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I

Summary. External Uniqueness was proposed as a solution to an abstraction problem

inherent in most uniqueness proposals theretofore. External Uniqueness merges Own-

ership Types and Uniqueness in a way that loosens some of the restrictiveness in deep

ownership, without compromising encapsulation. However, there is very little experi-

ence in realizing and using External Uniqueness and Ownership Types in practice. In

this thesis we take the first steps into this uncharted area and, where applicable and

possible, present remedies to inherent shortcomings in the existing proposals.



II

“... Our present attitudes and laws governing the

ownership and use of land represent an abuse of

the concept of private property...

Today you can murder land for private profit. You

can leave the corpse for all to see and nobody

calls the cops.”

– Paul Brooks, The Pursuit of Wilderness (1971)
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Introduction

Aliasing occurs whenever there exists more than one reference to an object

(Hogg, Lea, Wills, deChampeaux, and Holt 1992). Aliasing may lead to un-

predictable behavior. Take a look at the following code example. What is the

output?

x.f = 1; y.f = 2; print(x.f);

What we know from this rather meager code segment is insufficient to answer

that question. There are two possible answers depending on whether x and

y are aliases or not. If x and y point to the same object the output will be 2;

otherwise 1.

Over the years several proposals have been presented concerning alias

management(Noble, Vitek, and Potter 1998; Clarke 2001; Hogg 1991; Aldrich,

Kostadinov, and Chambers 2002; Hogg, Lea, Wills, deChampeaux, and Holt

1992). These proposals, however, suffer from differing yet often severe prob-

lems, such as breaking of abstraction and being too restrictive for real life ap-

plications (Clarke, Noble, and Potter 1998b; Clarke, Noble, and Potter 1999;

Noble 2000; Liskov, Boyapati, and Shrira 2003; Clarke and Wrigstad 2003).

We believe that External Uniqueness (Clarke and Wrigstad 2003) may solve

these problems by redefining uniqueness to not include innocuous internal

references but only active ones by utilizing the properties of deep ownership

(uniqueness and deep ownership are discussed in Sections 2.2 and 2.4 re-

spectively.) There is, however, little experience regarding the practical use of

External Uniqueness. We hope that this thesis will shed some light on this

unexplored area.
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1.1 Purpose

Deep ownership types has been called too restrictive for actual programming.

There is however little evidence to support or refute this claim as very few

actual programs have been written in a language with deep ownership.

The purpose of this work is to gain experience in using the constructs

of the Joline language (external uniqueness, owner-polymorphic methods,

scoped regions, deep ownership) for writing non-trivial applications in order

to evaluate their compatibility with normal programming practice.

We consider the applicability of the proposed constructs, constraints due

to enforced encapsulation, additional syntactic baggage due to ownership an-

notations and borrowing, and chosen defaults for things such as string literals.

1.2 Methodology

In order to fulfill the purpose stated above we perform a qualitative study

on the implementation and usage of External Uniqueness. We have imple-

mented a compiler with support for External Uniqueness, and that process in

conjunction with the implementation of non–trivial programs using External

Uniqueness will reveal issues inherent in External Uniqueness and Joline,

which is an implementation of External Uniqueness in a Java-like language,

discussed in Section 4.

1.3 Contributions

This thesis presents the first experiences of practical use of External Unique-

ness. We think these experiences are of interest and may be so to others as

well, mostly because the lack of practical experience in this field. Our greatest

contribution, however, we believe is the Joline compiler, which is the first

compiler of its kind to implement deep ownership. Our Joline compiler en-

ables other researchers to seamlessly carry on testing their theses, and further

explore the practical usability of External Uniqueness and Ownership Types.
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Background

2.1 Aliasing

Aliasing occurs when a single memory area is referenced by more than one

reference simultaneously (Hogg, Lea, Wills, deChampeaux, and Holt 1992),

or more practically, in object-oriented programming, when there exists two or

more references to a single object. Aliasing is not always a problem, in fact,

sometimes it is even wanted, and as long as it is controlled it may be bene-

ficial, or required even. Aliasing problems, however, may occur unexpectedly

and seemingly on their own, at which point aliasing may become a problem.

Consider the code in Figure 2.1 (stolen from Clarke and Wrigstad (2003).) If

f1 and f2 refer to the same file object this will generate an exception when

the read method is called on f2, even though the code seems perfectly fine

statically.

Several attempts to deal with the problems with aliasing have been made.

These are categorized as alias detection, alias advertisement, alias prevention
and alias control (described below.) All these techniques try to solve, or at

least lessen the effects of unexpected aliasing. However, as Hogg et al. (1992)

declare, all these proposals have inherent drawbacks and often there is a com-

promise between static checkability and ability to write useful code.

2.1.1 Ways of Dealing with Aliasing

In The Geneva Convention on the Treatment of Object Aliasing (Hogg, Lea,

Wills, deChampeaux, and Holt 1992) the authors categorize the different

ways of dealing with aliasing. These categories are described in short here.

Ownership Types is not present in the categorization by Hogg et al. but de-

serves to be mentioned here nonetheless.

Alias detection – tries to detect aliasing patters in a program, either statically

or dynamically. The problem here is that the static analysis will find a
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public void example(File f1, File f2)
{

f1.close(); // Closes f1
f2.read(); // Requires f2 to be open

}

Fig. 2.1. Aliasing of file objects

lot of may–alias situations, which will have to be treated conservatively

as must–aliases. This, of course, may lead to an abundance of situations

being incorrectly labeled as aliasing.

Alias advertisement – method annotations may be used to reveal whether an

object is aliased or not. This reveals the internal implementation of an

object, not making it quite the black–box entity it is supposed to be. This

can of course guide the programmer to write less erroneous programs, but

as we shall see shortly, revealing internal implementation leads to other

problems.

Alias prevention – statically guarantees that aliasing cannot occur within a

given context. Again the problem is that a certain level of conservative-

ness is needed. Several alias prevention proposals have been presented,

however, with constraints disallowing a programmer from implement-

ing many common constructs (Clarke, Noble, and Potter 1998b; Clarke,

Noble, and Potter 1999; Liskov, Boyapati, and Shrira 2003). One imple-

mentation of alias prevention is alias–free or unique references (Wadler

1990; Hogg 1991; Baker 1995; Almeida 1997; Noble, Vitek, and Potter

1998; Boyland 2001; Boyland, Noble, and Retert 2001; Boyapati and Ri-

nard 2001; Aldrich, Kostadinov, and Chambers 2002; Clarke and Wrigstad

2003), which syntactically guarantee there be only one reference to an

object. Unique references will be discussed in more detail shortly.

Alias control – strives to limit the harmful effects of aliasing. Examples of

alias control schemes are read–only references (MacLennan 1982; Hogg

1991; Kent and Howse 1996; Noble, Vitek, and Potter 1998; Müller and

Poetzsch-Heffter 2000; Boyland, Noble, and Retert 2001; Skoglund and

Wrigstad 2001; Kniesel and Theisen 2001; Birka and Ernst 2004) where

references may be made immutable, thus making aliasing less affecting,

and the proxy pattern which may be used to replace destructive methods

with non destructive methods by returning a copy instead of the object

itself (Gamma, Helm, Johnson, and Vlissides 1994). An example is the

String class in Java which has no destructive methods, and any change

to a string object results in a new copy altered in the desired way (Gosling,

Joy, Steele, and Bracha 2000).
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public void example(unique File f1, unique File f2)
{

f1.close(); // Closes f1
f2.read(); // Requires f2 to be open

}

Fig. 2.2. Unique file objects

Ownership Types – uses owners (other objects) to form the types of objects.

An object owned by a certain object is not type compatible with an object

owned by another object, and thus they cannot be aliases (Clarke and

Drossopoulou 2002). Ownership Types will be discussed in more detail

shortly.

2.2 Uniqueness

Recent research states that up to 85 percent of all the objects in a general

program are unique (Potanin and Noble 2002), i.e. each is referred to by

one and only one reference at any time. That suggests that aliasing should

not be such a great problem. However, experience tells us that when aliasing

does occur, it often results in unexpected behavior. One way of dealing with

aliasing is to make references unique. Several different treatments of unique

references or unsharable objects have been proposed by Wadler (1990), Hogg

(1991), Baker (1995), Almeida (1997), Noble et al. (1998), Boyland (2001),

Boyland et al. (2001), Boyapati et al. (2001), Aldrich et al. (2002) and Clarke

and Wrigstad (2003).

In Uniqueness fields that are unique are also annotated as such. Unique

references are really simple to grasp. Either a variable holds the only reference

to an object or it holds null. This may enable the compiler to generate more

efficient code, for instance when a unique variable is assigned a new value the

previous object may be disposed of by a garbage collector, unconditionally,

since no other reference to it can exist, and the number of possible aliasing

situations is drastically decreased, thus making it feasible for the compiler

to check the code for unwanted aliasing. Consider the code in Figure 2.2

compared to Figure 2.1. In this example the arguments cannot be aliased since

they are unique and therefore the problem discussed in the previous section

cannot occur (of course, in this example, having only one of the arguments

being unique would suffice.) The example is also depicted in the object graph

in Figure 2.3.

In many applications, although being unique, objects need to be moved

from one variable to another. Moving a unique object means assigning it to
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Object Reference Invalid reference

Unique reference

f3

f2f1

File

Regular references

f1 f2

f3File File

Unique references

Fig. 2.3. Regular and unique references

another variable while making sure to preserve the uniqueness invariant. In

order to maintain uniqueness in such situations there must be a way of ensur-

ing that the unique object is not referred to by more than one reference after

the move. Several ways of dealing with this have been proposed. A radical

way to deal with this could be to swap the contents of two variables when-

ever an assignment is performed, as proposed by Harms and Weide (1991).

Boyland (2001) proposes alias burying as another way to deal with move-

ment of unique objects. Alias burying settles for effective uniqueness, where

objects may actually be aliased as long as all references but one are “dead”

when that variable is read. Destructive read is a third approach which is sim-

ple and intuitive. A destructive read means that the contents of the right hand

side reference is nullified whenever assigned to another reference. This may

be done explicitly, by the use of some operator, or implicitly as for instance in

Hogg’s Islands (1991). Destructive reads will be explained more thoroughly

when discussing External Uniqueness.

Another problem with unique references is that even a simple method

call on a unique may break uniqueness (Wrigstad 2004). When a method

is called the receiver is automatically aliased because a reference to self1

is provided as a hidden argument to the method and in order to maintain

a strong notion of uniqueness the receiver would have to be consumed, at

least for the duration of the call. A borrowing statement has been proposed

as a remedy to this issue. The borrowing statement allows the programmer

to treat a unique variable as a non unique within the bounds of a lexical

scope. However when such a construct is introduced other problems arise,

one of which is how to prevent the borrowed variable from being retained

in some persistent field, since that would break uniqueness when the unique

variable, that was initially the source of the borrow, is reinstated. Existing

proposals deal with this by introducing a new kind of reference. This reference

1 An implicit method argument referring to the receiver. Other languages use this,
e.g. Java and C++, or current, Eiffel.
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class Example extends Object
{

private Object obj = new Object();
public Object getObject()
{

return obj; // Returns obj even though it’s private
}

}

Fig. 2.4. Encapsulation being broken

cannot be assigned to a field or variable (heap based), and thus the problem is

solved. This, however, makes the type system much more complex. As will be

discussed shortly External Uniqueness deals with this matter quite elegantly

using the properties of Ownership Types.

As pointed out by Clarke and Wrigstad (2003) uniqueness suffers from an

abstraction problem. The cause of this abstraction problem is that uniqueness

annotations, declaring how self is treated internally, tend to leak out into the

public interface of an object. Purely internal changes of implementation may

therefore force the interface to change, thus making the change propagate,

possibly, throughout the whole program.

2.3 Encapsulation

Encapsulation is the protection of an object’s representation. A common en-

capsulation method is name–based encapsulation, used in for instance Java

(Gosling, Joy, Steele, and Bracha 2000) and C++ (Ellis and Stroustrup 1992).

In name–based encapsulation fields are annotated with visibility modifiers

which protect the fields from being directly accessed from outside the object.

This works fine with value semantics, but not with references. An object’s

state is determined not only by the state of the object’s fields but also by the

recursive state of the objects referred to by those fields (its representation.)

The effect of this fact is that the state of the object cannot be controlled by

the object itself unless all references to the state constituents are from within

the object. Consider the code in Figure 2.4. Annotating the field as private

will prevent anyone from accessing the field directly, but as soon as the pub-

lic method is called obj may be aliased thus there is no longer any way to

guarantee the integrity of the inner state of the object (Grothoff, Vitek, and

Palsberg 2001).
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class Example extends Object
{

this:Object obj = new this:Object(); // owner this
public this:Object getObject()
{

return obj;
}

}

Fig. 2.5. Ownership Types

2.4 Ownership Types

Ownership Types is an extended type system derived from Flexible Alias Pro-

tection (Noble, Vitek, and Potter 1998), fully described in Clarke’s disserta-

tion (2001). In Ownership Types objects have owners and can be owners of

other objects. Owners have nesting relations (inside, outside) and form a tree

structure rooted at the omnipresent owner world (Clarke, Noble, and Potter

1998a), which is outside all owners. An object is said to be inside another ob-

ject (or part of its representation) if it is owned by that object (Clarke, Noble,

and Potter 1998a; Clarke, Noble, and Potter 1998b). The type of an object is

determined both by its class and its owner parameters. An important effect of

this is that two variables with types with different owners can never be aliases

(Clarke and Drossopoulou 2002).

It is allowed for an object to hold references to its representation or to

objects that are outside of itself. To be able to form the appropriate types,

classes are annotated with owner parameters that give local names for the

outside owners and also capture the their nesting relations. An owner pa-

rameter is an object. It can be viewed as a permission, given at the time of

instantiation, to reference the representation of that object.

In a linked list, for instance, owner parameters may be used to express the

types of the data objects kept in the list. Take a look at the code in Figure 2.7.

Without the class parameters the data objects would either have to be owned

by world (or owner) or be a part of the list’s representation, which would in

the first case be impractical and in the latter render the list unusable, since

adding or removing objects to it would not be allowed.

Whenever an object is created, one must state who owns that object. The

owner of the object cannot subsequently change after being set.

The nesting relations of owners makes it possible to distinguish between

the inside and outside of an object (Clarke, Noble, and Potter 1998a) (just

look at the owner; if it is outside this it is an outside object and conversely.)

This is a crucial property in External Uniqueness, which will be discussed
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Fig. 2.6. Object graph for deep ownership

shortly. Consider the code in Figure 2.5. In this case, compared to the one in

the previous section (Figure 2.4), getObject cannot be called from outside

the representation, since the necessary type for the returned object cannot be

formed. The object itself and any internal objects that have been explicitly

given the permission to reference the object can, however, form that type and

may hence call the method.

Take a quick peek at the object graph in Figure 2.6. If the fields of an ob-

ject are owned by this, which is the encapsulating object itself, no one outside

that object may reference the objects referenced by those fields. In the exam-

ple above calling the public method getObject from anywhere except from

inside the object itself would be meaningless, or not permitted even, since the

returned object cannot be referenced outside the owning object.

Ownership Types facilitates a stronger notion of encapsulation, but it is in

some cases too restrictive. There are common constructs, e.g. iterators, which

simply are impossible to implement in a language with deep ownership typ-

ing (Clarke, Noble, and Potter 1998b; Clarke, Noble, and Potter 1999; Noble

2000; Liskov, Boyapati, and Shrira 2003).

Wrigstad (2004) distinguishes between deep and shallow ownership. Shal-

low ownership lacks the nesting owner relations of deep ownership and is

therefore more flexible but does not offer a strong enough property to build

external uniqueness on top of. Also shallow ownership is easily broken, inten-

tionally or otherwise, which cannot be afforded in case of External Unique-

ness. Shallow ownership is used in e.g., ArchJava (Aldrich, Kostadinov, and

Chambers 2002) and in Boyland et al.’s Capabilities for Sharing (2001). Shal-

low ownership is not implemented in Joline and we refrain from discussing it

further here.
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class LinkedList<data outside owner> extends Object
{

this:ListNode<data> head = null;

public void prepend(data:Object obj)
{

this:ListNode<data> node = new this:ListNode<data>();
node.setData(obj);
node.setNext(head);
head = node;

}

}

class ListNode<data outside owner> extends Object
{

data:Object obj;
owner:ListNode<data> next;

public void setData(data:Object obj)
{

this.obj = obj;
}

public void setNext(owner:ListNode<data> next)
{

this.next = next;
}
...

}

class Storage extends Object
{

this:LinkedList<owner> li = new this:LinkedList<owner>();

public void addToStorage(owner:Object obj)
{

li.prepend(obj);
}

}

Fig. 2.7. Owner parameters
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2.5 External Uniqueness

External Uniqueness was proposed as a solution to the abstraction problem

(see Section 2.2) inherent in existing uniqueness proposals. External Unique-

ness merges Ownership Types and Uniqueness. The use of deep ownership

typing gives a strong notion of encapsulation while Uniqueness introduces

much more flexibility. The use of unique references along with Ownership

Types overcomes some of the restrictiveness inherent in deep ownership typ-

ing and allows for moving objects and changing their owners, or moving their

bounds really. As in most other uniqueness proposals (discussed in Section

2.2) fields are annotated with the unique keyword. The unique keyword is

not an owner. Instead it signals that the owner of the object referenced by the

field or variable of the unique type is actually the field or variable itself. Any

other unique field or variable is not type compatible and hence cannot alias

the referred object.

Uniques have a movement bound, an owner, within the representation

of which they may be moved2. This movement bound is crucial to maintain

ownership soundness. Uniques may only be moved inwards in the ownership

structure. Without this movement bound it is possible to break the external

uniqueness invariant by using inheritance and subsumption (Wrigstad 2004).

The moving of uniques means that one may create an object and pass it as

message argument to another object which can then retain the externally cre-

ated object and make it part of its representation without the risk of any

residual aliasing compromising integrity of state. In a common language with

name–based encapsulation, e.g. Java or C++, this would mean that the in-

tegrity of the object’s state could not be guaranteed. With deep ownership

where permissions should be set so that representation constituents are in-

side the encapsulating object this is not even possible, unless the permissions

are widened, but that would break encapsulation anyway, and give a situation

similar to common name–based encapsulation.

Consider the code in Figure 2.8. This example, though artificial, should

not be too uncommon of a situation in a general program. The input stream

object is constructed outside of the reader object and thereafter passed as

a message argument to the reader, which retains the reference, making the

input stream part of its representation. Directly after the passing of the input

stream the stream is closed. This behavior probably is not expected by the

reader which will try to read from the closed stream, causing it to throw an

exception. In External Uniqueness the same code would be something like in

Figure 2.9. In this case the Reader class forces the inserted object to be unique

2 Movement bounds are omitted in the code examples for sake of brevity.
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class Reader extends Object
{

private InputStream is;
public void setInputStream(InputStream is)
{

this.is = is;
}
...

}
class Example extends Object
{

private InputStream is;
private Reader r = new Reader();
public static void main(String[] args)
{

is = new InputStream("myfile");
r.setInputStream(is);
is.close(); // Puts is in a closed state

}
}

Fig. 2.8. Passing without uniqueness

and thus the only reference to the inserted object will be that of the reader.

Thus violations of state as in the previous example (Figure 2.8) are no longer

possible; the reader object is in total control of its own state.

External Uniqueness has several other features, among which a stronger

notion of aggregation, perhaps, is the most obvious. Because of the owner

structure from Ownership Types and the uniqueness one may create object

aggregates that are truly inaccessible by any other means than via the public

interface of the aggregating object. Since deep ownership has the ability to

distinguish between the inside and outside of an object multiple references to

a unique object may be allowed as long as all but one are internal to the ob-

ject, i.e. come from within the aggregate (Clarke and Wrigstad 2003). All ref-

erences within a unique aggregate are inactive and therefore also innocuous,

since any activation of such a reference has to be initiated from outside the

aggregate via the unique reference. Internal references are effectively unique,

and thus unique enough. In existing proposals it is not possible to allow in-

ternal references to a unique object (this is what’s causing the abstraction

problem) since no distinction can be made between an external reference and

an internal innocuous ditto.



class Reader extends Object
{

private unique InputStream is;
public void setInputStream(unique:InputStream is)
{

this.is = is--; // *
}

}
class Example extends Object
{

private unique InputStream is;
private Reader r = new Reader();
public static void main(String[] args)
{

is = new InputStream("myfile");
r.setInputStream(is--); // *
is.close(); // throws NullPointerException

}
}

Fig. 2.9. Passing with uniqueness in a Java-like language. The two lines with the
asterisk comments use the destructive read expression, which will be discussed in
more detail later.
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Our Case: The Library System

In order to really test External Uniqueness we thought that a system with a

lot of object movement, or data sharing, would prove exposing. We decided a

library system with libraries, borrowers and books might be a good example,

as we had previous experience with a similar system.

The system has libraries, which in turn contain books and registered bor-

rowers, see Figure 3.1 for a simple class diagram. A borrower may borrow a

book from the library and return it when done. This should be easy to grasp.

The important thing here, though, is that the ownership structure and unique-

ness should be as conservative as possible in order to really test the model.

Potanin and Noble (2002) suggest that up to 85 percent of all objects in a

system are uniquely referenced. When designing the system, in order to test

these findings, we started out with all objects being unique, and only removed

uniqueness on well considered grounds. As it turns out External Uniqueness,

apart from managing aliasing, also offers quite a reality–like system model.

Books and borrowers are unique, as are they in reality. Hence when a book is

borrowed it is no longer in the library, also quite like in reality. This, of course,

certainly is possible to do with a contemporary language, such as Java or C++,

but the difference being that Joline, by supporting uniqueness, encourages it.

The fact that the book is no longer in the shelf when borrowed removes the

possibility of such errors as duplicate borrowings, which would in a contem-

porary language have to be checked explicitly. In order to keep track of bor-

rowed books and the borrowers, we also have a borrowing card class, which

stores the ids of the borrower and book each time a book is borrowed. Since

both borrowers and books are unique the borrowing card cannot retain any

references. We have therefore given each book and each borrower a unique

id. In the case of books the ISBN and a copy number could be used as a

unique id, but with other objects, say trees, there might not be such an obvi-
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books : BookList

borrower : BorrowerList

borrowings : BorrowingCardList

Library

Borrower

id : int id : int

title : String

author : String

isbn : String
BorrowingCard

borrowerId : int

bookId : int

Book

Fig. 3.1. Simplified class structure for Library system

ous unique value to make use of. We use an integer value that is automatically

set upon instance creation. Whenever a book is borrowed the id of the bor-

rower and book are stored in a borrowing card, and thus the borrowing is

registered. Primitive types, such as integers use value semantics and can thus

not be aliased, and are hence not affected by ownership or uniqueness. This

is what allows us to “store” books and borrowers in a borrowing card. As will

be discussed later we find comparing integers like this to be tedious and error

prone, and we propose a new kind of reference which may be used only for id

comparisons; calling methods, or accessing fields via such a reference would

not be allowed. Hence aliasing of such references is innocuous and may be

allowed even on unique objects.
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Joline

This chapter discusses the Joline programming language and the features

and constructs supported.

4.1 The Language

The Joline programming language implements External Uniqueness. Joline

is built on the foundation of Joe1 (Clarke and Drossopoulou 2002), which

implements Ownership Types with effects (for more details on effects see for

instance Nielson, Nielson and Hankin (1999).) Joline is a Java–like class–

based object–oriented programming language. In Joline the effect annota-

tions have been removed and other features have been added. In Joe1 all own-

ers (or permissions) are ordered outside owner, but aside from that owners

have no nesting relations. In Joline the owners’ relations are stated as class

or method parameter annotations, which brings us to another feature absent

in Joe1, namely owner polymorphic methods which will be discussed shortly.

We have implemented a Joline compiler using Polyglot (Nystrom, Clarkson,

and Myers 2003), an extensible compiler framework written in Java.

Our Joline compiler is the only compiler of its kind to implement deep

ownership.

4.2 Features

This section discusses some of the features in Joline. For a more extensive

reference of the Joline programming language and External Uniqueness the

reader is referred to Wrigstad’s licentiate thesis (2004).
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class Example extends Object
{

public void method<a outside owner>(a:Object obj)
{

a:Object obj2 = obj;
...

}
}

...

public void example()
{

this:Example ex = new this:Example();
owner:Object o = new owner:Object();
ex.method<:owner:>(o);

}

Fig. 4.1. Owner polymorphic method

4.2.1 Owner Polymorphic Methods

Owner polymorphic methods are methods which in addition to regular ar-

guments also take owner parameters. This is very similar to the owner pa-

rameterization of classes. Owner polymorphic methods are used to temporar-

ily allow access to groups of objects which would otherwise be inaccessible.

Whenever an owner polymorphic method is called it is required that the ex-

pected owners be given by the caller just as when creating a new object. See

Figure 4.1. Since the owner parameters in the owner polymorphic method are

visible only within the method body, objects passed as arguments can only be

stored in stack based variables, i.e. local to the method. In order to retain a

passed object in a persistent field the field has to have a compatible type, and

such a type cannot be formed outside of the method body, since the owner is

not known.

4.2.2 Destructive Read

In order to accomplish the transfer of a unique object from one variable to

another without losing uniqueness, there is a destructive read expression. This

is a unary expression that can be used on any unique lvalue1. Consider the

code in Figure 4.2. The destructive read will return the value of the read

variable and directly thereafter the read variable will be set to null. This way

1 An expression that can appear on the left hand side of an assignment operator, i.e.
in most cases/languages a variable or field.
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class Example extends Object
{

unique:Object obj;
public void example()
{

unique:Object o = new owner:Object();
obj = o--; // Destructive read
o.hashCode(); // Throws NullPointerException

}
}

Fig. 4.2. Destructive read

the unique object has been safely transferred from one variable to another

without compromising the uniqueness of the object.

4.2.3 Borrowing Blocks

When unique references exist in a system, in order for them to remain truly

unique, they are somewhat unusable. As soon as a message is passed to such

a unique object, the object is no longer unique. There will exist a reference to

self during the method call. This makes calling methods on uniques impossi-

ble. For this reason there exists a construct called a Borrowing Block that lets

the programmer borrow a unique variable and treat it as were it non unique

within a limited context. During the borrow the value of the unique variable

is put into a local non unique variable and the unique variable is destructively

read. The borrowing variable has to be local to the borrowing block. Other-

wise the variable would linger after the scope of the borrow has exited and

thus possibly violate uniqueness, as would concurrent access which would

be possible otherwise. The programmer may now use the new local variable

to accomplish the task at hand. Right before the borrowing block exits the

unique variable is reinstated with the value of the local variable. The local

borrowing variable has to have a “fresh” owner that is automatically ordered

inside the bound of the borrowed unique variable. This way the borrowed

value cannot be retained in any persistent variable, since such a type can-

not be formed outside the borrowing block. This is also true for return state-

ments within borrowing blocks. The borrowed variable cannot be returned by

the method, since such a return type cannot be expressed when writing the

method header.

4.2.4 Scoped Regions

Scoped regions are lexical scopes used to reduce aliasing (Wrigstad 2004).

Without the scoped region construct this is the innermost owner of a method.



20 4 Joline

However, when creating a scoped region a “fresh” owner, which is automati-

cally ordered inside all known owners, must be named. This effectively makes

the block into an owner. An object owned by the block can only exist during

the lifetime of the block. This makes scoped heaps possible. An externally

unique object has only one reference to it and if the object is owned by the

block, destruction of the block, or stack frame, will automatically destroy the

heap as well. Hence the term scoped heaps. This introduces a kind of gener-

ational ownership. One may view an externally unique aggregate as a gen-

eration which lives for a certain amount of time. Nested scoped regions are

ordered inside outer scopes and thus outer scopes outlive inner scopes. Such

an aggregate may thus be seen as a generation.
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Jolinec – The Joline Compiler

Together with Tobias Wrigstad the author has implemented a Joline compiler

using Polyglot, an extensible compiler framework written in Java. Our Jo-

line compiler is the only of its kind to implement deep ownership. This chapter

gives a short introduction to the compiler along with some experiences and

thoughts on the implementation.

5.1 The Compiler

When deciding to implement a Joline compiler we had very little experience

in compiler implementation. The choice to go with Polyglot (Nystrom, Clark-

son, and Myers 2003) was not a difficult one to make. Polyglot is a frame-

work, similar to most, e.g. the standard Java API, which enables implemen-

tation of languages similar to Java. The Joline language (and our imple-

mentation) should be viewed as a research language. The langauge does not

support files or I/O and other common features of programming languages.

The purpose of this implementation is to enable programming and evaluation

of Ownership Types and External Uniqueness.

Cele and Stureborg (2004) performed a study on the implications of Own-

ership Types on the development process. In their study Cele and Stureborg

implemented 5,6 KLOC with deep ownership. At the time there was no com-

piler for a deep ownership language, and hence all ownership related code

had to be checked manually. It cannot be eliminated that errors may have

been made in this manual checking, considering the amount of code. There-

fore we find the use of a compiler a great asset not only because checking

large amounts of code manually is tedious, but also because it gives our work

greater realiability. Also, the implementation of the compiler gives a formal

specification of constructs and features which have not previously been for-

malized for Joline, such as string literals, primitive types etc.
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5.2 Implementation

Polyglot enables implementation of languages similar to Java. Like most

object–oriented frameworks Polyglot lets the programmer create subclasses

of framework classes and alter their behavior to suit one’s needs. We have im-

plemented the constructs described in the previous chapter and of course also

ownership types and uniqueness. When compiling Joline code with jolinec,

after handling all Joline specific syntax, such as owners and Joline specific

constructs, the code is translated into ordinary Java, and may then be com-

piled with javac. This section discusses the Java implementation of the dif-

ferent Joline constructs.

5.2.1 Ownership Types

The owners in jolinec are simple names which have relations. When com-

piling Joline code the owner soundness is checked by comparing owners and

their relations with the known owners in the scope. When the owner sound-

ness is established all owner related code is omitted and regular Java code

is produced. This has has the consequence that separate compilation is not

supported. It is possible, though not clear, that this could be overcome by

storing owner information in the class files for later retrieval, thus allowing

for separate compilation.

5.2.2 Owner Polymorphic Methods

Owner polymorphic methods are very similar to regular methods in Java, ex-

cept for the owner parameters. After having checked that the owners given in

a call to an owner polymorphic method are sound all owner specific annota-

tion is removed and what remains is a regular Java method.

5.2.3 Destructive Read

The implementation of the destructive read expression in jolinec is an adap-

tation of a solution presented by Boyland (2001). This solution uses a method

call to make the destructive read an atomic enough expression. The imple-

mentation is depicted in Figure 5.1. To every class in the system we add a

static method which just returns the first argument. The second argument

will always be null since that is what effectively performs the destruction

of the variable. We use a static method for faster dispatch and we use one

method per class to aviod time–consuming casts. In an industrial context the

compiler should be able to inline this method call.
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// Joline code

class Test extends Object
{}

class Example extends Object
{

public void method()
{

unique:Test o1 = new owner:Test();
unique:Test o2;
o2 = o1--;

}
}

// Java code

class Test extends Object
{

public static Test __jolineDreadMethod__(Test t1,
Test t2)

{
return t1;

}
}

class Example extends Object
{

public void method()
{

Test o1 = new Test();
Test o2;
o2 = Test.__jolineDreadMethod__(o1, o1 = null);

}
}

Fig. 5.1. Implementation of Destructive Read

This solution causes the uniqueness invariant not to be true at every point

in the program since the arguments are aliased, but only momentary and, ac-

cording to Boyland, assuming we use synchronization, this aliasing is harm-

less even in a multi–threaded environment (2001).

5.2.4 Borrowing Blocks

The Java implementation of borrowing blocks in jolinec relies solely on

scopes and a destructive read. We check that the borrowed variable really
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// Joline code
class Example extends Object
{

public void method(unique:Object obj)
{

borrow obj as temp:o in
{

o.hashCode();
}

}
}

// Java code
class Example extends Object
{

public void method(Object obj)
{

// borrow obj as temp:o in
{

Object o = Object.__jolineDreadMethod__(obj,
obj = null);

try
{

o.hashCode();
}

finally
{

obj = o;
}

}
}

}

Fig. 5.2. Implementation of Borrowing Blocks. The destructive read implementation
is omitted for sake of brevity. See Figure 5.1.

is unique and that the proposed owner name is a “fresh” one. Then we cre-

ate a local variable with the specified name within the block. This new non

unique local variable is given the value of the borrowed variable, which is

destructively read, before type checking all statements of the block. Right

before the block exits the borrowed variable is reinstated with the value of

the created local variable. Any reference held by that value is unique after

the block exits, since all aliases are destroyed, thus the uniqueness invariant

is not broken. Figure 5.2 depicts the implementation. The try–finally block

ensures that whatever happens inside the borrowing block the borrowed vari-

able is reinstated. Without the try–finally block a return statement within the
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class Example extends Object
{

unique:Object obj1;
unique:Object obj2;
public void example()
{

borrow obj1 as temp1:o1 and obj2 as temp2:o2 in
{

o1.hashCode();
o2.hashCode();

}
}

}

Fig. 5.3. Extended borrowing block

borrowing block would cause the borrowed variable not to be reinstated and

cause unexpected behavior and possible data races.

When writing code in Joline it soon became apparent that the chore with

creating borrowing blocks as soon as a unique variable was to be used needed

to be dealt with.

As soon as a unique variable is to be used it has to be borrowed, for rea-

sons discussed earlier. Soon we discovered that much of the code written

was in fact borrowing blocks; for some methods over 30 percent of the lines

where borrowing statements. One solution to this problem was to implement

an extended borrowing block syntax which allows the programmer to borrow

several unique variables in one statement. This construct is shown in Figure

5.3. The implementation of this does not in any way interfere with the Jo-

line definition of borrowing or borrowing blocks, since the resulting code is

really just nested borrowing blocks, and the resulting code is the exact same

as it would be had the programmer manually nested the blocks. The blocks

are simply nested as statements inside another borrowing block. All owners

are checked for uniqueness just as before, and the statements in the original

borrowing block are simply put inside the innermost block (see Figure 5.4).

5.2.5 Scoped Regions

Scoped regions are implemented as regular blocks. The only action taken,

before type checking the block, is to order the owner inside all known owners.
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class Example extends Object
{

unique:Object obj1;
unique:Object obj2;
public void example()
{

borrow obj1 as temp1:o1
{

borrow obj2 as temp2:o2 in
{

o1.hashCode();
o2.hashCode();

}
}

}
}

Fig. 5.4. Generated extended borrowing block

5.2.6 Primitive types

Primitive types are not part of External Uniqueness, and also not part of

Ownership Types. Since primitive types use value semantics, and thus can-

not be aliased, they are of little interest in the formal description of External

Uniqueness. In Joline, being an actual language, they are however frequently

needed and therefore they are supported and may be used just as in Java.

5.2.7 Strings

The String class in Java is somewhat special, since it does not contain any

destructive methods. Any change to a string does not change the actual string

but returns a copy altered in the desired way. This renders aliasing of strings

innocuous, since they are “read–only”. One might view strings as primitives

with copy–semantics, even though the actual copy is deferred until actually

needed. For convenience we have therefore exempted strings from the re-

quirement that a unique must be destructively read (moved) when assigned

to another variable, passed as argument or returned from a method.

5.2.8 String literals

String literals in Joline (and Java), i.e. an array of characters surrounded by

quotation marks, return a String object initialized with the given characters.

We have decided the returned string should be unique with movement bound

world. This way the string may be retained in a String variable of any type.

The other solution would be annotating the literal expression with an owner,
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public void method()
{

unique:Object o = new owner:Object();
nocheck

{
System.err.println(o);

}
}

Fig. 5.5. No Check Block

just as with normal objects, but since strings never have any additional per-

mission parameters, that would depend on the owner, there is no need to do

so.

5.2.9 No Check Blocks

We have implemented a construct that we call a nocheck–block (see Figure

5.5.) This is a block which is totally ignored by the jolinec compiler and

simply passed on to javac, except for removing the actual nocheck–block

header. The nocheck–block is not part of the Joline language and we only

implemented this construct to be able to use Java features, such as printing

error–messages, in a seamless manner. Beware, though, of using the nocheck–

block construct to run code that the application depends on, since violation

of the ownership or uniqueness invariants is allowed unconditionally.

5.3 Compiling Code

Separate compilation is not supported in our Joline compiler. This is because

all owner information has to be available when compiling. After successful

compilation all owner specific code is removed and regular Java code is pro-

duced. This code is then compiled with javac and regular class files are pro-

duced. Hence all Joline code must be present when compiling with jolinec.

This is not an inherent restriction in Owership Types or External Uniqueness,

but merely one of our implementation.

5.4 Unsupported Java Features

This section discusses features in Java that have been omitted in Joline for

different reasons.
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class Example extends Object
{

public static void main()
{

...
}

}

// ... translates to ...

class Example extends Object
{

public static void main(String[] args)
{

...
}

}

Fig. 5.6. Java main method

5.4.1 Main

Arrays are not considered in External Uniqueness and thus not present in

Joline. Arrays were not necessary for our purposes and were therefore not

implemented in the compiler. Adding array support to the Joline compiler,

however, would be a trivial task. One huge consequence, though, comes as a

result of this, namely that one cannot write a runnable program in Joline. All

Java programs must have a main method as their entry point, which takes an

array of strings as argument (the command line arguments passed to java)

and therefore there was at first no way of running a pure Joline program. We

have, however, implemented another main method which takes no arguments

and translates to a regular Java main method (see Figure 5.6.) This of course

removes the possibility of passing command line arguments to the program,

but this can be easily circumvented in several ways, for instance by setting

environment variables or piping data to the standard input.

5.4.2 Java API support

Our implementation of Joline does not support the use of precompiled Java

frameworks. Precompiled Java frameworks, like the standard Java API, do

not support owners and thus do not work with Joline.

For convenience we have implemented support for some frequently used

classes from the java.lang–package. These classes may be used “out of

the box” just as in normal Java. These classes are: Object, String, Class,

Exception and Throwable.
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Analysis and Discussion

6.1 Issues and Remedies

In this chapter we discuss issues discovered while programming Joline.

6.1.1 Shared Data

Dealing with shared data in Joline is not quite as straightforward as in a con-

temporary object–oriented programming language such as Java or C++. This

is a natural effect of the stronger encapsulation offered by deep ownership.

A special case of shared data is global data. In a contemporary language,

such as Java, a common way to share global data is by storing the data in

a class variable. And as class objects are global so is the data. In Joline this

is problematic since the only owner allowed in a static context is world. The

reason for this is that class objects are not instantiated in quite the same

fashion as normal objects, i.e. the ones created by using the new keyword

in the code. Normal objects are given an owner upon instance creation, and

also may be given other permissions via owner parameters, but since class

objects are created by a class loader the matter becomes a bit more intricate.

As of now we have decided that the reasonable owner of class objects be

world, because class objects should be globally visible. However, this of course

has the consequence that class objects cannot know of any other owner than

world (and this which is only accessible from within the class object, so it

does not help us), except for in owner polymorphic methods, but they do not

really offer a solution as the polymorphic owner is not known when forming

the types of static fields. There might be a solution to this matter, however,

as will be discussed shortly. The fact that class objects all have the owner

world may render maintaining the owner structure impossible. This means

that global data cannot be global in the sense that it be accessible via some

global reference. However, by always passing a reference as argument to all
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objects that need the reference, upon creation, some degree of globality may

be attained. In our library system the borrowers, to be able to return borrowed

books, need to be aware of the libraries. We have a list containing references

to all libraries, and since keeping this list global would destroy the owner

structure, we pass a reference to the list to all borrowers.

This, of course, does not work very well if the global data is to be swapped

for another object, since every object has its own reference to the global object

and all those references will have to be updated. An obvious solution to that,

however, is to wrap the actual object inside some proxy object, which is always

the same, and swapping the wrapped object will then work (Gamma, Helm,

Johnson, and Vlissides 1994). This would be analogous, in some sense, to

pointers to pointers in the C programming language (Kernighan and Ritchie

1988).

A possible solution to the problem with global data might be to use several

class instances with different owners. In Java no distinction is made between

classes and types (this is not entirely true for the specification of Java 5.0,

where genericity is added.) In Joline, however, since the type of an object is

determined both by the class type and the owner, such a distinction is made.

Because of this one could argue that there could be several class instances,

one for each class–owner pair. These class instances would be given limited

visibility in the system, since they may only be referred to by objects with

the proper permission, perhaps giving a stronger notion of package similar

to, though quite different from, confined types (as described by Vitek and

Bokowski (2001) and Zhao, Palsberg, and Vitek (2005).) Using several class

instances for different owners is quite similar to Java, which allows several in-

stances of a class by using several class loaders. Having an owner polymorphic

Class.forName(...) method could perhaps do this. It would enable class ob-

jects to be aware of arbitrary owners in addition to world, thus allowing the

use of these owners in a static context. We have not implemented this feature

and there may well be consequences not known to us. Nonetheless we think

this is an interesting idea that should be further inquired into.

6.1.2 Exceptions and Events

In ownership research exceptions are seldom discussed. What permissions

should be granted to an exception is unclear and not agreed upon. On the

one hand it may seem reasonable that exceptions be owned by world; thus

there would be no restrictions as to how far they may be thrown. On the

other hand exceptions may carry a “source” reference to the object causing

the exception to be thrown. In this case it would seem unreasonable that an
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Fig. 6.1. The Unique Listener Pattern

object should reveal its inner workings just because it has been broken in some

sense. Permissions would limit how far in the ownership graph an exception

may be thrown.

In an event driven system, like most GUI-systems, where the system is idle

waiting for the user to act, typically clicking a button or typing a key, the same

discussion applies. These events are sent to listeners which react on the user’s

actions. What permissions should be assigned to these event objects (which

often contain a “source” reference) is not a straightforward choice to make.

Cele and Stureborg identified a pattern, The Unique Listener Pattern,

which is described in their masters thesis (2004). The pattern is depicted in

Figure 6.1 (stolen from (Cele and Stureborg 2004).) The objects a and b want

to register listeners x and y, respectively, to c. Since External Uniqueness al-

lows for uniques to be moved inwards, a and b can create their listeners,

equipping them with back–pointers, and pass them to c. When passed to c, c

assumes ownership over the listeners, making them part of its representation.

This means that c may pass representation objects to the listeners, which still

have their back–pointers and can alert a and b when ever needed. This en-

ables the use of proxy objects that are inside the object for which they act as

proxy.

6.1.3 ID–references

In most applications identity checks, i.e. testing whether an object is the same

(in whatever sense) as another, are common. When dealing with unique ref-

erences this, of course, is not possible, since there can never be more than one

reference to a unique object at any time. The need to be able to identify an ob-

ject, however, remains. In our library system books and borrowers are unique.

Whenever a book is borrowed it is moved from the library to the borrower,
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just as in real life. However, the library has to keep track of all books, even if

borrowed, in which case the borrower has to be remembered as well. We use

a borrowing card class to store information about the book and borrower, but

since they are both unique we cannot retain references to any of them. The so-

lution we have used is a unique id of some primitive type (such as int) that is

stored and later may be used for comparing with the id of an object. Cele and

Stureborg use the same technique in their masters thesis (2004). Primitive

types are not affected by Ownership Types, since they cannot be aliased, and

are also not part of External Uniqueness. The same argument may apply to ob-

jects of the String class in Java, since strings are immutable, and any change

to such an object results in a copy being returned, hence aliasing of strings

is innocuous. Storing and comparing ids this way we find to be a bit more

tedious and error prone than comparing references, but it works. Apparently

aliasing of objects only for the sake of identity checks is a reoccurring and of-

ten found pattern. If these aliases really are used only for identity checks, then

this aliasing might be considered innocuous. This raises the question whether

this calls for a weakening of ownership types (and uniqueness) to allow for a

new type of reference which may only be used for identity checks?

Exactly what properties should be given such an id–reference is not known

as of yet. Several proposals on read–only references have been presented over

the years; MacLennan (1982), Hogg’s Islands (1991), Kent and Howse’s Value

Types in Eiffel (1996), Noble et al.’s Flexible Alias Protection (1998), Müller

and Poetzsch-Heffter’s Universes (2000), Boyland et al.’s Capabilities for Shar-

ing (2001), Skoglund and Wrigstad’s mode system for read–only references

in Java (2001), Kniesel and Theisen’s JAC (2001) and Birka and Ernst’s Javari

(2004). The idea of read–only references is that they may only be used to per-

form read operations on objects, while precluding any change (write) of the

object. Existing read–only proposals, however, suffer from representational or

observational exposure (or both) which may break encapsulation, as pointed

out by Boyland (2005b). Boyland, while criticizing existing proposals, also

proposes fractional permissions as a possible solution to this problem (2003,

2005a). Time will show if this research will bear fruit and if so it might prove

beneficial for our purposes. Until then, however, our idea of an id–reference

is somewhat different. This type of reference would only be valid for id com-

parisons, and calling methods or accessing fields via such a reference would

not be allowed. Whether these id–references should be affected by ownership

bounds is not known as of yet. One might argue that such id–references, since

they cannot affect the objects they refer to, do not cause aliasing, quite contra-

dictory to the definition of aliasing (Hogg, Lea, Wills, deChampeaux, and Holt

1992), but then again, these references are nothing like the ones considered
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therein. On the other hand one might want to limit how far out in the owner

structure an id–reference may be moved, just like the bounds of uniques in

External Uniqueness. A bounded id–reference could still be given the bound

world, and would then be movable without limitations.

Another unresolved matter concerning these id–references is whether they

should be weak; that is, if such a reference should not prohibit the garbage

collector from disposing of the referred object when the actual reference is

voided. Our guess, albeit not very substantiated, is that the id–references

should be weak. Although this means that invalid references may linger in sys-

tem, it might be beneficial, for some reason, to conclude that two such refer-

ences point (or did point) to the same object, and since no action may be taken

on such a reference it really makes no difference whether the object exists or

not. Furthermore downcasts of id–references, i.e. turning id–references back

to regular references, have to be considered. We believe downcasts should

be allowed as long as they are valid owner wise. As long as one can express

the type of the cast reference there should be no reason not to allow down-

casts. Downcasts, however, bring with them controversy as to whether these

id–references should be week. If one has a weak id–reference, there is no way

of knowing whether the referred to object really exists, and casting such a

reference and reading it may well throw an exception if the object has been

disposed of. On the other hand downcasts of id–references may overcome

other problems such as interface changes due to the number of owner param-

eters needed in owner polymorphic methods, discussed in Section 6.1.5.

6.1.4 Equality of Uniques

As discussed in Section 6.1.3 comparing uniques is a problem, but unfortu-

nately it does not stop with pointer equality. When comparing objects one

is often interested in whether two objects’ contents are equal (structural

equality) and not whether they actually be the same (pointer equality). With

strings, for instance, comparing equality generally means comparing the char-

acters in the string regardless of whether the strings are aliases. As we shall

see this poses a problem with External Uniqueness.

Consider the code in Figure 6.2. In this example both strings are borrowed

(and thus given temporary owners). Both objects have to be borrowed, since

otherwise the object sent as argument would have to be consumed by the

method call. This example, however, is erroneous. The equals method of s1

cannot express the type of s2 since it is not known when writing the method

header. Hence the equals method has to be owner polymorphic. We depict

this in Figure 6.3. This is where we discover the problem. In the string case
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class Example extends Object
{

public void method()
{

unique:String str1 = "String 1";
unique:String str2 = "String 2";
borrow str1 as o1:s1 and str2 as o2:s2 in
{

if (s1.equals(s2))
...

}
}

}

Fig. 6.2. Erroneous compare of uniques with equals, borrowing both

class Example extends Object
{

public void method()
{

unique:String str1 = "String 1";
unique:String str2 = "String 2";
borrow str1 as o1:s1 and str2 as o2:s2 in
{

if (s2.equals<o1>(s1))
...

}
}

}

class String
{

public boolean equals<o outside owner>(o:String other)
{

if (this.length() != other.length())
return false;

for (int i = 0; i < this.length(); ++i)
if (this.charAt(i) != other.charAt(i))

return false;
return true;

}
}

Fig. 6.3. Comparing uniques with owner polymorphic equals
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this actually works. However, the reason for that is that the characters of

the string are primitive, and hence are not affected by ownership (don’t have

owners). If the characters were instead objects we would have to have another

owner polymorphic equals method for the character objects, and if their rep-

resentation were not primitive this would repeat itself. So for the string case

this works, but in any case where equality is dependent on anything not prim-

itive we need another owner polymorphic method. If we had a pure object

oriented language, such as Smalltalk (Goldberg and Robson 1983), where

everything is objects there still might be a solution, though. Take, for instance,

characters. If the character objects are immutable singleton objects, i.e. there

is only one instance of each character (this may lead to hefty aliasing, but

since they are immutable aliasing is innocuous, however it also has the effect

that they can never be made part of an object’s representation) and they also

be ordered so that there is a way of telling which object comes before and af-

ter a certain object, it should be possible to construct an owner polymorphic

equals method that works even with object primitives.

6.1.5 Collections

Collections, such as lists, stacks and binary trees, are commonly used in many

applications. Collections often treat their data objects as objects of a common

super type. That way collections may be written only once and then reused

when needed. In Joline, however, since owner parameters are checked stat-

ically, an object may be cast to a super type with fewer owner parameters,

but when cast back the owners cannot be checked. Consider the example in

Figure 6.4 and Figure 6.5 for a collection example (we cannot know whether

owner is the correct permission.)

There are two solutions to this problem. Firstly, one could store the owners

in each object and at run–time dynamically check the cast operation. When

statically checking the owner, as is presently done, the owners can be forgot-

ten about in run–time, since a successful compilation guarantees that the pro-

gram will run without errors, at least as far as owners are concerned. The sec-

ond solution is generics , as in Java (Bracha, Odersky, Stoutamire, and Wadler

1998) and C++ (Ellis and Stroustrup 1992). With generics, even though the

collection is general and reusable, the programmer may specify which type

the collection should contain. This would enable us to specify which owner

parameters the objects in the collection should have and thus the cast will be

avoided. Potanin et al. recently proposed Featherweight Generic Ownership

for genericity and deep ownership (2005). This, of course, does not help the

general problem, i.e. that owner parameters are lost when a reference is cast.
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class A extends Object
{}

class B<a outside owner> extends A
{}

class Example extends Object
{

public void example()
{

this:B<owner> b1 = new this:B<owner>();
this:A a1 = b1;
this:B<this> b2 = (this:B) a1; // How to check the

} // permissions of a1?
}

Fig. 6.4. Casting reference with permissions

class List<data outside owner> extends Object
{

this:ListNode<data> first;
public void add(data:Object o)
{

...
}
public data:Object get(int index)
{

...
return obj;

}
}

class Thing<o outside owner> extends Object { ... }

class Example extends Object
{

this:List<this> list;
public void method()
{

this:Thing<owner> obj = new this:Thing<owner>();
list.add(obj);
...
obj = (this:Thing<owner>) list.get(0); // *

}
}

Fig. 6.5. Collection example
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Generics also don’t help the problem with the equals method discussed in

the previous section. Even if we use generics we still may have to change the

interface of the collection class in order to meet different requirements on the

amount of owner parameters needed to compare the data objects. To actually

solve the problem with polymorphism, dynamic checking of owners is prob-

ably the only way to go. The drawback with dynamic checks, of course, is

that the compiler cannot in any way assure that the program will run without

errors due to invalid cast operations. The positive side with storing owners

dynamically is that it is much more flexible and enables such features as re-

flection.

6.2 Observations

This section discusses observations made when programming in Joline.

These observations are not of errors or flaws, but merely of situations in which

problems may arise, if one is not wary.

6.2.1 Borrowing Blocks

When borrowing a unique field in Joline the field is destructively read to

maintain uniqueness. This is a very straightforward way of ensuring that alias-

ing cannot occur. However, as it turns out it has some effects that might be

considered unintuitive, at least to the unwary programmer. Take a look at the

code in Figure 6.6. This, albeit somewhat artificial, is not a very uncommon

situation in a general program (in our system this happened a few times.)

In method2 an exception is thrown because a method is called on null. This

is exactly what should happen in this case and this behavior might be the

desired behavior. However, there are other ways of dealing with the use of

borrowed fields. One way could be to use some kind of lock, like with concur-

rency, which prevents the use of a borrowed field until it is reinstated. There

is, however, as with concurrency, no way of ensuring that the first borrow will

ever exit, and thus also no way of ensuring that the lock will ever be released.

A different approach might be to allow reading of an object during a bor-

row, while disallowing any writing operations (see Section 6.1.3 for a brief

discussion on read–only references.)

6.2.2 Initialization of State

Initializing a newly created object is commonly done by passing arguments to

the constructor. However, it is not uncommon that the state be updated us-

ing some setter method at a later time. When this is done on a unique object
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class Example extends Object
{

unique:Object obj = new unique:Object();
public void method1()
{

borrow obj as o1:o in
{

method2(o.hashCode());
}

}
public void method2(int hash)
{

borrow obj as o2:o in
{

if (hash == o.hashCode()) // Throws
{ // NullPointerException

...
}

}
}

}

Fig. 6.6. Use of borrowed field

complications may arise. Since uniques require a borrow before a message is

sent, one must be wary of one’s owners. Say, for instance, that a borrower

in a library system is to be aware of all libraries in the system (much like

a phone book.) Then, because of the previously discussed issue with global

data, borrower objects are equipped with a method that sets the library list

reference. If the library list is owned by the same owner as the borrower the,

perhaps, most intuitive thing to do is to simply express the library list as a

owner:LibraryList. This is where the problem arises. Since the borrower ref-

erence is borrowed, during the call to the setter method, the owner changes.

Thus the library list and the borrower no longer have the same owner, and

thus the compiler, quite correctly, will report an error. The solution to this is

to use an additional class permission to describe the owner of the list. The

owner of the borrower object still will change, but since the owner of the li-

brary list now is not called owner it does not change during the borrowing,

thus the problem is solved. The code in Figure 6.7 and 6.8 depicts the problem

and solution respectively.

It may well be that using additional permissions for objects received from

methods is a working pattern, that should be adhered to whenever designing

a class. However, this is not clear, and more research is needed.
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class Example extends Object
{

this:LibraryList libs = new this:LibraryList();
public void method()
{

unique:Borrower b1 = new Borrower();
borrow b1 as o1:b in
{

b.setLibraries(libs);
}

}
}
class Borrower extends Object
{

owner:LibraryList libs = null;
public void setLibraries(owner:LibraryList libs)
{

this.libs = libs;
}

}

Fig. 6.7. Erroneous library example

class Example extends Object
{

this:LibraryList libs = new this:LibraryList();
public void method()
{

unique:Borrower<this> b1 = new Borrower<this>();
borrow b1 as o1:b in
{

b.setLibraries(libs);
}

}
}
class Borrower<libOwner outside owner> extends Object
{

libOwner:LibraryList libs = null;
public void setLibraries(libOwner:LibraryList libs)
{

this.libs = libs;
}

}

Fig. 6.8. Library example with data owner
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6.3 Discussion

Most of the issues described in the previous section are due to deep owner-

ship. Some of these issues are not helped by the added flexibility of External

Uniqueness, such as the problem with shared (or global) data. Other issues

are due mostly to the addition of uniqueness, such as comparing of unique ob-

jects. It seems that the addition of uniqueness to deep ownership gives more

flexibility in some cases, while introducing new problems in others. However,

the net outcome of adding uniqueness to deep ownership seems to be positive.

The results yielded by our research seem to be mostly related to deep

ownership. This is hardly unexpected. The current External Uniqueness pro-

posal is built on top of deep ownership for a number of reasons, where the

most crucial is the ability of deep ownership to distinguish between the inside

and outside of an object (its representation.) It is conceivable that there be

other ways to achieve this, than by the use of deep ownership. Recently Liu

and Smith (2005) presented Classages, a novel interaction–centric object–

oriented language, which they claim has the ability to distinguish the inside

and outside of an object. It should thus be possible to implement External

Uniqueness on top of Classages. Deep ownership, however, has other benefits

in the use of owners, and using Classages as a base for External Uniqueness

would require redesigning the existing solutions for borrowing and scoped

regions. Without ownership, borrowing requires type system additions to pre-

serve the uniqueness invariant, as discussed in Section 2.2, most likely losing

the orthogonality of the current proposal. Scoped regions would probably also

be hard to implement, although some region–based memory management

technique (Talpin and Jouvelot 1992; Talpin and Tofte 1997; Grossman, Mor-

risett, Cheney, Hicks, Jim, and Wang 2002) might be possible to adopt to fit

this purpose.

6.3.1 Implications of External Uniqueness on Design

Our experience from designing and implementing non–trivial programs in Ex-

ternal Uniqueness is that along with managing aliasing External Uniqueness

helps conceptually by offering a very real–world–like system model. Owner-

ship helps to clearly define who owns what, and uniqueness mimics the real

world closely by ensuring that objects that are unique, such as books in our

system, cannot be aliased but have to be moved from one variable to another.

Cele and Stureborg (2004) pointed out that the design phase becomes

much more important when using ownership, and that late found design flaws

may be very difficult, or expensive, to rectify. This is very much our experience

as well.
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6.3.2 External Uniqueness, Useful or Useless?

Ownership types, as pointed out by a number of researchers (Clarke, Noble,

and Potter 1998b; Clarke, Noble, and Potter 1999; Noble 2000; Liskov, Boya-

pati, and Shrira 2003), is often too restrictive and certain common constructs

are impossible to implement. The addition of uniqueness to ownership types,

which constitutes External Uniqueness, however, loosens some of this restric-

tiveness, and enables more flexibility. Objects may be moved between own-

ers (as long as they are unique), which makes external creation and passing

of representation objects possible, without breaking encapsulation, by ensur-

ing there be no residual aliasing. We believe this makes External Uniqueness

possible to use in real life applications, as opposed to most other alias man-

agement proposals, which often are too restrictive for real life use, or too

permissive to actually manage aliasing. That being said, we still find Exter-

nal Uniqueness to be a bit too immature for implementation in an industrial

context, and apart from what we present here, there may well be other issues

passed undetected by this thesis. We believe more research is needed to fully

develop External Uniqueness and Joline.
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Conclusions

7.1 Critique

Naturally, we cannot claim to have found and presented all aspects of realizing

and using External Uniqueness from a single case study. However as there

has been very little research in this area we believe that these results are

interesting, even though they should only be generalized carefully, if at all.

However, the system we have implemented covers most of the aspects from

the three case studies by Cele and Stureborg (2004), with similar results. Also,

from their findings, program size does not seem to matter.

Based on this, we do not believe that a larger number of systems would

change our findings dramatically.

Our implementation of the Joline compiler is based on the formalization

in Wrigstad’s licentiate thesis (2004). We cannot eliminate the possibility that

there be errors in our implementation, which may pose a threat to the re-

liability of our work. However, we have continuously and thoroughly tested

the compiler and we are confident that it implements the formal specification

correctly.

We believe our additions to the Joline specification, such as strings and

string literals are well understood and appear to be working fine. However,

default owners on e.g. string literals are more or less ad–hoc and not very well

researched. We cannot claim that these additions will not have unforeseen

implications elsewhere, however up til now there has been no such evidence.

7.2 Programming With Ownership Types

Although Ownership Types has been around for some years now there is very

little experience in the practical use of it, as with External Uniqueness. To

the best of our knowledge the only real practical programming of non–trivial

programs using Ownership Types is that of Cele and Stureborg (2004) and
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our work presented in this thesis. Cele and Stureborg performed a study on

the implications of Ownership Types on the development process.

Our impression of Ownership Types after having used it in practice is not

very different from the results in Cele and Stureborg’s masters thesis. We think

the stronger encapsulation and the explicit ownership is beneficial concep-

tually by offering a system model which maps well to reality. However, as

pointed out by Cele and Stureborg the importance of the design phase in-

creases, and it is possible that iterative design processes, like Extreme Pro-

gramming (as explained by Beck (1999)), may be much harder to perform.

External Uniqueness, with its uniqueness properties, we think maps even

closer to reality, since objects that are unique must really be moved and not

just aliased, which probably is very common today, in a contemporary object–

oriented language, such as Java or C++.

7.3 Future work

Design patterns (Gamma, Helm, Johnson, and Vlissides 1994) are considered

good practices in object–oriented design, and how these are affected by Ex-

ternal Uniqueness is not known. There might well be certain patterns that are

no longer possible to implement due to the restrictions of Ownership Types

or, rather, that require an owner structure that loses the advantages of the

stronger encapsulation offered by Ownership Types. This matter should be

further inquired into.

Several proposals on read–only references have been presented over the

years, but as discussed earlier, these suffer from observational and represen-

tational exposure (Boyland 2005b). Boyland proposes fractional permissions

as a possible solution (2003, 2005a). This work is far from finished and it

is uncertain whether it will bear fruit. The concept of read–only references,

however, we think is very interesting, both as an alias management technique

of its own, and as a possible implementation of id–references and borrowed

fields in Joline; thus we believe read–only references merit further explo-

ration.

The work on our Joline compiler should be continued. As described in

this thesis there are features we have found to be needed, albeit not present in

the formal specification of Joline. These features include for instance arrays.

How features such as arrays would affect the Joline language is not known

and should be further looked into. The same holds true for id–references, as

described in Section 6.1.3 and multiple class–instances belonging to different

representations. Their implementation in Joline should be trivial, but more

work is required to fully understand their implication.
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