
On the Benefits of
Adding Modes on Owners

— a work in progress —

Johan Östlund
 Tobias Wrigstad Dave Clarke Beatrice Åkerblom

Ownership, Uniqueness and Immutability

Imagine a linked list with students at
some university

Imagine a linked list with students at
some university

We want the administrator to see
who is registered

Imagine a linked list with students at
some university

We want the administrator to see
who is registered

and we want the TAs to be able to
mark the students

Mark students as passed on a course
But removing a student is also possible

Read-Only Fails to do Both
Shallow Deep

Check what students are registered
But cannot fix duplicate registrations

List

Node Node

Stud

ent

Stud

ent

List

Node Node

Stud

ent

Stud

ent

(e.g., const)

Mark students as passed on a course
But removing a student is also possible

— too restrictive

Read-Only Fails to do Both
Shallow Deep

Check what students are registered
But cannot fix duplicate registrations

List

Node Node

Stud

ent

Stud

ent

List

Node Node

Stud

ent

Stud

ent

(e.g., const)

Mark students as passed on a course
But removing a student is also possible

— too restrictive— too permissive

Read-Only Fails to do Both
Shallow Deep

Check what students are registered
But cannot fix duplicate registrations

List

Node Node

Stud

ent

Stud

ent

List

Node Node

Stud

ent

Stud

ent

(e.g., const)

Mark students as passed on a course
But removing a student is also possible

— too restrictive— too permissive

Read-Only Fails to do Both
Shallow Deep

Check what students are registered
But cannot fix duplicate registrations

List

Node Node

Stud

ent

Stud

ent

List

Node Node

Stud

ent

Stud

ent

(e.g., const)

Ad hoc — can be misused
[Tschantz & Ernst 05]

Design Goals
• Partial read-only in a non ad-hoc fashion

• Multiple simultaneous views of a single object in terms of
modifiability

• One class for all views

• Not possible to circumvent read-only

• Co-existing read-only and immutability

• Fractional permissions-style immutables

Joline

Joe

Joe

Fractional Permissions

Read-only

Immutability

1

3

[Clarke & Wrigstad 03]

[Clarke & Drossopoulou 02]

[Boyland 03]

[Noble, Vitek & Potter 98,
Kniesel & Thiesen 99,

Boyland, Noble & Retert 01,
Skoglund & Wrigstad 01,

Tschantz & Ernst 05,
Haack et al 07,

Müller & Rudich 07, …]

List

Node Node

Stud

ent

Stud

ent

class List<data outside owner> {
 this:Node<data> first;
}

class Node<data outside owner> {
 data:Object stuff;
 owner:Node<data> next;
}

// a and world are owners
a:List<world> l;

A Linked List in Joline

invalid reference

[Clarke & Wrigstad 03]

List

Node Node

Stud

ent

Stud

ent

class List<data outside owner> {
 this:Node<data> first;
}

class Node<data outside owner> {
 data:Object stuff;
 owner:Node<data> next;
}

// a and world are owners
a:List<world> l;

A Linked List in Joline

invalid reference

[Clarke & Wrigstad 03]

List

Node Node

Stud

ent

Stud

ent

class List<data outside owner> {
 this:Node<data> first;
}

class Node<data outside owner> {
 data:Object stuff;
 owner:Node<data> next;
}

// a and world are owners
a:List<world> l;

A Linked List in Joline

invalid reference

[Clarke & Wrigstad 03]

List

Node Node

Stud

ent

Stud

ent

class List<data outside owner> {
 this:Node<data> first;
}

class Node<data outside owner> {
 data:Object stuff;
 owner:Node<data> next;
}

// a and world are owners
a:List<world> l;

A Linked List in Joline

invalid reference

[Clarke & Wrigstad 03]

List

Node Node

Stud

ent

Stud

ent

class List<data outside owner> {
 this:Node<data> first;
}

class Node<data outside owner> {
 data:Object stuff;
 owner:Node<data> next;
}

// a and world are owners
a:List<world> l;

A Linked List in Joline

invalid reference

[Clarke & Wrigstad 03]

List

Node Node

Stud

ent

Stud

ent

class List<data outside owner> {
 this:Node<data> first;
}

class Node<data outside owner> {
 data:Object stuff;
 owner:Node<data> next;
}

// a and world are owners
a:List<world> l;

A Linked List in Joline

invalid reference

[Clarke & Wrigstad 03]

class List<data- outside owner> { // owner+ this+
 this:Node<data> first;
}

class Node<data- outside owner> { // owner+ this+
 data:Object stuff;
 owner:Node<data> next;
}

// Type controls usage
// a- and b+ are owners
a:List l;

Modes in Joe

l

List

Node Node

Stud

ent

Stud

ent

3

a:List — check what students are registered (deep)
a:List — Mark students as passed on a course (partial)
a:List — Register and deregister students (partial)
a:List — Your regular reference

List is owned by a
Stuff is owned by b

List

Node Node

Stud

ent

Stud

ent

a:List — check what students are registered (deep)
a:List — Mark students as passed on a course (partial)
a:List — Register and deregister students (partial)
a:List — Your regular reference

List is owned by a
Stuff is owned by b

List

Node Node

Stud

ent

Stud

ent

a:List — check what students are registered (deep)
a:List — Mark students as passed on a course (partial)
a:List — Register and deregister students (partial)
a:List — Your regular reference

List is owned by a
Stuff is owned by b

List

Node Node

Stud

ent

Stud

ent

a:List — check what students are registered (deep)
a:List — Mark students as passed on a course (partial)
a:List — Register and deregister students (partial)
a:List — Your regular reference

List is owned by a
Stuff is owned by b

List

Node Node

Stud

ent

Stud

ent

Multiple Views

Bad: Observational exposure
[Boyland 03]

Good: Context-based read-only

a:List

a:List

Teacher

Admin

List

Node Node

Stud

ent

Stud

ent

Immutability & the * Mode

• Immutable can trivially be achieved by read-only plus
unique — but the information is lost

• The *-mode captures immutability in Joe3

• Only unique pointers can achieve *-dom

• Nice staged initialisation

<a* inside world, b* outside a>
 int averageMark(a:List students) {
 ...
}

~Fractional Permissions

• Borrowing allows unique variables to be treated as
immutable for the duration of a scope

• Temporarily nullifies the source variable

• Automagic confinement through temporary owner

• Essentially Boyland’s [03] Fractional Permissions

unique:List<d> l;
borrow l as x*:temp in {
 // temp : x:List<d> for duration of block
 ...
}

Joe ’s Static Semantics
• Trivial extension to Joline’s static semantics

• Modes added to owners in type environment

• Trivial changes to four rules to check that the modes on a
receiver is respected by method calls, field updates and
borrowing

• Revoke clause added to enable finer granularity

void method() revoke this {...}
void method(x:Object) revoke x {...}

3

Modes & Inheritance
• Subclassing must preserve immutable modes

• Subclassing to narrow permissions is straight-forward

• Subclassing to widen permissions is possible

• Overriding methods must always obey the most
restrictive modes of any super class

• Modification only possible in new, non-overriding
methods

(not in the paper)

Future Work
• Prove soundness by extending Joline’s proofs

• Properly formulate the guarantees of our constructs

• Explore Universes-style owner-as-modifier

• Modes on types, not just owner declarations

class Ex {
 owner+:Object rep;

 owner-:Object getRep() { return rep; }
 void setRep(owner+:Object o) { rep = o; }
}

Thank You! Questions?

