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Mark students as passed on a course
But removing a student is also possible

Read-Only Fails to do Both
Shallow Deep

Check what students are registered
But cannot fix duplicate registrations
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Ad hoc — can be misused
[Tschantz & Ernst 05]



Design Goals
• Partial read-only in a non ad-hoc fashion

• Multiple simultaneous views of a single object in terms of 
modifiability

• One class for all views

• Not possible to circumvent read-only

• Co-existing read-only and immutability

• Fractional permissions-style immutables
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Fractional Permissions
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class List<data outside owner> {
  this:Node<data> first;
}

class Node<data outside owner> {
  data:Object stuff;
  owner:Node<data> next;
}

// a and world are owners
a:List<world> l;

A Linked List in Joline

invalid reference

[Clarke & Wrigstad 03]
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class List<data- outside owner> { // owner+ this+
  this:Node<data> first;
}

class Node<data- outside owner> { // owner+ this+
  data:Object stuff;
  owner:Node<data> next;
}

// Type controls usage
// a- and b+ are owners
a:List<b> l;

Modes in Joe
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a:List<b> — check what students are registered (deep)
a:List<b> — Mark students as passed on a course (partial)
a:List<b> — Register and deregister students (partial)
a:List<b> —  Your regular reference

List is owned by a
Stuff is owned by b
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Multiple Views

Bad: Observational exposure 
[Boyland 03]

Good: Context-based read-only
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Immutability & the * Mode

• Immutable can trivially be achieved by read-only plus 
unique — but the information is lost

• The *-mode captures immutability in Joe3 

• Only unique pointers can achieve *-dom

• Nice staged initialisation

<a* inside world, b* outside a> 
         int averageMark(a:List<b> students) {
    ...
}



~Fractional Permissions

• Borrowing allows unique variables to be treated as 
immutable for the duration of a scope

• Temporarily nullifies the source variable

• Automagic confinement through temporary owner

• Essentially Boyland’s [03] Fractional Permissions

unique:List<d> l;
borrow l as x*:temp in { 
  // temp : x:List<d> for duration of block
  ...
}



Joe ’s Static Semantics
• Trivial extension to Joline’s static semantics

• Modes added to owners in type environment

• Trivial changes to four rules to check that the modes on a 
receiver is respected by method calls, field updates and 
borrowing

• Revoke clause added to enable finer granularity

void method() revoke this {...}
void method(x:Object) revoke x {...}

3



Modes & Inheritance
• Subclassing must preserve immutable modes

• Subclassing to narrow permissions is straight-forward

• Subclassing to widen permissions is possible

• Overriding methods must always obey the most 
restrictive modes of any super class

• Modification only possible in new, non-overriding 
methods

(not in the paper)



Future Work
• Prove soundness by extending Joline’s proofs

• Properly formulate the guarantees of our constructs 

• Explore Universes-style owner-as-modifier

• Modes on types, not just owner declarations

class Ex {
  owner+:Object rep;

  owner-:Object getRep() { return rep; }
  void setRep(owner+:Object o) { rep = o; }
}



Thank You! Questions?


