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Abstract

The metrics suite for object-oriented design put toohby Chidamber anddfnerer [8] is partly\alu-

ated by applying principles of measurement theldsing the object coupling measure (CBO) asxan e
ample, it is shan that &iling to establish a sound empirical relation system can lead to deficiencies of
software metrics. Similarlyfor the object-oriented cohesion measure (LCOM) it is pointed out that the
issue of empirical testing the representation condition must not be ignegadf ether walidation prin-
ciples are carefully olyed. As a by-product, an alternatiformulation for LCOM is proposed.
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1. Introduction

Chidamber and &merer (“C&K” in the remainder of this article) proposed a draft suite of aodtw
metrics tailored to object-oriented soétwe design in 1991, featuringveeal internal product attribites

[7]. In a more recent article, the authors present a more thorough treatise on their candidate metrics,
complemented by the analysis obtempirical studies and a short guideline oitio apply their met-

rics to support the object-oriented design process [8]. After a shimwref the most important aspects

of measure theory pertinent to sofive metrics as put foawd by e.g., Fenton [10][11], the authors

link their metrics to an ontological foundation [4][5] araligate them according to a subset of
Weyuker's axioms [23]. Specificallyhe metrics suggested areihted Methods Per Class (WMC),
Depth of Inheritancerge (DIT), Number of Children (NOC), Coupling between Object Classes
(CBO), Responsedt a Class (RFC), and Lack of Cohesion in Methods (LCOM).

LInternal product attribtes can be measured purely in terms of the product itself as oppestsirial
attributes which can only be measured with respectwothe product relates to its\@ronment [10].



A closer look on the proposed metricgaals some shortcomings which can be detected (andieal)
by rigorously applying simple measure theoretic princfplesgeneral, as has been pointed out be se
eral authors, measurement (in the assessment sense) consists ofwiegfeldivities [1][10][11]:

* ldentifying the attrilite of interest,

 establishing an empirical relation system,

+ finding a measure mapping the empirical relation system into a formal (numerical) one,
« validating the measure, and

» determining the scale type of the measure.

We shav how more careful consideration of measurement theory highlights both the strengths and
weaknesses of some of the proposed metrics.

2. Theimportance of identifying attributes and empirical relation systems

Before ay measurement agtty, we must identify the attrilie to be measured. Such an atitgomust
bear a certaisignificancefor a person iwolved in the deelopment process, such as a designer
grammey manageruser etc. The attribe might not necessarily be interestpay se but might sere as
an irdependentariable for indirect measurement of another (interesting!) atéribr in a gien predic-
tion madel (a case we do not consider further here)daer, one shouldwaid collecting data about
meaningless aspects of the sa@fterdocument undeniastigation (just because thénappen to be eas-
ily collectible).

In the nat step, a “sufcient” empirical relation system must be established, i.e., an empirical relation
system which captures all generally accepted intuitieas about the atttite under consideration. In

what follows, we demonstrate the consequences of not strictly adhering to this rule by means of a con-
crete coupling metric tan from [8]. Coupling is one of the moanfious internal product atttites,

studied since the adwut of structured programming [18][22][26] and more receimtlyhe contet of
object-orientation [3][13][14][16][24]. Under the object-oriented paradigm, the notion of coupling dif-
fers somerhat from the classical oneytihe main ideas remain the same.

In [8], Coupling Between Object Clas4€BO) is defined as “a count of the number of other classes to

which it is coupled”. This definition implies that all single couples as defined in [8) €lagses are

coupled when methods declared in one class use methods or instdabkes of the other class”) are

considered equal. k@ver, a more complete empirical relation systepuld demand that, depending

on seeral circumstances, a single couple should cartiilnore or less to awerall coupling measure.

Specifically one should consider at least the failog empirical relations (where applicable) [12]:

» Access to instanceaviables constitutes stronger coupling than pure message passing.

» Access to instanceaviables of foreign classes constitutes stronger coupling than access to instance
variables of superclasess (the same hohddatis mutandisfor message passing).

» Passing a message with a wide parameter aterfields stronger coupling than passing one with a
slim interface.

* Violating the Lav of Demeter [16][17] yields stronger coupling than restricted (Demeter conform-
ing) message passing

» Couples to the folling types of objects should yield increasing coupliaes: local objects,
method parameters, subobjects of self (= instaadahles of class type), subobjects of a super class

2Recently another comment on theovk of C&K has been published by Churcher and Shepperd e #nat
it is most important to specify the mapping from a language-independent set of metrics to specific programming
languages [9]. Although we agree with this obation, here we are focusing on other issues.
3In [16], the Lav of Demeter in its so-called “objecersion” is defined for C++ as folks:
For all classes C, and for all member functions M dtetto C, all objects to wHidM sends a mesga must
be: 1. M5 agument objects, including *this @ a data member object of class C.



(= inherited instanceariables of class type), global objects.

Of course, it is debateable, which of theaboules are to be tak into consideration. kever, as

C&K explicitly refer to the Lav of Demeter in the contéof coupling, at least the fourth relationship
above should hee been captured by their metri@rfinstance, both designs presented in Fig. 1 result in
CBO(C)= 2, because method M of class C uses methods of classes A and B in both cases, Ho
the Law of demeter is violated in the left@mple in Fig. 1 due to the “indirect” method dispatch
b->f()->g() which is aoided in the rightxeample by means of a specific access method in B.

class A{...wid g0; ...}; class A{...wid g0; ...};
classB{... A*f(); ... }; class B { ... A* f(); wid apply_g(); .. };
class C{ class C{
A* a; B* b; A* a; B* b;
} void M () { a->g(); b->f(}>g(); } } void M () { a->g(); b->apply_g(); }

Fig. 1. Violation of the Lav of Demeter (left) and modified design conforming to the (Gaght)

We thus learn that it is indeed important to list the empirical relation systems beforehand. C&K share
this opinion in [8] where thestart of giving “empirical relation systems” calledewpoints for the
metrics proposed. Heever, their vievpoints deal with the &cts of each proposed metric orfeliént
(often eternal) attrilutes, e.g., for WMC: maintainability {&vpoint 1) an reuse potential igWpoint
3); for DIT: predictability of behaor (Viewpoint 1) and reuse potentiali@wpoint 3); for NOC: reuse
(Viewpoint 1) and correctness of abstractioregxpoint 2); for CBO: reuse (ewpoint 1), maintain-
ability (Viewpoint 2), and testability (éwpoint 3); for RFC: testability (Mwpoint 1) and general
complity (Viewpoint 2); and for LCOM: encapsulationi@tpoint 1) and correctnessiéwpoint 4).
Discussing the &cts of a metric on other atttites is certainly aluable, hwever, it can by no means
replace the specification of a generally accepted empirical relation system for thestitribe mea-
sured.

3. Issues of validation

Having established an empirical relation system, a metric M should then map the empirical relation sys-
tem into an appropriate formal (or numerical) relation syspeeserving the semantics of the empirical
relation(s) obsemd. In other wrds, for @ery empirical relatiofn] and a corresponding formal relation

<, the so-calledepresentation condition XY < M(X)<M(Y) must hold. The task ofalidating a

software measure in the assessment sense igadenii to demonstrating empirically that the represen-
tation condition is satisfied for the atwile being measured [11].

This walidation of the measure can of course be complemented by other consideratioas, der-
tainly not be totally replaced, as we will see in the feilg discussion of anotheexy important at-
tribute cavered by C&K, namelycohesion.

Cohesion is defined as an atirib of indvidual modules describing th&tent to which the indidual
module components are needed to perform the same task [10]. In object-oriented systems, the term
“module” in this definition is usually replaced by the term “classVe8aliferent kinds of cohesion

have been identified and ramdt with respect to the strength of the resulting binding, ranging from (the
wealest)coincidental cohesion which occurs when a class consists of a number of methods which do
not seem to be related inyaway to (the strongest and most desirabi&h cohesion® which occurs

4The classical scale as proposed by&ts et al. [21] has been slightly adapted for the object-oriented case by
Budd[3].



when a class is used to implement a data abstraction, i.e., it defines internally a setabfiesiznd

exports methods that manipulate the data structure [3}eitr, in order to correctly identify the cohe-

sion type for a gien class, a considerable amount of semantic information is needed whech ié-v

ten not &ailable for the (automated) process of metric collection. In this situation, C&<atagason-

able approach focussing on a simple notiogmilarity of methods which only tales into account

methods and their relationships to instanagables: Methods operating or@nmon set of instance
variables are considered more similar than methods accelsgigt sets of instanceaviables. The

former contrilute to high cohesion, while the latter reduce cohesion of the class, hinting at the possibil-
ity to split the class in tavor more smaller classes.

To obtain an imerse measure of cohesion, C&K defiraek of Cohesion in Methods (LCOM) as the
number of pairs of methods operating on disjoint sets of instami@bles, reduced by the number of
method pairs acting on at least one shared instar@bie. Br example, in class X in Fig. 2 belo

‘ class X {
0 intA, B, C,D,E,F;

a() voidf(){..usesA B, C..}
void g() {...usesD,E ... }

ah() void h() { ... usesE, F ...}

-

Fig. 2. Example class with LCOM =1
there are tw pairs of methods accessing common instanceaviables (<f, g>, <f, h>), whilexactly
one pair of methods shareariable E, namely<g, h>. Therefore, LCOMis2-1=1.

Unfortunately this cohesion metrickbibits some anomalies with respect to the intaitinderstanding
of the attrilute which will be &plained beluov.

Consider the four designs presented in Fig. 3 where ezl dagram represents a method by the set
of instance ariables it emplgs.

Case | Case Il

LCOM=1-0=1 LCOM=2-1=1

b
O

Case |l Case IV

LCOM=3-3=0 LCOM =4-2=2

b
)

Fig. 3. Example LCOM computations

According to our intuition about cohesion, all of these cases are nonw@fekich could be formal-
ized in terms of an appropriate empirical relationith@Ut resorting to ansemantic information about
the classes, we are inclined to conclude aHatlasses should be brak up, despite the fi#rent



LCOM-values. Een according to C&Ks viewpoint, “Lack of cohesion implies classes should proba-
bly be split into tve or more subclasses” (page 489). According to the C&K metrics, the firstses
should be split (LCOM=1), case I\Wen more so (LCOM=2), while case lll is considered structurally
cohesve (LCOM=0) and therefore presumablpuwid not be a candidate for splitting. Furthermore, it
seems hard taxelain why the addition of one method to axisting cluster in case | yielding case Il
should not change the cohasiess, while performing the same operaticairag case Il can va con-
flicting effects: it reduces LCOM in case Ill and raises LCOM in case IV

As another gample, consider a (fiet) general class structure, wharmethods are sequentially
“link ed” by shared instanceaniables as shan in Fig. 4.

Fig. 4. Sequential cohesion

A short calculation for this special case yields

LCOM = {gg- 2(n— 1)}+

wherelk1* equals, if k>0 and 0 otherwise.

For n<5, LCOM is 0, well reflecting our intuite view that all classes from thiarmily are equally co-
hesive. Hovever, for n=5, 6, 7, and 8, LCOM becomes 2, 5, 9, and 14, respdgtior the same struc-
tural pattern. On the other hand, if ongusd that such a pattern can and should be split, thus support-
ing LCOM>0, the result LCOM=0 fan=3 and 4 is hard toxglain.

It turns out that our intuition of this similarity-based notion of cohesion boisido the approach of
considering “clusters” of methods accessing common instar@bles. It is interesting to note that in
the earlier ersion of their metrics suite, C&K had probably the same idea in mind whedédfieed
LCOM:

Consider a Class C; with methods M4, M... , M. Let {I;} = set of instance variables used by
method M;. There are n such sets {14}, ... {I}.
LCOM = The number of digoint sets formed by the intersection of the n sets. [7]

Although this older grsion - albeit the last sentence in this definition being whiaeambiguous - in
our interpretation does natlgbit the anomalies discussed abpC&K do not &plain wty they gave it
up in [8].

Li and Henry attempted to rephrase thevabadefinition in order toveercome the ambiguity as folls:

LCOM = number of digoint sets of local methods; no two sets intersect; any two methodsin the
same set share at least one local instance variable; ranging from0to N; where Nisa positive in-
teger. [15]

This version agin supports our point of we Taking this definition of LCOM, all our cases I-IV result
in LCOM=2 while the pattern in Fig. 4 yields LCOM=1 foreey n.

At this point, we propose a éBfent, graph-theoretic formulation of Li and Hesryérsion of LCOM
which is hopefully en more precise and also leads to a second (subordinate) metric which helps to
differentiate among the ties in cases with LCOM=1 (for a more detailed discussifir2]see



Let X denote a class, the set of instanceaviables ofX, andM, the set of its methods. Consider a sim-
ple, undirected grapBy(V, E) with V =M, andE = {<m, n> OVxV | Oi0l,: (maccessey [ (n accesses

i)}, i.e., exactly those wertices are connected which represent methods with at least one common in-
stance dgriable. V& can nw define LCOMK) as the number of connected componenG,ghat is, the
number of method “clusters” operating on disjoint sets of instasgables. According to our interpre-
tation of the definitions for LCOM in [7] and [15], them&rmulation is equialent.

In the cases where LCOM=1, there are still more and less velasses possible. Especially for big
classes, it might be desirable to refine the measure to tell the structeraidié between the members
of the set of classes with LCOM=101Rhis purpose, let us consider thetatreme cases of con-
nected graphs: The pattern in Fig. 4 which leads to a graphBjth] represents the minimum cohe-
sive case, while the a maximally cohestdesign where all methods access the same set of instance
variables is mapped to the complete graph \En[(h-1)/2. Thus, we can break maaof the ties in the
set of classes yielding LCOM=1 by considering the number of eBgé&he more edges i@ for a
given method se&¥=M,, the higher the cohesion of classFor corvenience, we map |E| into the inter-
val [0, 1]:

o JEl=(n-1)
C = nan-2)

For classes with more thandwnethodsC can be used to discriminate among those cases where
LCOM=1 asC gives us a measure of thevagion of a gven graph from the minimal connei(that
is, cohesie) case.

We conclude our discussion of LCOM with the obaéion that the ab@ mentioned anomalies of
LCOM have remained undiseered in [8], in part becausalidation of the representation condition
has beesubstitutedy another rule set (8yuker's axioms [23]). Put diérently, we want to emphasize
that aly such set of alidation criteria should only be emghkxd inadditionto the more fundamental
representation condition.

As far as the applicability of @uker’s properties is concerned, one should note tivarakdefects
have been identified in the past. C&K note this by citing formal criticisms by Chskgiand Smith

[6], Fenton [10], and Zuse [27], ankofude three of the originally proposed properties from their list
because theconsider them tvially met by their metrics (properties 2 and 8) or notvaah for object-
oriented design (Proper®). Morewer, in a more recent papetuse has preed that Veyuker's axioms
are contradictory within the representational theory of measurement ([28], cf. also [11]).

As a “philosophical” aside, weauld like to point out a principle issue related to the application of
Weyuker's axioms in C&KS paper: Thealidation of the three Wuker's propertiesnonotonicity
nonequivalence of intaction, and ‘interaction inceases compkity” depends on the definition of a
join operator “;” for softvare parts. &+ instance, the monotonicity criterion for metfiiq defined as
OPOQ: |PEIP ; QIO |QEIP ; Q| where P and Q denote safitevparts. It can be re-stated sloppily as
“whenerer you measure the compiy of a of a thing which is composed ofdwarts, the result must
not be less than the measure applied to one of the parts in isolation”. Ouatibadrere is that the
definition of operator “+” emplged by C&K in place of Wyuker’s “;” is not very well suited to
Weyuker’s rule set and might thus render the interpretatiomlidation results soméhat questionable
(no matter whether tlyeare positre or ngative). In the remainder of this section, wekain our con-
cerns with C&KS definition of operator “+”.

Weyuker’s “view of programs is that tlyeare objects composed from simpler ... program bdd[ed],
pp. 1360-1361). She denotes a prograiitt by sequential concatenation of parts P and Q by “P ; Q”.
In C&K (and belav), the + operator is used to compose twbjects. Thus, a ‘whole’ object P+Q is
composed of te ‘parts’ P and Q. When one focusses on classesildinlg blocks in an object-ori-
ented system (as C&K do), one needs a definition f@x€ - C (C denoting the set of classes) which



combines tw classes to a bigger thing which must be a claaimaGven two classes A and B, there
are sgeral possible ways (cf. standard xébooks, e.g. [2][3][20][19][25]) to produce awelass AB
“consisting” of both, A, and B:

a) Create AB which contains A and B as subobjects (@atjm). AB internally contains all properties
of A and all properties of B,ut does not present them to the outside unless a specific (additional)
protocol is preided for that purpose.

b) Create AB by deving B from A (i.e., leging B as is gcept for dewing it from A). AB contains the
bag of all properties of A and B, althougts Anstance ariables which appear also in B are hidden in
AB and As methods which appear also in B averadden in AB (It are neertheless there).

c) Create AB by deving a nev class from both, A and B. AB am contains all properties of A and all
of B, but some name conflict resolution mechanism must be useditbambiguities.

d) Create AB by “meging” A and B in the C&K sense. In this case, AB reesithe theunion of prop-
erties (i.e., methods and instancariables) which means that common properties of A and B are
reduced to a single appearance in AB (due to the union operator).

As we hae shavn, there are marnways to combine tw classes into a single class. Thus, the most rig-
orous approach euld be to check ¥uker’s properties with respect &l of the abwe combination

rules. Havever, if one restricts thealidation process to only one of these possibilities, d) seems not the
best choice, as it is not any usual vy of actually combining classes and it alsmines the risk of in-
adwertently remwing necessary properties when applying the union operator to seemingly “common”
properties which happen to be homiors denoting distinct concepts.

4. Conclusion

We have shavn that the ery interesting suggestions of C&K in the field of object-oriented design met-
rics can still be impneed by adhering to some measure theoretic principlegr&eauthors ha pro-

posed a commonly agreed upon procedure to design useful measures for assessing (in contrast to pre-
dicting) attrilutes used in softare deelopment [1][10][11]. V& have focussed on some of these steps

in this paperbut would like to present anverviewn of the whole process from our point ofwie Fig.

5. Revealing the possible erroxkigs of this flavchart (which usually lead to iteration of the whole pro-

cess or parts thereof) will help to analyze and imprareviously proposed measures and may guide
software scientists in the identification ofmattributes and deslopment of corresponding measures to

avoid these branches in the first place.

As far as the concrete metrics discussed in this paper are concerned, we feel that it is most important
that we &change our intuitie understanding of the matter in order tovarat a sound collection of
measures. Thus, we agree with Fenton in [11dr ‘Rary software attrilutes, we are still at the stage of
having very crude empirical relation systeinglthough it will most probably ta& much more time

and efort until we hae arrved at our goal, we are certain, that the metrics community is on the right
way.
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