On the Benefits of
Adding Modes on Owners

— a work in progress —

Ownership, Uniqueness and Immutability

Johan Ostlund o
Tobias Wrigstad Dave Clarke Beatrice Akerblom

Imagine a linked list with students at
some university

Imagine a linked list with students at
some university

We want the administrator to see
who is registered

Imagine a linked list with students at
some university

We want the administrator to see
who is registered

and we want the TAsS to be able to
mark the students

Read-Only Fails to do Both

Shallow (e.g., const) Deep

®3s %o

Mark students as passed on a course Check what students are registered
But removing a student is also possible But cannot fix duplicate registrations

Read-Only Fails to do Both

Shallow (e.g., const) Deep

®3s ®os

— tOO0 restrictive

Mark students as passed on a course Check what students are registered
But removing a student is also possible But cannot fix duplicate registrations

Read-Only Fails to do Both

Shallow (e.g., const) Deep
. -0 . ©-©
— too permissive — too restrictive

Mark students as passed on a course Check what students are registered
But removing a student is also possible But cannot fix duplicate registrations

Read-Only Fails to do Both

Shallow (e.g., const) Deep
. -0 . ©-©
— too permissive — too restrictive

Mark students as passed on a course Check what students are registered
But removing a student is also possible But cannot fix duplicate registrations

Ad hoc — can be misused
[Tschantz & Ernst 05]

Design Goals

Partial read-only in a non ad-hoc fashion

Multiple simultaneous views of a single object in terms of
modifiability

One class for all views
Not possible to circumvent read-only
Co-existing read-only and immutability

Fractional permissions-style immutables

Immutability

[Noble,Vitek & Potter 98,
- Kniesel & Thiesen 99,
Joline

Boyland, Noble & Retert Ol,
[Clarke & Wrigstad 03] Skoglund & Wrigstad 0l
Tschantz & Ernst 05,
Haack et al 07,

Muller & Rudich 07, ...]

Joe3 ¥—— Read-only

J0€1
[Clarke & Drossopoulou 02]

Fractional Permissions
[Boyland 03]

A Linked List in Joline

[Clarke & Wrigstad 03]

class List<data outside owner> {
this:Node<data> first;

}

class Node<data outside owner> {
data:0Object stuff;

owner :Node<data> next;
}

// a and world are owners
a:List<world> 1;

invalid reference

A Linked List in Joline

[Clarke & VWrigstad 03]

class Lis
this:No

{

de<dag,

}

class Nod, {
data:0bject :

owner :Node<data> next;

}

// a and world are owners
a:List<world> 1;

—
-
-
- -

invalid reference

A Linked List in Joline

[Clarke & VWrigstad 03]

class Lis
this:Nod

}

class Nod, {
data:0bject :

owner :Node<data> next;

}

// a and world are owners
a:List<world> 1;

—
-
-
- -

invalid reference

A Linked List in Joline

[Clarke & VWrigstad 03]

class Lis
od

}

class Nod, {
data:0bject :

owner :Node<data> next;

}

// a and world are owners
a:List<world> 1;

invalid reference

A Linked List in Joline

[Clarke & VWrigstad 03]

class Lis

{
e ,
}
class Nod, {
data:0bject :

Node<data> next;

// a and world are owners
a:List<world> 1;

-
-
-
——

invalid reference

A Linked List in Joline

[Clarke & VWrigstad 03]

class Lis {

}

class Nod, {
data:0bject :

Node<data> next;

// a an rld are owners
a:List 1;

invalid reference

Modes in Joe;

class List<data- outside owner> { // owner+ this+
this:Node<data> first;

}

class Node<data- outside owner> { // owner+ this+

data:0Object stuff;

owner :Node<data> next;

$ 1
// Type controls usage \\\\\\\\‘
// a- and b+ are owners

a:List 1;

a:List — check what students are registered (deep)

a:List — Mark students as passed on a course (partial)
:List — Register and deregister students (partial)
:List — Your regular reference

List is owned by a
Stuff is owned by b

a:List — check what students are registered (deep)

a:List — Mark students as passed on a course (partial)
:List — Register and deregister students (partial)
:List — Your regular reference

List is owned by a
Stuff is owned by b

a:List — check what students are registered (deep)

a:List — Mark students as passed on a course (partial)

a:List — Register and deregister students (partial)
:List — Your regular reference

List is owned by a
Stuff is owned by b

a:List — check what students are registered (deep)
a:List — Mark students as passed on a course (partial)

:List — Register and deregister students (partial)
a:List — Your regular reference

List is owned by a
Stuff is owned by b

Multiple Views

Teacher

a:LiSt\\\\\\\\\\\\\k
Admin /
a:List

Bad: Observational exposure
[Boyland 03]

Good: Context-based read-only

Immutability & the * Mode

<a* inside world, b* outside a>
int averageMark(a:List students) {

® Immutable can trivially be achieved by read-only plus
unique — but the information is lost

® The *-mode captures immutability in Joe3
® Only unique pointers can achieve *-dom

® Nice staged initialisation

~Fractional Permissions

unique:List<d> 1;
borrow 1 as x*:temp in {
// temp : xX:List<d> for duration of block

}

® Borrowing allows unique variables to be treated as
immutable for the duration of a scope

® Temporarily nullifies the source variable
® Automagic confinement through temporary owner

® Essentially Boyland’s [03] Fractional Permissions

Joe,’s Static Semantics

® Trivial extension to Joline’s static semantics
® Modes added to owners in type environment

® Trivial changes to four rules to check that the modes on a
receiver is respected by method calls, field updates and
borrowing

® Revoke clause added to enable finer granularity

void method() revoke this {...}
void method(x:0bject) revoke x {...}

Modes & Inheritance

(not in the paper)

® Subclassing must preserve immutable modes
® Subclassing to narrow permissions is straight-forward
® Subclassing to widen permissions is possible

® Overriding methods must always obey the most
restrictive modes of any super class

® Modification only possible in new, non-overriding
methods

Future Work

Prove soundness by extending Joline’s proofs
Properly formulate the guarantees of our constructs
Explore Universes-style owner-as-modifier

Modes on types, not just owner declarations

class Ex {
owner+:0bject rep;

owner-:0bject getRep() { return rep; }
void setRep(owner+:0bject o) { rep = o; }

}

Thank You! Questions?

