages are easier to implement than servlets when the response to a client request
consists primarily of markup that remains constant between requests. 37.2

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.1: clock.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <meta http-equiv = "refresh" content = "60" />
11
12 <title>A Simple JSP Example</title>
13
14 <style type = "text/css">
15 .big { font-family: helvetica, arial, sans-serif;
16 font-weight: bold;
17 font-size: 2em; }
18 </style>
19 </head>
20
21 <body>
22 <p class = "big">Simple JSP Example</p>
23
24 <table style = "border: 6px outset;">
25 <tr>
26 <td style = "background-color: black;">
27 <p class = "big" style = "color: cyan;">
28
29
30
31
32 </p>
33 </td>
34 </tr>
35 </table>
36 </body>

Fig. 37.1 JSP expression inserting the date and time into a Web page. (Part 1 of 2.)

<!-- JSP expression to insert date/time -->
<%= new java.util.Date() %>

1332 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

The JSP of Fig. 37.1 generates an XHTML document that displays the current date and
time. The key line in this JSP (line 30) is the expression

<%= new java.util.Date() %>

JSP expressions are delimited by <%= and %>. The preceding expression creates a new in-
stance of class Date (package java.util). When the client requests this JSP, the preced-
ing expression inserts the String representation of the date and time in the response to the
client. [Note: Proper internationalization requires that the JSP return the date in the client
locale’s format. In this example, the server’s locale determines the String representation
of the Date. In Fig. 37.9, clock2.jsp demonstrates how to determine the client’s locale
and uses a DateFormat (package java.text) object to format the date using that locale.]

Software Engineering Observation 37.3
The JSP container converts the result of every JSP expression into a string that is output as
part of the response to the client. 37.3

37
38 </html>

Fig. 37.1 JSP expression inserting the date and time into a Web page. (Part 2 of 2.)

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1333

©1981–2004, Deitel & Associates, Inc. All rights reserved.

We use the XHTML meta element in line 10 to set a refresh interval of 60 seconds
for the document. This causes the browser to request clock.jsp every 60 seconds. For
each request to clock.jsp, the JSP container reevaluates the expression in line 30, cre-
ating a new Date object with the server’s current date and time.

As in Chapter 36, we use Apache Tomcat to test our JSPs in the iw3htp3 Web appli-
cation we created previously. For details on creating and configuring the iw3htp3 Web
application, review Section 36.3.1 and Section 36.3.2. To test clock.jsp, create a new
directory called jsp in the iw3htp3 subdirectory of Tomcat’s webapps directory. Next,
copy clock.jsp into the jsp directory. Open your Web browser and enter the following
URL to test clock.jsp:

http://localhost:8080/iw3htp3/jsp/clock.jsp

When you first invoke the JSP, notice the delay as Tomcat translates the JSP into a servlet
and invokes the servlet to respond to your request. [Note: It is not necessary to create a di-
rectory named jsp in a Web application. We use this directory to separate the examples in
this chapter from the servlet examples in Chapter 36.]

37.4 Implicit Objects
Implicit objects provide programmers with access to many servlet capabilities in the con-
text of a JavaServer Page. Implicit objects have four scopes: application, page, request
and session. The JSP and servlet container application owns objects with application
scope. Any servlet or JSP can manipulate such objects. Objects with page scope exist only
in the page that defines them. Each page has its own instances of the page-scope implicit
objects. Objects with request scope exist for the duration of the request. For example, a JSP
can partially process a request, then forward the request to another servlet or JSP for further
processing. Request-scope objects go out of scope when request processing completes with
a response to the client. Objects with session scope exist for the client’s entire browsing
session. Figure 37.2 describes the JSP implicit objects and their scopes. This chapter dem-
onstrates several of these objects.

Implicit object Description

Application Scope

application This javax.servlet.ServletContext object represents the container in
which the JSP executes.

Page Scope

config This javax.servlet.ServletConfig object represents the JSP configu-
ration options. As with servlets, configuration options can be specified in a
Web application descriptor.

exception This java.lang.Throwable object represents the exception that is passed
to the JSP error page. This object is available only in a JSP error page.

Fig. 37.2 JSP implicit objects. (Part 1 of 2.)

1334 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Note that many of the implicit objects extend classes or implement interfaces discussed
in Chapter 36. Thus, JSPs can use the same methods that servlets use to interact with such
objects, as described in Chapter 36. Most of the examples in this chapter use one or more
of the implicit objects in Fig. 37.2.

37.5 Scripting
JavaServer Pages often present dynamically generated content as part of an XHTML doc-
ument that is sent to the client in response to a request. In some cases, the content is static,
but is output only if certain conditions are met during a request (such as providing values
in a form that submits a request). JSP programmers can insert Java code and logic in a JSP
using scripting.

37.5.1 Scripting Components
JSP scripting components include scriptlets, comments, expressions, declarations and es-
cape sequences. This section describes each of these scripting components. Many of these
scripting components are demonstrated in Fig. 37.4 at the end of Section 37.5.2.

Scriptlets are blocks of code delimited by <% and %>. They contain Java statements that
the container places in method _jspService at translation time.

out This javax.servlet.jsp.JspWriter object writes text as part of the
response to a request. This object is used implicitly with JSP expressions and
actions that insert string content in a response.

page This java.lang.Object object represents the this reference for the cur-
rent JSP instance.

pageContext This javax.servlet.jsp.PageContext object hides the implementation
details of the underlying servlet and JSP container and provides JSP pro-
grammers with access to the implicit objects discussed in this table.

response This object represents the response to the client and is normally an instance
of a class that implements HttpServletResponse (package javax.serv-
let.http). If a protocol other than HTTP is used, this object is an instance
of a class that implements javax.servlet.ServletResponse.

Request Scope

request This object represents the client request. The object normally is an instance
of a class that implements HttpServletRequest (package javax.serv-
let.http). If a protocol other than HTTP is used, this object is an instance
of a subclass of javax.servlet.ServletRequest.

Session Scope

session This javax.servlet.http.HttpSession object represents the client ses-
sion information if such a session has been created. This object is available
only in pages that participate in a session.

Implicit object Description

Fig. 37.2 JSP implicit objects. (Part 2 of 2.)

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1335

©1981–2004, Deitel & Associates, Inc. All rights reserved.

JSPs support three comment styles: JSP comments, XHTML comments and scripting-
language comments. JSP comments are delimited by <%-- and --%>. These can be placed
throughout a JSP, but not inside scriptlets. XHTML comments are delimited with <!--
and -->. These comments can be placed throughout a JSP, but not inside scriptlets.
Scripting language comments are currently Java comments, because Java is the only JSP
scripting language at the present time. Scriptlets can use Java’s end-of-line // comments
and traditional comments (delimited by /* and */). JSP comments and scripting-language
comments are ignored and do not appear in the response to a client. When clients view the
source code of a JSP response, they will see only the XHTML comments in the source code.
The different comment styles are useful for separating comments that the user should be
able to see from comments that document logic processed on the server.

Common Programming Error 37.1
Placing a JSP comment or XHTML comment inside a scriptlet is a translation-time syntax
error that prevents the JSP from being translated properly. 37.1

A JSP expression, delimited by <%= and %>, contains a Java expression that is evalu-
ated when a client requests the JSP containing the expression. The container converts the
result of a JSP expression to a String object, then outputs the String as part of the
response to the client.

Declarations (delimited by <%! and %>) enable a JSP programmer to define variables
and methods for use in a JSP. Variables become instance variables of the servlet class that
represents the translated JSP. Similarly, methods become members of the class that repre-
sents the translated JSP. Declarations of variables and methods in a JSP use Java syntax.
Thus, a variable declaration must end in a semicolon, as in

<%! int counter = 0; %>

Common Programming Error 37.2
Declaring a variable without using a terminating semicolon is a syntax error. 37.2

Software Engineering Observation 37.4
JSPs should not store client state information in instance variables. Rather, JSPs should use
the JSP implicit session object. 37.4

Special characters or character sequences that the JSP container normally uses to
delimit JSP code can be included in a JSP as literal characters in scripting elements, fixed
template data and attribute values using escape sequences. Figure 37.3 shows the literal
character or characters and the corresponding escape sequences and discusses where to use
the escape sequences.

Literal Escape sequence Description

<% <\% The character sequence <% normally indicates the beginning of
a scriptlet. The <\% escape sequence places the literal charac-
ters <% in the response to the client.

Fig. 37.3 JSP escape sequences. (Part 1 of 2.)

1336 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.5.2 Scripting Example
The JSP of Fig. 37.4 demonstrates responding to get requests with basic scripting capabil-
ities. The JSP enables the user to input a first name, then outputs that name in the response.
Using scripting, the JSP determines whether a firstName parameter was passed as part of
the request; if not, the JSP returns an XHTML document containing a form through which
the user can input a first name. Otherwise, the JSP obtains the firstName value and uses
it as part of an XHTML document that welcomes the user to JavaServer Pages.

%> %\> The character sequence %> normally indicates the end of a
scriptlet. The %\> escape sequence places the literal characters
%> in the response to the client.

'
"
\

\'
\"
\\

As with string literals in a Java program, the escape sequences
for characters ', " and \ allow these characters to appear in
attribute values. Remember that the literal text in a JSP
becomes string literals in the servlet that represents the trans-
lated JSP.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.4: welcome.jsp -->
6 <!-- JSP that processes a "get" request containing data. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9

10 <!-- head section of document -->
11 <head>
12 <title>Processing "get" requests with data</title>
13 </head>
14
15 <!-- body section of document -->
16 <body>
17
18
19
20
21
22
23
24
25 <h1>
26 Hello ,

Fig. 37.4 Scripting a JavaServer Page—welcome.jsp. (Part 1 of 2.)

Literal Escape sequence Description

Fig. 37.3 JSP escape sequences. (Part 2 of 2.)

<% // begin scriptlet

String name = request.getParameter("firstName");

if (name != null) {

%> <%-- end scriptlet to insert fixed template data --%>

<%= name %>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1337

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Notice that the majority of the code in Fig. 37.4 is XHTML markup (i.e., fixed tem-
plate data). Throughout the body element are several scriptlets (lines 17–23, 30–35 and 45–

27 Welcome to JavaServer Pages!
28 </h1>
29
30
31
32
33
34
35
36
37 <form action = "welcome.jsp" method = "get">
38 <p>Type your first name and press Submit</p>
39
40 <p><input type = "text" name = "firstName" />
41 <input type = "submit" value = "Submit" />
42 </p>
43 </form>
44
45
46
47
48
49
50 </body>
51
52 </html> <!-- end XHTML document -->

Fig. 37.4 Scripting a JavaServer Page—welcome.jsp. (Part 2 of 2.)

<% // continue scriptlet

} // end if
else {

%> <%-- end scriptlet to insert fixed template data --%>

<% // continue scriptlet

} // end else

%> <%-- end scriptlet --%>

1338 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

49) and a JSP expression (line 26). Note that three comment styles appear in this JSP (in
line 5, line17 and line 23).

The scriptlets define an if…else statement that determines whether the JSP received a
value for the first name as part of the request. Line 19 uses method getParameter of JSP
implicit object request (an HttpServletRequest object) to obtain the value for param-
eter firstName and assigns the result to variable name. Line 21 determines if name is not
null, (i.e., a value for the first name was passed to the JSP as part of the request). If this con-
dition is true, the scriptlet terminates temporarily so the fixed template data in lines 25–28
can be output. The JSP expression in line 26 outputs the value of variable name (i.e., the first
name passed to the JSP as a request parameter. The scriptlet continues in lines 30–35 with the
closing brace of the if statement’s body and the beginning of the else part of the if…else
statement. If the condition in line 21 is false, lines 25–28 are not output. Instead, lines 37–
43 output a form element. The user can type a first name in the form and press the Submit
button to request the JSP again and execute the if statement’s body (lines 25–28).

Software Engineering Observation 37.5
Scriptlets, expressions and fixed template data can be intermixed in a JSP to create different
responses based on information in a request to a JSP. 37.5

Error-Prevention Tip 37.1
It is sometimes difficult to debug errors in a JSP, because the line numbers reported by a JSP
container normally refer to the servlet that represents the translated JSP, not the original
JSP line numbers. Program development environments such as Sun Microsystems, Inc.’s Sun
One Studio 4 enable JSPs to be compiled in the environment, so you can see syntax error
messages. These messages include the statement in the servlet that represents the translated
JSP, which can be helpful in determining the error. 37.1

Error-Prevention Tip 37.2
Many JSP containers store the servlets representing the translated JSPs. For example, the
Tomcat installation directory contains a subdirectory called work in which you can find the
source code for the servlets translated by Tomcat. 37.2

To test Fig. 37.4 in Tomcat, copy welcome.jsp into the jsp directory created in
Section 37.3. Open your Web browser and enter the following URL to test welcome.jsp:

http://localhost:8080/iw3htp3/jsp/welcome.jsp

When you first execute the JSP, it displays the form in which you can enter your first name,
because the preceding URL does not pass a firstName parameter to the JSP. After you
submit your first name, your browser should appear as shown in the second screen capture
of Fig. 37.4. [Note: As with servlets, it is possible to pass get request arguments as part of
the URL.] The following URL supplies the firstName parameter to welcome.jsp:

http://localhost:8080/iw3htp3/jsp/welcome.jsp?firstName=Paul

37.6 Standard Actions
We continue our JSP discussion with the JSP standard actions (Fig. 37.5). These actions
provide JSP implementors with access to several of the most common tasks performed in
a JSP, such as including content from other resources, forwarding requests to other resourc-
es and interacting with JavaBeans. JSP containers process actions at request time. Actions

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1339

©1981–2004, Deitel & Associates, Inc. All rights reserved.

are delimited by <jsp:action> and </jsp:action>, where action is the standard action
name. In cases where nothing appears between the starting and ending tags, the XML emp-
ty element syntax <jsp:action /> can be used. Figure 37.5 summarizes the JSP standard
actions. We use the actions in the next several subsections.

37.6.1 <jsp:include> Action
JavaServer Pages support two include mechanisms—the <jsp:include> action and the
include directive. Action <jsp:include> enables dynamic content to be included in a
JavaServer Page at request time (not translation time as with the include directive). If the
included resource changes between requests, the next request to the JSP containing the
<jsp:include> action includes the new content of the resource. On the other hand, the
include directive copies the content into the JSP once, at JSP translation time. If the in-
cluded resource changes, the new content will not be reflected in the JSP that used the in-
clude directive unless that JSP is recompiled. Figure 37.6 describes the attributes of action
<jsp:include>.

Software Engineering Observation 37.6
According to the JavaServer Pages 1.1 specification, a JSP container is allowed to determine
whether a resource included with the include directive has changed. If so, the container
can recompile the JSP that included the resource. However, the specification does not pro-
vide a mechanism to indicate a change in an included resource to the container. 37.6

Action Description

<jsp:include> Dynamically includes another resource in a JSP. As the JSP exe-
cutes, the referenced resource is included and processed.

<jsp:forward> Forwards request processing to another JSP, servlet or static page.
This action terminates the current JSP’s execution.

<jsp:plugin> Allows a plug-in component to be added to a page in the form of a
browser-specific object or embed HTML element. In the case of a
Java applet, this action enables the downloading and installation of
the Java Plug-in, if it is not already installed on the client computer.

<jsp:param> Used with the include, forward and plugin actions to specify
additional name/value pairs of information for use by these actions.

JavaBean Manipulation

<jsp:useBean> Specifies that the JSP uses a JavaBean instance. This action specifies
the scope of the bean and assigns it an ID that scripting components
can use to manipulate the bean.

<jsp:setProperty> Sets a property in the specified JavaBean instance. A special feature
of this action is automatic matching of request parameters to bean
properties of the same name.

<jsp:getProperty> Gets a property in the specified JavaBean instance and converts the
result to a string for output in the response.

Fig. 37.5 JSP standard actions.

1340 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Performance Tip 37.2
The <jsp:include> action is more flexible than the include directive, but requires more
overhead when page contents change frequently. Use the <jsp:include> action only when
dynamic content is necessary. 37.2

Common Programming Error 37.3
Setting the <jsp:include> action’s flush attribute to false is a translation-time error.
Currently, the flush attribute supports only true values. 37.3

Common Programming Error 37.4
Not specifying the <jsp:include> action’s flush attribute is a translation-time error.
Specifying this attribute is mandatory. 37.4

Common Programming Error 37.5
Specifying in a <jsp:include> action a page that is not part of the same Web application
is a request-time error—the <jsp:include> action will not include any content. 37.5

The next example demonstrates action <jsp:include> using four XHTML and JSP
resources that represent both static and dynamic content. JavaServer Page include.jsp
(Fig. 37.10) includes three other resources: banner.html (Fig. 37.7), toc.html
(Fig. 37.8) and clock2.jsp (Fig. 37.9). JavaServer Page include.jsp creates an
XHTML document containing a table in which banner.html spans two columns across
the top of the table, toc.html is the left column of the second row and clock2.jsp (a
simplified version of Fig. 37.1) is the right column of the second row. Figure 37.10 uses
three <jsp:include> actions (lines 38–39, 48 and 55–56) as the content in td elements
of the table. Using two XHTML documents and a JSP in Fig. 37.10 demonstrates that
JSPs can include both static and dynamic content. The output window in Fig. 37.10 dem-
onstrates the result of one request to include.jsp.

Attribute Description

page Specifies the relative URI path of the resource to include. The resource
must be part of the same Web application.

flush Specifies whether the buffer should be flushed after the include is
performed. In JSP 1.1, this attribute is required to be true.

Fig. 37.6 Action <jsp:include> attributes.

1 <!-- Fig. 37.7: banner.html -->
2 <!-- banner to include in another document -->
3 <div style = "width: 580px">
4 <p>
5 Java(TM), C, C++, Visual Basic(R),

Fig. 37.7 Banner (banner.html) to include across the top of the XHTML document
created by Fig. 37.10. (Part 1 of 2.)

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1341

©1981–2004, Deitel & Associates, Inc. All rights reserved.

6 Object Technology, and
 Internet and
7 World Wide Web Programming Training

8 On-Site Seminars Delivered Worldwide
9 </p>

10
11 <p>
12 deitel@deitel.com
13
978.461.5880
12 Clock Tower Place, Suite 200,
14 Maynard, MA 01754
15 </p>
16 </div>

1 <!-- Fig. 37.8: toc.html -->
2 <!-- contents to include in another document -->
3
4 <p>
5 Publications/BookStore
6 </p>
7
8 <p>
9 What's New

10 </p>
11
12 <p>
13 Downloads/Resources
14 </p>
15
16 <p>
17 FAQ (Frequently Asked Questions)
18 </p>
19
20 <p>
21 Who we are
22 </p>
23
24 <p>
25 Home Page
26 </p>
27
28 <p>Send questions or comments about this site to
29
30 deitel@deitel.com
31

32 Copyright 1995-2003 by Deitel & Associates, Inc.
33 All Rights Reserved.
34 </p>

Fig. 37.8 Table of contents (toc.html) to include down the left side of the XHTML
document created by Fig. 37.10.

Fig. 37.7 Banner (banner.html) to include across the top of the XHTML document
created by Fig. 37.10. (Part 2 of 2.)

1342 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Figure 37.9 (clock2.jsp) demonstrates how to determine the client’s Locale
(package java.util) and uses that Locale to format a Date with a DateFormat
(package java.text) object. Line 14 invokes the request object’s getLocale method,
which returns the client’s Locale. Lines 17–20 invoke DateFormat static method
getDateTimeInstance to obtain a DateFormat object. The first two arguments indicate
that the date and time formats should each be LONG format (other options are FULL,
MEDIUM, SHORT and DEFAULT). The third argument specifies the Locale for which the
DateFormat object should format the date. Line 25 invokes the DateFormat object’s
format method to produce a String representation of the Date. The DateFormat object
formats this String for the Locale specified in lines 17–20. [Note: This example works
for Western languages that use the ISO-8859-1 character set. However, for languages that
do not use this character set, the JSP must specify the proper character set using the JSP
page directive (Section 37.7.1). At the site java.sun.com/j2se/1.4.2/docs/guide/
intl/encoding.doc.html, Sun provides a list of character encodings. The response’s
content type defines the character set to use in the response. The content type has the form:
"mimeType;charset=encoding" (e.g., "text/html;charset=ISO-8859-1".]

1 <!-- Fig. 37.9: clock2.jsp -->
2 <!-- date and time to include in another document -->
3
4 <table>
5 <tr>
6 <td style = "background-color: black;">
7 <p class = "big" style = "color: cyan; font-size: 3em;
8 font-weight: bold;">
9

10 <%-- script to determine client local and --%>
11 <%-- format date accordingly --%>
12
13
14
15
16
17
18
19
20
21
22
23
24 <%-- output date --%>
25
26 </p>
27 </td>
28 </tr>
29 </table>

Fig. 37.9 JSP clock2.jsp to include as the main content in the XHTML document
created by Fig. 37.10.

<%
 // get client locale

java.util.Locale locale = request.getLocale();

 // get DateFormat for client's Locale
java.text.DateFormat dateFormat =

java.text.DateFormat.getDateTimeInstance(
java.text.DateFormat.LONG,
java.text.DateFormat.LONG, locale);

%> <%-- end script --%>

<%= dateFormat.format(new java.util.Date()) %>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1343

©1981–2004, Deitel & Associates, Inc. All rights reserved.

To test Fig. 37.10 in Tomcat, copy banner.html, toc.html, clock2.jsp,
include.jsp and the images directory into the jsp directory created in Section 37.3.
Open your Web browser and enter the following URL to test include.jsp:

http://localhost:8080/iw3htp3/jsp/include.jsp

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.10: include.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Using jsp:include</title>
11
12 <style type = "text/css">
13 body {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 }
16
17 table, tr, td {
18 font-size: .9em;
19 border: 3px groove;
20 padding: 5px;
21 background-color: #dddddd;
22 }
23 </style>
24 </head>
25
26 <body>
27 <table>
28 <tr>
29 <td style = "width: 160px; text-align: center">
30 <img src = "images/logotiny.png"
31 width = "140" height = "93"
32 alt = "Deitel & Associates, Inc. Logo" />
33 </td>
34
35 <td>
36
37
38
39
40
41 </td>
42 </tr>
43
44 <tr>
45 <td style = "width: 160px">
46

Fig. 37.10 JSP include.jsp Includes resources with <jsp:include>. (Part 1 of 2.)

<%-- include banner.html in this JSP --%>
<jsp:include page = "banner.html"

flush = "true" />

1344 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.6.2 <jsp:forward> Action
Action <jsp:forward> enables a JSP to forward request processing to a different re-
source. Request processing by the original JSP terminates as soon as the JSP forwards the
request. Action <jsp:forward> has only a page attribute that specifies the relative URL
of the resource (in the same Web application) to which the request should be forwarded.

47 <%-- include toc.html in this JSP --%>
48 <jsp:include page = "toc.html" flush = "true" />
49
50 </td>
51
52 <td style = "vertical-align: top">
53
54
55
56
57
58 </td>
59 </tr>
60 </table>
61 </body>
62 </html>

Fig. 37.10 JSP include.jsp Includes resources with <jsp:include>. (Part 2 of 2.)

<%-- include clock2.jsp in this JSP --%>
<jsp:include page = "clock2.jsp"

flush = "true" />

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1345

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Software Engineering Observation 37.7
When using the <jsp:forward> action, the resource to which the request will be forwarded
must be in the same context (Web application) as the JSP that originally received the request. 37.7

JavaServer Page forward1.jsp (Fig. 37.11) is a modified version of welcome.jsp
(Fig. 37.4). The primary difference is in lines 22–25 in which JavaServer Page
forward1.jsp forwards the request to JavaServer Page forward2.jsp (Fig. 37.12).
Notice the <jsp:param> action in lines 23–24. This action adds a request parameter rep-
resenting the date and time at which the initial request was received to the request object
that is forwarded to forward2.jsp.

The <jsp:param> action specifies name/value pairs of information that are passed to
the <jsp:include>, <jsp:forward> and <jsp:plugin> actions. Every <jsp:param>
action has two required attributes: name and value. If a <jsp:param> action specifies a
parameter that already exists in the request, the new value for the parameter takes precedence
over the original value. All values for that parameter can be obtained by using the JSP implicit
object request’s getParameterValues method, which returns an array of Strings.

JSP forward2.jsp uses the name specified in the <jsp:param> action ("date") to
obtain the date and time. It also uses the firstName parameter originally passed to
forward1.jsp to obtain the user’s first name. JSP expressions in Fig. 37.12 (lines 23 and
31) insert the request parameter values in the response to the client. The screen capture in
Fig. 37.11 shows the initial interaction with the client. The screen capture in Fig. 37.12
shows the results returned to the client after the request was forwarded to forward2.jsp.

To test Fig. 37.11 and Fig. 37.12 in Tomcat, copy forward1.jsp and
forward2.jsp into the jsp directory created in Section 37.3. Open your Web browser
and enter the following URL to test forward1.jsp:

http://localhost:8080/iw3htp3/jsp/forward1.jsp

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.11: forward1.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Forward request to another JSP</title>
11 </head>
12
13 <body>
14
15
16
17
18
19

Fig. 37.11 JSP forward1.jsp receives a firstName parameter, adds a date to the
request parameters and forwards the request to forward2.jsp for further
processing. (Part 1 of 2.)

<% // begin scriptlet

String name = request.getParameter("firstName");

if (name != null) {

1346 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 <form action = "forward1.jsp" method = "get">
35 <p>Type your first name and press Submit</p>
36
37 <p><input type = "text" name = "firstName" />
38 <input type = "submit" value = "Submit" />
39 </p>
40 </form>
41
42
43
44
45
46
47 </body>
48
49 </html> <!-- end XHTML document -->

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4

Fig. 37.12 JSP forward2.jsp receives a request (from forward1.jsp in this example)
and uses the request parameters as part of the response to the client. (Part
1 of 2.)

Fig. 37.11 JSP forward1.jsp receives a firstName parameter, adds a date to the
request parameters and forwards the request to forward2.jsp for further
processing. (Part 2 of 2.)

%> <%-- end scriptlet to insert fixed template data --%>

<jsp:forward page = "forward2.jsp">
<jsp:param name = "date"

value = "<%= new java.util.Date() %>" />
</jsp:forward>

<% // continue scriptlet

} // end if
else {

%> <%-- end scriptlet to insert fixed template data --%>

<% // continue scriptlet

} // end else

%> <%-- end scriptlet --%>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1347

©1981–2004, Deitel & Associates, Inc. All rights reserved.

5 <!-- forward2.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml"
8
9 <head>

10 <title>Processing a forwarded request</title>
11
12 <style type = "text/css">
13 .big {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 font-weight: bold;
16 font-size: 2em;
17 }
18 </style>
19 </head>
20
21 <body>
22 <p class = "big">
23 Hello ,

24 Your request was received
 and forwarded at
25 </p>
26
27 <table style = "border: 6px outset;">
28 <tr>
29 <td style = "background-color: black;">
30 <p class = "big" style = "color: cyan;">
31
32 </p>
33 </td>
34 </tr>
35 </table>
36 </body>
37
38 </html>

Fig. 37.12 JSP forward2.jsp receives a request (from forward1.jsp in this example)
and uses the request parameters as part of the response to the client. (Part
2 of 2.)

<%= request.getParameter("firstName") %>

<%= request.getParameter("date") %>

1348 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.6.3 <jsp:useBean> Action
Action <jsp:useBean> enables a JSP to manipulate a Java object. This action creates a
Java object or locates an existing object for use in the JSP. Figure 37.13 summarizes action
<jsp:useBean>’s attributes. If attributes class and beanName are not specified, the JSP
container attempts to locate an existing object of the type specified in attribute type. Like
JSP implicit objects, objects specified with action <jsp:useBean> have page, request,
session or application scope that indicates where they can be used in a Web applica-
tion. Objects with page scope are accessible only by the page in which they are defined.
Multiple JSP pages potentially can access objects in other scopes. For example, all JSPs
that process a single request can access an object in request scope.

Common Programming Error 37.6
One or both of the <jsp:useBean> attributes class and type must be specified; other-
wise, a translation-time error occurs. 37.6

Many Web sites place rotating advertisements on their Web pages. Each visit to one of
these pages typically results in a different advertisement being displayed in the user’s Web
browser. Typically, clicking an advertisement takes you to the Web site of the company
that placed the advertisement. Our first example of <jsp:useBean> demonstrates a
simple advertisement rotator bean that cycles through a list of five advertisements. In this
example, the advertisements are covers for some of our books. Clicking a cover takes you
to the Amazon.com Web site where you can read about and possibly order the book.

The Rotator bean (Fig. 37.14) has three methods: getImage, getLink and nextAd.
Method getImage returns the image file name for the book cover image. Method
getLink returns the hyperlink to the book at Amazon.com. Method nextAd updates the
Rotator so the next calls to getImage and getLink return information for a different
advertisement. Methods getImage and getLink each represent a read-only JavaBean
property—image and link, respectively. Rotator keeps track of the current advertise-
ment with its selectedIndex variable, which is updated by invoking method nextAd.

Attribute Description

id The name used to manipulate the Java object with actions <jsp:setProp-
erty> and <jsp:getProperty>. A variable of this name is also declared for
use in JSP scripting elements. The name specified here is case sensitive.

scope The scope in which the Java object is accessible—page, request, session or
application. The default scope is page.

class The fully qualified class name of the Java object.

beanName The name of a bean that can be used with method instantiate of class
java.beans.Beans to load a JavaBean into memory.

type The type of the JavaBean. This can be the same type as the class attribute, a
superclass of that type or an interface implemented by that type. The default
value is the same as for attribute class. A ClassCastException occurs if
the Java object is not of the type specified with attribute type.

Fig. 37.13 Attributes of the <jsp:useBean> action.

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1349

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Lines 7–8 of JavaServer Page adrotator.jsp (Fig. 37.15) obtain a reference to an
instance of class Rotator. The id for the bean is rotator. The JSP uses this name to
manipulate the bean. The scope of the object is session, so that each individual client will
see the same sequence of ads during their browsing session. When adrotator.jsp
receives a request from a new client, the JSP container creates the bean and stores it in JSP
that client’s session (an HttpSession object). In each request to this JSP, line 22 uses
the rotator reference created in line 7 to invoke the Rotator bean’s nextAd method.
Thus, each request will receive the next advertisement selected by the Rotator bean. Lines

1 // Fig. 37.14: Rotator.java
2 // A JavaBean that rotates advertisements.
3 package com.deitel.iw3htp3.jsp;
4
5 public class Rotator {
6 private String images[] = { "images/advjHTP1.jpg",
7 "images/cppHTP4.jpg", "images/iw3HTP3.jpg",
8 "images/jwsFEP1.jpg", "images/vbnetHTP2.jpg" };
9

10 private String links[] = {
11 "http://www.amazon.com/exec/obidos/ASIN/0130895601/" +
12 "deitelassociatin",
13 "http://www.amazon.com/exec/obidos/ASIN/0130384747/" +
14 "deitelassociatin",
15 "http://www.amazon.com/exec/obidos/ASIN/0131450913/" +
16 "deitelassociatin",
17 "http://www.amazon.com/exec/obidos/ASIN/0130461342/" +
18 "deitelassociatin",
19 "http://www.amazon.com/exec/obidos/ASIN/0130293636/" +
20 "deitelassociatin" };
21
22 private int selectedIndex = 0;
23
24 // returns image file name for current ad
25 public String getImage()
26 {
27 return images[selectedIndex];
28 }
29
30 // returns the URL for ad's corresponding Web site
31 public String getLink()
32 {
33 return links[selectedIndex];
34 }
35
36 // update selectedIndex so next calls to getImage and
37 // getLink return a different advertisement
38 public void nextAd()
39 {
40 selectedIndex = (selectedIndex + 1) % images.length;
41 }
42 }

Fig. 37.14 Rotator bean that maintains a set of advertisements.

1350 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

29–34 define a hyperlink to the Amazon.com site for a particular book. Lines 29–30 intro-
duce action <jsp:getProperty> to obtain the value of the Rotator bean’s link prop-
erty. Action <jsp:getProperty> has two attributes—name and property—that
specify the bean object to manipulate and the property to get. If the JavaBean object uses
standard JavaBean naming conventions, the method used to obtain the link property value
from the bean should be getLink. Action <jsp:getProperty> invokes getLink on the
bean referenced with rotator, converts the return value into a String and outputs the
String as part of the response to the client. The link property becomes the value of the
hyperlink’s href attribute. The hyperlink is represented in the resulting Web page as the
book cover image. Lines 32–33 create an img element and use another <jsp:getProp-
erty> action to obtain the Rotator bean’s image property value.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.15: adrotator.jsp -->
6
7
8
9

10 <html xmlns = "http://www.w3.org/1999/xhtml">
11
12 <head>
13 <title>AdRotator Example</title>
14
15 <style type = "text/css">
16 .big { font-family: helvetica, arial, sans-serif;
17 font-weight: bold;
18 font-size: 2em }
19 </style>
20
21 <%-- update advertisement --%>
22
23 </head>
24
25 <body>
26 <p class = "big">AdRotator Example</p>
27
28 <p>
29 <a href = "<jsp:getProperty name = "rotator"
30 property = "link" />">
31
32 <img src = "<jsp:getProperty name = "rotator"
33 property = "image" />" alt = "advertisement" />
34
35 </p>
36 </body>
37 </html>

Fig. 37.15 JSP adrotator.jsp uses a Rotator bean to display a different
advertisement on each request for the page. (Part 1 of 2.)

<jsp:useBean id = "rotator" scope = "application"
class = "com.deitel.iw3htp3.jsp.Rotator" />

<% rotator.nextAd(); %>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1351

©1981–2004, Deitel & Associates, Inc. All rights reserved.

The link and image properties also can be obtained with JSP expressions. For example,
action <jsp:getProperty> in lines 29–30 can be replaced with the expression

<%= rotator.getLink() %>

Similarly, action <jsp:getProperty> in lines 32–33 can be replaced with the expression

<%= rotator.getImage() %>

To test adrotator.jsp in Tomcat, copy adrotator.jsp into the jsp directory
created in Section 37.3. You should have copied the images directory into the jsp direc-
tory when you tested Fig. 37.10. If not, you must copy the images directory there now.
Copy Rotator.class into the iw3htp3 Web application’s WEB-INF\classes direc-
tory in Tomcat. [Note: This example will work only if the proper package directory struc-
ture for Rotator is defined in the classes directory. Rotator is defined in package
com.deitel.iw3htp3.jsp.] Open your Web browser and enter the following URL to
test adrotator.jsp:

http://localhost:8080/iw3htp3/jsp/adrotator.jsp

Try reloading this JSP several times in your browser to see the advertisement change with
each request.

Fig. 37.15 JSP adrotator.jsp uses a Rotator bean to display a different
advertisement on each request for the page. (Part 2 of 2.)

1352 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Action <jsp:setProperty> sets JavaBean property values and is particularly useful
for mapping request parameter values to JavaBean properties. Request parameters can be
used to set properties of primitive types boolean, byte, char, int, long, float and
double and java.lang types String, Boolean, Byte, Character, Integer, Long,
Float and Double. Figure 37.16 summarizes the <jsp:setProperty> attributes.

Common Programming Error 37.7
Use action <jsp:setProperty>’s value attribute to set JavaBean property types that
cannot be set with request parameters; otherwise, conversion errors occur. 37.7

Software Engineering Observation 37.8
Action <jsp:setProperty> can use request-parameter values to set JavaBean properties
only for properties of the following types: Strings, primitive types (boolean, byte, char,
short, int, long, float and double) and type wrapper classes (Boolean, Byte, Char-
acter, Short, Integer, Long, Float and Double). 37.8

37.7 Directives
Directives are messages to the JSP container that enable the programmer to specify page
settings (such as the error page), to include content from other resources and to specify cus-
tom-tag libraries for use in a JSP. Directives (delimited by <%@ and %>) are processed at
translation time. Thus, directives do not produce any immediate output, because they are
processed before the JSP accepts any requests. Figure 37.17 summarizes the three directive
types. These directives are discussed in the next several subsections.

Attribute Description

name The ID of the JavaBean for which a property (or properties) will be set.

property The name of the property to set. Specifying "*" for this attribute causes
the JSP to match the request parameters to the properties of the bean.
For each request parameter that matches (i.e., the name of the request
parameter is identical to the bean’s property name), the corresponding
property in the bean is set to the value of the parameter. If the value of
the request parameter is "", the property value in the bean remains
unchanged.

param If request parameter names do not match bean property names, this
attribute can be used to specify which request parameter should be used
to obtain the value for a specific bean property. This attribute is
optional. If this attribute is omitted, the request parameter names must
match bean property names.

value The value to assign to a bean property. The value typically is the result
of a JSP expression. This attribute is particularly useful for setting bean
properties that cannot be set using request parameters. This attribute is
optional. If this attribute is omitted, the JavaBean property must be of a
type that can be set using request parameters.

Fig. 37.16 Attributes of the <jsp:setProperty> action.

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1353

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.7.1 page Directive
The page directive specifies global settings for the JSP in the JSP container. There can be
many page directives, provided that there is only one occurrence of each attribute. The
only exception to this is the import attribute, which can be used repeatedly to import Java
packages used in the JSP. Figure 37.18 summarizes the attributes of the page directive.

Directive Description

page Defines page settings for the JSP container to process.

include Causes the JSP container to perform a translation-time insertion of another
resource’s content. As the JSP is translated into a servlet and compiled, the ref-
erenced file replaces the include directive and is translated as if it were origi-
nally part of the JSP.

taglib Allows programmers to define new tags in the form of tag libraries, which can
be used to encapsulate functionality and simplify the coding of a JSP.

Fig. 37.17 JSP directives.

Attribute Description

language The scripting language used in the JSP. Currently, the only valid value for this
attribute is java.

extends Specifies the class from which the translated JSP will be inherited. This
attribute must be a fully qualified class name.

import Specifies a comma-separated list of fully qualified type names and/or pack-
ages that will be used in the current JSP. When the scripting language is java,
the default import list is java.lang.*, javax.servlet.*, javax.serv-
let.jsp.* and javax.servlet.http.*. If multiple import properties are
specified, the package names are placed in a list by the container.

session Specifies whether the page participates in a session. The values for this
attribute are true (participates in a session—the default) or false (does not
participate in a session). When the page is part of a session, implicit object
session is available for use in the page. Otherwise, session is not available,
and using session in the scripting code results in a translation-time error.

buffer Specifies the size of the output buffer used with the implicit object out. The
value of this attribute can be none for no buffering, or a value such as 8kb (the
default buffer size). The JSP specification indicates that the buffer used must
be at least the size specified.

Fig. 37.18 Attributes of the page directive. (Part 1 of 2.)

1354 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Common Programming Error 37.8
Providing multiple page directives with one or more repeated attributes in common is a JSP
translation-time error. Also, providing a page directive with an attribute or value that is not
recognized is a JSP translation-time error. 37.8

Software Engineering Observation 37.9
According to the JSP specification section 2.7.1, the extends attribute “should not be used
without careful consideration as it restricts the ability of the JSP container to provide spe-
cialized superclasses that may improve on the quality of rendered service.” Remember that
a Java class can extend exactly one other class. If your JSP specifies an explicit superclass,
the JSP container cannot translate your JSP into a subclass of one of the container applica-
tion’s own enhanced servlet classes. 37.9

Common Programming Error 37.9
Using JSP implicit object session in a JSP that does not have its page directive attribute
session set to true is a translation-time error. 37.9

autoFlush When set to true (the default), this attribute indicates that the output buffer
used with implicit object out should be flushed automatically when the buffer
fills. If set to false, an exception occurs if the buffer overflows. This
attribute’s value must be true if the buffer attribute is set to none.

isThreadSafe Specifies if the page is thread safe. If true (the default), the page is consid-
ered to be thread safe, and it can process multiple requests at the same time. If
false, the servlet that represents the page implements interface
java.lang.SingleThreadModel and only one request can be processed by
that JSP at a time. The JSP standard allows multiple instances of a JSP to
exists for JSPs that are not thread safe. This enables the container to handle
requests more efficiently. However, this does not guarantee that resources
shared across JSP instances are accessed in a thread-safe manner.

info Specifies an information string that describes the page. This string is returned
by the getServletInfo method of the servlet that represents the translated
JSP. This method can be invoked through the JSP’s implicit page object.

errorPage Any exceptions in the current page that are not caught are sent to the error
page for processing. The error page implicit object exception references the
original exception.

isErrorPage Specifies if the current page is an error page that will be invoked in response to
an error on another page. If the attribute value is true, the implicit object
exception is created and references the original exception that occurred. If
false (the default), any use of the exception object in the page results in a
translation-time error.

contentType Specifies the MIME type of the data in the response to the client. The default
type is text/html.

Attribute Description

Fig. 37.18 Attributes of the page directive. (Part 2 of 2.)

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1355

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.7.2 include Directive
The include directive includes the content of another resource once, at JSP translation
time. The include directive has only one attribute—file—that specifies the URL of the
resource to include. The difference between directive include and action <jsp:in-
clude> is noticeable only if the included content changes. For example, if the definition
of an XHTML document changes after it is included with directive include, future invo-
cations of the JSP will show the original content of the XHTML document, not the new
content. In contrast, action <jsp:include> is processed in each request to the JSP. There-
fore, changes to included content would be apparent in the next request to the JSP that uses
action <jsp:include>.

JSP includeDirective.jsp (Fig. 37.19) reimplements include.jsp (Fig. 37.10)
using include directives. To test includeDirective.jsp in Tomcat, copy include-
Directive.jsp into the jsp directory created in Section 37.3. Open your Web browser
and enter the following URL to test includeDirective.jsp:

http://localhost:8080/iw3htp3/jsp/includeDirective.jsp

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.19: includeDirective.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Using the include directive</title>
11
12 <style type = "text/css">
13 body {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 }
16
17 table, tr, td {
18 font-size: .9em;
19 border: 3px groove;
20 padding: 5px;
21 background-color: #dddddd;
22 }
23 </style>
24 </head>
25
26 <body>
27 <table>
28 <tr>
29 <td style = "width: 160px; text-align: center">
30 <img src = "images/logotiny.png"
31 width = "140" height = "93"
32 alt = "Deitel & Associates, Inc. Logo" />

Fig. 37.19 JSP includeDirective.jsp demonstrates including content at
translation-time with directive include. (Part 1 of 2.)

1356 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

33 </td>
34
35 <td>
36
37 <%-- include banner.html in this JSP --%>
38
39
40 </td>
41 </tr>
42
43 <tr>
44 <td style = "width: 160px">
45
46 <%-- include toc.html in this JSP --%>
47
48
49 </td>
50
51 <td style = "vertical-align: top">
52
53 <%-- include clock2.jsp in this JSP --%>
54
55
56 </td>
57 </tr>
58 </table>
59 </body>
60 </html>

Fig. 37.19 JSP includeDirective.jsp demonstrates including content at
translation-time with directive include. (Part 2 of 2.)

<%@ include file = "banner.html" %>

<%@ include file = "toc.html" %>

<%@ include file = "clock2.jsp" %>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1357

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.8 Case Study: Guest Book
Our next example is a guest book that enables users to place their first name, last name and
e-mail address into a guest-book database. After submitting their information, users see a
Web page containing all the users in the guest book. Each person’s e-mail address is dis-
played as a hyperlink that allows the user to send an e-mail message to the person. The ex-
ample demonstrates action <jsp:setProperty>, the JSP page directive, JSP error pages
and the use of JDBC.

The guest book example consists of JavaBeans GuestBean (Fig. 37.20) and Guest-
DataBean (Fig. 37.21), and JSPs guestBookLogin.jsp (Fig. 37.22), guestBook-
View.jsp (Fig. 37.23) and guestBookErrorPage.jsp (Fig. 37.24). Sample outputs
from this example are shown in Fig. 37.25. JavaBean GuestBean (Fig. 37.20) defines
three guest properties: firstName, lastName and email. Each is a read/write property
with set and get methods to manipulate the property.

1 // Fig. 37.20: GuestBean.java
2 // JavaBean to store data for a guest in the guest book.
3 package com.deitel.iw3htp3.jsp.beans;
4
5 public class GuestBean {
6 private String firstName, lastName, email;
7
8 // set the guest's first name
9 public void setFirstName(String name)

10 {
11 firstName = name;
12 }
13
14 // get the guest's first name
15 public String getFirstName()
16 {
17 return firstName;
18 }
19
20 // set the guest's last name
21 public void setLastName(String name)
22 {
23 lastName = name;
24 }
25
26 // get the guest's last name
27 public String getLastName()
28 {
29 return lastName;
30 }
31
32 // set the guest's email address
33 public void setEmail(String address)
34 {
35 email = address;
36 }

Fig. 37.20 GuestBean stores information for one guest. (Part 1 of 2.)

1358 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

JavaBean GuestDataBean (Fig. 37.21) connects to the guestbook database and
provides methods getGuestList and addGuest to manipulate the database. The guest-
book database has a single table (guests) containing three columns (firstName, last-
Name and email). [Note: The examples folder for this chapter contains the Access database
(guestbook.mdb) used in this example. For information on setting up an ODBC Data
Source Name to reference this database, please see www.deitel.com/books/iw3HTP3/
iw3htp3.html.].

37
38 // get the guest's email address
39 public String getEmail()
40 {
41 return email;
42 }
43 }

1 // Fig. 37.21: GuestDataBean.java
2 // Class GuestDataBean makes a database connection and supports
3 // inserting and retrieving data from the database.
4 package com.deitel.iw3htp3.jsp.beans;
5
6 // Java core packages
7 import java.io.*;
8 import java.sql.*;
9 import java.util.*;

10
11 public class GuestDataBean {
12 private Connection connection;
13 private PreparedStatement addRecord, getRecords;
14
15 // construct TitlesBean object
16 public GuestDataBean() throws Exception
17 {
18 // load the Cloudscape driver
19 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
20
21 // connect to the database
22 connection = DriverManager.getConnection(
23 "jdbc:odbc:guestbook");
24
25 statement = connection.createStatement();
26 }
27
28 // return an ArrayList of GuestBeans
29 public ArrayList getGuestList() throws SQLException
30 {
31 ArrayList guestList = new ArrayList();

Fig. 37.21 GuestDataBean performs database access on behalf of
guestBookLogin.jsp. (Part 1 of 2.)

Fig. 37.20 GuestBean stores information for one guest. (Part 2 of 2.)

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1359

©1981–2004, Deitel & Associates, Inc. All rights reserved.

GuestDataBean method getGuestList (lines 29–49) returns an ArrayList of
GuestBean objects representing the guests in the database. Method getGuestList cre-
ates the GuestBean objects from the ResultSet returned by Statement method exe-
cuteQuery (lines 34–35).

GuestDataBean method addGuest (lines 52–57) receives a GuestBean as an argu-
ment and uses the GuestBean’s properties as the arguments to Statement method exe-
cuteUpdate (lines 54–56). This Statement inserts a new guest in the database.

32
33 // obtain list of titles
34 ResultSet results = statement.executeQuery(
35 "SELECT firstName, lastName, email FROM guests");
36
37 // get row data
38 while (results.next()) {
39 GuestBean guest = new GuestBean();
40
41 guest.setFirstName(results.getString(1));
42 guest.setLastName(results.getString(2));
43 guest.setEmail(results.getString(3));
44
45 guestList.add(guest);
46 }
47
48 return guestList;
49 }
50
51 // insert a guest in guestbook database
52 public void addGuest(GuestBean guest) throws SQLException
53 {
54 statement.executeUpdate("INSERT INTO guests (firstName, " +
55 "lastName, email) VALUES ('" + guest.getFirstName() + "', '" +
56 guest.getLastName() + "', '" + guest.getEmail() + "')");
57 }
58
59 // close statements and terminate database connection
60 protected void finalize()
61 {
62 // attempt to close database connection
63 try {
64 statement.close();
65 connection.close();
66 }
67
68 // process SQLException on close operation
69 catch (SQLException sqlException) {
70 sqlException.printStackTrace();
71 }
72 }
73 }

Fig. 37.21 GuestDataBean performs database access on behalf of
guestBookLogin.jsp. (Part 2 of 2.)

1360 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Note that the GuestDataBean’s constructor, getGuestList and addGuest
methods do not process potential exceptions. In the constructor, line 19 can throw a
ClassNotFoundException, and the other statements can throw SQLExceptions. Sim-
ilarly, SQLExceptions can be thrown from the bodies of methods getGuestList and
addGuest. In this example, we purposely let any exceptions that occur get passed back to
the JSP that invokes the GuestDataBean’s constructor or methods. This enables us to
demonstrate JSP error pages. When a JSP performs an operation that causes an exception,
the JSP can include scriptlets that catch the exception and process it. Exceptions that are
not caught can be forwarded to a JSP error page for handling.

JavaServer Page guestBookLogin.jsp (Fig. 37.22) is a modified version of
forward1.jsp (Fig. 37.11) that displays a form in which users can enter their first name,
last name and e-mail address. When the user submits the form, guestBookLogin.jsp is
requested again, so it can ensure that all the data values were entered. If not, the guest-
BookLogin.jsp responds with the form again, so the user can fill in missing field(s). If
the user supplies all three pieces of information, guestBookLogin.jsp forwards the
request to guestBookView.jsp, which displays the guest book contents.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.22: guestBookLogin.jsp -->
6
7 <%-- page settings --%>
8
9

10 <%-- beans used in this JSP --%>
11
12
13
14
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Guest Book Login</title>
20
21 <style type = "text/css">
22 body {
23 font-family: tahoma, helvetica, arial, sans-serif;
24 }
25
26 table, tr, td {
27 font-size: .9em;
28 border: 3px groove;
29 padding: 5px;
30 background-color: #dddddd;
31 }

Fig. 37.22 guestBookLogin.jsp enables the user to submit a first name, a last name
and an e-mail address to be placed in the guest book. (Part 1 of 3.)

<%@ page errorPage = "guestBookErrorPage.jsp" %>

<jsp:useBean id = "guest" scope = "page"
class = "com.deitel.iw3htp3.jsp.beans.GuestBean" />

<jsp:useBean id = "guestData" scope = "request"
class = "com.deitel.iw3htp3.jsp.beans.GuestDataBean"

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1361

©1981–2004, Deitel & Associates, Inc. All rights reserved.

32 </style>
33 </head>
34
35 <body>
36 <jsp:setProperty name = "guest" property = "*" />
37
38
39
40
41
42
43
44
45
46 <form method = "post" action = "guestBookLogin.jsp">
47 <p>Enter your first name, last name and email
48 address to register in our guest book.</p>
49
50 <table>
51 <tr>
52 <td>First name</td>
53
54 <td>
55 <input type = "text" name = "firstName" />
56 </td>
57 </tr>
58
59 <tr>
60 <td>Last name</td>
61
62 <td>
63 <input type = "text" name = "lastName" />
64 </td>
65 </tr>
66
67 <tr>
68 <td>Email</td>
69
70 <td>
71 <input type = "text" name = "email" />
72 </td>
73 </tr>
74
75 <tr>
76 <td colspan = "2">
77 <input type = "submit"
78 value = "Submit" />
79 </td>
80 </tr>
81 </table>
82 </form>

Fig. 37.22 guestBookLogin.jsp enables the user to submit a first name, a last name
and an e-mail address to be placed in the guest book. (Part 2 of 3.)

<% // start scriptlet

if (guest.getFirstName() == null ||
guest.getLastName() == null ||
guest.getEmail() == null) {

%> <%-- end scriptlet to insert fixed template data --%>

1362 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Line 8 of guestBookLogin.jsp uses the page directive, which defines information
that is globally available in a JSP. Directives are delimited by <%@ and %>. In this case, the
page directive’s errorPage attribute is set to guestBookErrorPage.jsp (Fig. 37.24),
indicating that all uncaught exceptions are forwarded to guestBookErrorPage.jsp for
processing.

Lines 11–14 define two <jsp:useBean> actions. Lines 11–12 create an instance of
GuestBean called guest. This bean has page scope—it exists for use only in this page.
Lines 13–14 create an instance of GuestDataBean called guestData. This bean has
request scope—it exists for use in this page and any other page that helps process a single
client request. Thus, when guestBookLogin.jsp forwards a request to guestBook-
View.jsp, the same GuestDataBean instance is still available for use in guestBook-
View.jsp.

Line 36 demonstrates setting properties of the GuestBean called guest with request
parameter values. The input elements in lines 55, 63 and 71 have the same names as the
GuestBean properties. So, we use action <jsp:setProperty>’s ability to match request
parameters to properties by specifying "*" for attribute property. Line 36 also can set the
properties individually with the following lines:

<jsp:setProperty name = "guest" property = "firstName"
param = "firstName" />

<jsp:setProperty name = "guest" property = "lastName"
param = "lastName" />

<jsp:setProperty name = "guest" property = "email"
param = "email" />

83
84
85
86
87
88
89
90
91
92 <%-- forward to display guest book contents --%>
93 <jsp:forward page = "guestBookView.jsp" />
94
95
96
97
98
99
100 </body>
101
102 </html>

Fig. 37.22 guestBookLogin.jsp enables the user to submit a first name, a last name
and an e-mail address to be placed in the guest book. (Part 3 of 3.)

<% // continue scriptlet

} // end if
else {

guestData.addGuest(guest);

%> <%-- end scriptlet to insert jsp:forward action --%>

<% // continue scriptlet

} // end else

%> <%-- end scriptlet --%>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1363

©1981–2004, Deitel & Associates, Inc. All rights reserved.

If the request parameters had names that differed from GuestBean’s properties, the param
attribute in each of the preceding <jsp:setProperty> actions could be changed to the
appropriate request parameter name.

JavaServer Page guestBookView.jsp (Fig. 37.23) outputs an XHTML document
containing the guest-book entries in tabular format. Lines 8–10 define three page direc-
tives. Line 8 specifies that the error page for this JSP is guestBookErrorPage.jsp. Line
9 indicates that classes from package java.util are used in this JSP, and line 10 indicates
that classes from our package com.deitel.iw3htp3.jsp.beans also are used.

Lines 13–14 specify a <jsp:useBean> action that declares a reference to a Guest-
DataBean object. If a GuestDataBean object already exists, the action returns a reference
to the existing object. Otherwise, the action creates a GuestDataBean for use in this JSP.
Lines 50–59 define a scriptlet that gets the guest list from the GuestDataBean and begin
a loop to output the entries. Lines 61–70 combine fixed template text with JSP expressions
to create rows in the table of guest book data that will be displayed on the client. The
scriptlet in lines 72–76 terminates the loop.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.23: guestBookView.jsp -->
6
7 <%-- page settings --%>
8
9

10
11
12 <%-- GuestDataBean to obtain guest list --%>
13
14
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Guest List</title>
20
21 <style type = "text/css">
22 body {
23 font-family: tahoma, helvetica, arial, sans-serif;
24 }
25
26 table, tr, td, th {
27 text-align: center;
28 font-size: .9em;
29 border: 3px groove;
30 padding: 5px;

Fig. 37.23 guestBookView.jsp displays the contents of the guest book. (Part 1 of 2.)

<%@ page errorPage = "guestBookErrorPage.jsp" %>
<%@ page import = "java.util.*" %>
<%@ page import = "com.deitel.iw3htp3.jsp.beans.*"

<jsp:useBean id = "guestData" scope = "request"
class = "com.deitel.iw3htp3.jsp.beans.GuestDataBean"

1364 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

31 background-color: #dddddd;
32 }
33 </style>
34 </head>
35
36 <body>
37 <p style = "font-size: 2em;">Guest List</p>
38
39 <table>
40 <thead>
41 <tr>
42 <th style = "width: 100px;">Last name</th>
43 <th style = "width: 100px;">First name</th>
44 <th style = "width: 200px;">Email</th>
45 </tr>
46 </thead>
47
48 <tbody>
49
50
51
52
53
54
55
56
57
58
59
60
61 <tr>
62 <td> </td>
63
64 <td> </td>
65
66 <td>
67
68
69 </td>
70 </tr>
71
72
73
74
75
76
77
78 </tbody>
79 </table>
80 </body>
81
82 </html>

Fig. 37.23 guestBookView.jsp displays the contents of the guest book. (Part 2 of 2.)

<% // start scriptlet

List guestList = guestData.getGuestList();
Iterator guestListIterator = guestList.iterator();
GuestBean guest;

while (guestListIterator.hasNext()) {
guest = (GuestBean) guestListIterator.next();

%> <%-- end scriptlet; insert fixed template data --%>

<%= guest.getLastName() %>

<%= guest.getFirstName() %>

<%= guest.getEmail() %>
<%= guest.getEmail() %>

<% // continue scriptlet

} // end while

%> <%-- end scriptlet --%>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1365

©1981–2004, Deitel & Associates, Inc. All rights reserved.

JavaServer Page guestBookErrorPage.jsp (Fig. 37.24) outputs an XHTML docu-
ment containing an error message based on the type of exception that causes this error page
to be invoked. Lines 8–10 define several page directives. Line 8 sets page directive
attribute isErrorPage. Setting this attribute to true makes the JSP an error page and
enables access to the JSP implicit object exception that refers to an exception object indi-
cating the problem that occurred.

Common Programming Error 37.10
JSP implicit object exception can be used only in error pages. Using this object in other
JSPs results in a translation-time error. 37.10

Lines 29–46 define scriptlets that determine the type of exception that occurred and
begin outputting an appropriate error message with fixed template data. The actual error
message from the exception is output in line 56.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 37.24: guestBookErrorPage.jsp -->
6
7 <%-- page settings --%>
8
9

10
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13
14 <head>
15 <title>Error!</title>
16
17 <style type = "text/css">
18 .bigRed {
19 font-size: 2em;
20 color: red;
21 font-weight: bold;
22 }
23 </style>
24 </head>
25
26 <body>
27 <p class = "bigRed">
28
29
30
31
32
33
34 An SQLException
35

Fig. 37.24 guestBookErrorPage.jsp responds to exceptions in
guestBookLogin.jsp and guestBookView.jsp. (Part 1 of 2.)

<%@ page isErrorPage = "true" %>
<%@ page import = "java.util.*" %>
<%@ page import = "java.sql.*" %>

<% // scriptlet to determine exception type
// and output beginning of error message
if (exception instanceof SQLException)

%>

1366 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Figure 37.25 shows sample interactions between the user and the JSPs in the guest
book example. In the first two rows of output, separate users entered their first name, last
name and e-mail. In each case, the current contents of the guest book are returned and dis-
played for the user. In the final interaction, a third user specified an e-mail address that
already existed in the database. The e-mail address is the primary key in the guests table
of the guestbook database, so its values must be unique. Thus, the database prevents the
new record from being inserted, and an exception occurs. The exception is forwarded to
guestBookErrorPage.jsp for processing, which results in the last screen capture.

To test the guest book in Tomcat, copy guestBookLogin.jsp, guestBook-
View.jsp and guestBookErrorPage.jsp into the jsp directory created in
Section 37.3. Copy GuestBean.class and GuestDataBean.class into the iw3htp3
Web application’s WEB-INF\classes directory in Tomcat. [Note: This example will
work only if the proper package directory structure for GuestBean and GuestDataBean
is defined in the classes directory. These classes are defined in package
com.deitel.iw3htp3.jsp.beans.] Open your Web browser and enter the following
URL to test guestBookLogin.jsp:

http://localhost:8080/iw3htp3/jsp/guestBookLogin.jsp

36
37
38
39
40 A ClassNotFoundException
41
42
43
44
45
46 An exception
47
48 <%-- end scriptlet to insert fixed template data --%>
49
50 <%-- continue error message output --%>
51 occurred while interacting with the guestbook database.
52 </p>
53
54 <p class = "bigRed">
55 The error message was:

56
57 </p>
58
59 <p class = "bigRed">Please try again later</p>
60 </body>
61
62 </html>

Fig. 37.24 guestBookErrorPage.jsp responds to exceptions in
guestBookLogin.jsp and guestBookView.jsp. (Part 2 of 2.)

<%
else if (exception instanceof ClassNotFoundException)

%>

<%
else

%>

<%= exception.getMessage() %>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1367

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Fig. 37.25 JSP guest book sample output windows (Part 1 of 2.).

1368 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.9 Web Resources
java.sun.com/products/jsp
Home page for information about JavaServer Pages at the Sun Microsystems Java site.

java.sun.com/products/servlet
Home page for information about servlets at the Sun Microsystems Java site.

java.sun.com/j2ee
Home page for the Java 2 Enterprise Edition at the Sun Microsystems Java site.

www.w3.org
The World Wide Web Consortium home page. This site provides information about current and de-
veloping Internet and Web standards, such as XHTML, XML and CSS.

jsptags.com
Tutorials, tag libraries, software and other resources for JSP programmers.

jspinsider.com
This Web programming site concentrates on resources for JSP programmers. It includes software, tu-
torials, articles, sample code, references and links to other JSP and Web programming resources.

SUMMARY
• JavaServer Pages (JSPs) are an extension of servlet technology.

• JavaServer Pages enable Web application programmers to create dynamic content by reusing pre-
defined components and by interacting with components using server-side scripting.

• JSP programmers can create custom tag libraries that enable Web-page designers who are not fa-
miliar with Java programming to enhance their Web pages with powerful dynamic content and
processing capabilities.

• Classes and interfaces specific to JavaServer Pages programming are located in packages jav-
ax.servlet.jsp and javax.servlet.jsp.tagext.

• The JavaServer Pages 1.1 specification can be downloaded from java.sun.com/products/
jsp/download.html.

Fig. 37.25 JSP guest book sample output windows (Part 2 of 2.).

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1369

©1981–2004, Deitel & Associates, Inc. All rights reserved.

• There are four key components to JSPs—directives, actions, scriptlets and tag libraries.

• Directives specify global information that is not associated with a particular JSP request.

• Actions encapsulate functionality in predefined tags that programmers can embed in a JSP.

• Scriptlets, or scripting elements, enable programmers to insert Java code that interacts with com-
ponents in a JSP (and possibly other Web application components) to perform request processing.

• Tag libraries are part of the tag extension mechanism that enables programmers to create new tags
that encapsulate complex Java functionality.

• JSPs normally include XHTML or XML markup. Such markup is known as fixed template data
or fixed template text.

• Programmers tend to use JSPs when most of the content sent to the client is fixed template data
and only a small portion of the content is generated dynamically with Java code.

• Programmers use servlets when a small portion of the content is fixed template data.

• JSPs normally execute as part of a Web server. The server often is referred to as the JSP container.

• When a JSP-enabled server receives the first request for a JSP, the JSP container translates that
JSP into a Java servlet that handles the current request and future requests to the JSP.

• The JSP container places the Java statements that implement a JSP’s response in method
_jspService at translation time.

• The request/response mechanism and life cycle of a JSP are the same as those of a servlet.

• JSPs can define methods jspInit and jspDestroy that are invoked when the container initial-
izes a JSP and when the container terminates a JSP, respectively.

• JSP expressions are delimited by <%= and %>. Such expressions are converted to Strings by the
JSP container and are output as part of the response.

• The XHTML meta element can set a refresh interval for a document that is loaded into a browser.
This causes the browser to request the document repeatedly at the specified interval in seconds.

• When you first invoke a JSP in Tomcat, there is a delay as Tomcat translates the JSP into a servlet
and invokes the servlet to respond to your request.

• Implicit objects provide programmers with servlet capabilities in the context of a JavaServer Page.

• Implicit objects have four scopes—application, page, request and session.

• Objects with application scope are part of the JSP and servlet container application. Objects with
page scope exist only as part of the page in which they are used. Each page has its own instances
of the page-scope implicit objects. Objects in request scope exist for the duration of the request.
Request-scope objects go out of scope when request processing completes with a response to the
client. Objects in session scope exist for the client’s entire browsing session.

• JSP scripting components include scriptlets, comments, expressions, declarations and escape se-
quences.

• Scriptlets are blocks of code delimited by <% and %>. They contain Java statements that are placed
in method _jspService when the container translates a JSP into a servlet.

• JSP comments are delimited by <%-- and --%>. XHTML comments are delimited by <!-- and
-->. Java’s end-of-line comments (//) and traditional comments (delimited by /* and */) can
be used inside scriptlets.

• JSP comments and scripting language comments are ignored and do not appear in the response.

• A JSP expression, delimited by <%= and %>, contains a Java expression that is evaluated when a
client requests the JSP containing the expression. The container converts the result of a JSP ex-
pression to a String object, then outputs the String as part of the response to the client.

1370 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

• Declarations, delimited by <%! and %>, enable a JSP programmer to define variables and methods.
Variables become instance variables of the class that represents the translated JSP. Similarly,
methods become members of the class that represents the translated JSP.

• Special characters or character sequences that the JSP container normally uses to delimit JSP code
can be included in a JSP as literal characters in scripting elements, fixed template data and attribute
values by using escape sequences.

• JSP standard actions provide JSP implementors with access to several of the most common tasks
performed in a JSP. JSP containers process actions at request time.

• JavaServer Pages support two include mechanisms—the <jsp:include> action and the in-
clude directive.

• Action <jsp:include> enables dynamic content to be included in a JavaServer Page. If the in-
cluded resource changes between requests, the next request to the JSP containing the <jsp:in-
clude> action includes the new content of the resource.

• The include directive is processed once, at JSP translation time, and causes the content to be cop-
ied into the JSP. If the included resource changes, the new content will not be reflected in the JSP
that used the include directive unless that JSP is recompiled.

• Action <jsp:forward> enables a JSP to forward the processing of a request to a different re-
source. Processing of the request by the original JSP terminates as soon as the request is forward-
ed.

• Action <jsp:param> specifies name/value pairs of information that are passed to the include,
forward and plugin actions. Every <jsp:param> action has two required attributes—name and
value. If a param action specifies a parameter that already exists in the request, the new value for
the parameter takes precedence over the original value. All values for that parameter can be ob-
tained with the JSP implicit object request’s getParameterValues method, which returns an
array of Strings.

• Action <jsp:useBean> enables a JSP to manipulate a Java object. This action can be used to cre-
ate a Java object for use in the JSP or to locate an existing object.

• Like JSP implicit objects, objects specified with action <jsp:useBean> have page, request,
session or application scope that indicates where they can be used in a Web application.

• Action <jsp:getProperty> obtains the value of a JavaBean’s property. Action <jsp:get-
Property> has two attributes—name and property—that specify the bean object to manipulate
and the property to get.

• JavaBean property values can be set with action <jsp:setProperty>, which is particularly use-
ful for mapping request parameter values to JavaBean properties. Request parameters can be used
to set properties of primitive types boolean, byte, char, int, long, float and double and ja-
va.lang types String, Boolean, Byte, Character, Integer, Long, Float and Double.

• The page directive defines information that is globally available in a JSP. Directives are delimited
by <%@ and %>. The page directive’s errorPage attribute indicates where all uncaught excep-
tions are forwarded for processing.

• Action <jsp:setProperty> has the ability to match request parameters to properties of the same
name in a bean by specifying "*" for attribute property.

• Attribute import of the page directive enables programmers to specify Java classes and packages
that are used in the context of a JSP.

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1371

©1981–2004, Deitel & Associates, Inc. All rights reserved.

• If the attribute isErrorPage of the page directive is set to true, the JSP is an error page. This
condition enables access to the JSP implicit object exception that refers to an exception object
indicating the problem that occurred.

• Directives are messages to the JSP container that enable the programmer to specify page settings
(such as the error page), to include content from other resources and to specify custom tag libraries
that can be used in a JSP. Directives are processed at the time a JSP is translated into a servlet and
compiled. Thus, directives do not produce any immediate output.

• The page directive specifies global settings for a JSP in the JSP container. There can be many
page directives, provided that there is only one occurrence of each attribute. The exception to this
rule is the import attribute, which can be used repeatedly to import Java packages.

TERMINOLOGY
%\> escape sequence for %> isErrorPage attribute of page directive
<!-- and --> XHTML comment delimiters isThreadSafe attribute of page directive
<%-- and --%> JSP comment delimiters JavaServer Pages (JSPs)
<% and %> scriptlet delimiters JavaServer Pages 1.1 specification
<%! and %> declaration delimiters javax.servlet.jsp package
<%= and %> JSP expression delimiters javax.servlet.jsp.tagext package
<%@ and %> directive delimiters <jsp:forward> action
<\% escape sequence for <% <jsp:getProperty> action
action <jsp:include> action
autoFlush attribute of page directive <jsp:param> action
beanName attribute of <jsp:useBean> action <jsp:setProperty> action
buffer attribute of page directive <jsp:useBean> action
class attribute of <jsp:useBean> action jspDestroy method
client-server networking jspInit method
comment _jspService method
config implicit object JspWriter (package javax.servlet.jsp)
container language attribute of page directive
contentType attribute of page directive match request parameters
declaration meta element
directive name attribute of <jsp:param>
dynamic content name attribute of <jsp:setProperty>
error page name/value pair
errorPage attribute of page directive out implicit object
escape sequence page attribute of <jsp:forward>
expression page attribute of <jsp:include>
extends attribute of page directive page directive
file attribute of include directive page implicit object
fixed template data page scope
fixed template text param attribute of <jsp:setProperty>
flush attribute of <jsp:include> action prefix attribute of taglib directive
forward a request property attribute of <jsp:setProperty>
getParameterValues method of
 request object

refresh interval
request implicit object

id attribute of <jsp:useBean> action request scope
implicit object request-time error
implicit object scopes response implicit object
import attribute of page directive scope attribute of <jsp:useBean>

1372 JavaServer Pages (JSP): Bonus for Java Developers Chapter 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

SELF-REVIEW EXERCISES
37.1 Fill in the blanks in each of the following statements:

a) Action has the ability to match request parameters to properties of the same
name in a bean by specifying "*" for attribute property.

b) There are four key components to JSPs: , , and
.

c) The implicit objects have four scopes: , , and
.

d) The directive is processed once, at JSP translation time and causes content to
be copied into the JSP.

e) Classes and interfaces specific to JavaServer Pages programming are located in packages
and .

f) JSPs normally execute as part of a Web server that is referred to as the .
g) JSP scripting components include , , , and

.

37.2 State whether each of the following is true or false. If false, explain why.
a) An object in page scope exists in every JSP of a particular Web application.
b) Directives specify global information that is not associated with a particular JSP request.
c) Action <jsp:include> is evaluated once at page translation time.
d) Like XHTML comments, JSP comments and script language comments appear in the re-

sponse to the client.
e) Objects in application scope are part of a particular Web application.
f) Each page has its own instances of the page-scope implicit objects.
g) Action <jsp:setProperty> has the ability to match request parameters to properties

of the same name in a bean by specifying "*" for attribute property.
h) Objects in session scope exist for the client’s entire browsing session.

ANSWERS TO SELF-REVIEW EXERCISES
37.1 a) <jsp:setProperty>. b) directives, actions, scriptlets, tag libraries. c) application,
page, request and session. d) include. e) javax.servlet.jsp, javax.servlet.jsp.tagext.
f) JSP container. g) scriptlets, comments, expressions, declarations, escape sequences.

37.2 a) False. Objects in page scope exist only as part of the page in which they are used. b) True.
c) False. Action <jsp:include> enables dynamic content to be included in a JavaServer Page.
d) False. JSP comments and script language comments are ignored and do not appear in the response.
e) False. Objects in application scope are part of the JSP container application. f) True. g) True.
h) True.

EXERCISES
37.3 Write a JSP page to output the string "Hello world!" ten times.

include a resource scope of a bean
include directive scripting element
info attribute of page directive scriptlet
specify attributes of a custom tag type attribute of <jsp:plugin>
standard actions type attribute of <jsp:useBean>
translation-time error value attribute of <jsp:param>
translation-time include value attribute of <jsp:setProperty>

Chapter 37 JavaServer Pages (JSP): Bonus for Java Developers 1373

©1981–2004, Deitel & Associates, Inc. All rights reserved.

37.4 Modify Exercise 36.4 to run as a JSP page.

37.5 Rewrite Figure 37.15 to allow users to select the image. Use a JSP expression instead of the
getProperty JSP tag.

37.6 Create a JSP and JDBC-based address book. Use the guest book example of Fig. 37.20
through Fig. 37.24 as a guide. Your address book should allow one to insert entries, delete entries and
search for entries.

37.7 Reimplement the Web application of Fig. 36.20 (favorite animal survey) using JSPs.

37.8 Modify your solution to Exercise 37.7 to allow the user to see the survey results without re-
sponding to the survey.

