
- 1 -

Chidamber & K emerer's Metrics Suite:
A Measurement Theory Perspective

Martin Hitz, Behzad Montazeri

Institut für Angewandte Informatik und Informationssysteme
University of Vienna
Rathausstraße 19/4

A-1010 Vienna
Austria / Europe

email: {hitz, montazeri}@ifs.univie.ac.at

Abstract

The metrics suite for object-oriented design put forward by Chidamber and Kemerer [8] is partly evalu-
ated by applying principles of measurement theory. Using the object coupling measure (CBO) as an ex-
ample, it is shown that failing to establish a sound empirical relation system can lead to deficiencies of
software metrics. Similarly, for the object-oriented cohesion measure (LCOM) it is pointed out that the
issue of empirical testing the representation condition must not be ignored, even if other validation prin-
ciples are carefully obeyed. As a by-product, an alternative formulation for LCOM is proposed.

Index Terms

Software Measurement, Coupling Metrics, Cohesion Metrics, Object-Orientation,Validation

Copyright Notice

This paper has been published in IEEE Transactions on Software Engineering, Vol. 22, No. 4, April
1996. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for sale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works must be obtained
from IEEE.

1. Introduction

Chidamber and Kemerer (“C&K” in the remainder of this article) proposed a draft suite of software
metrics tailored to object-oriented software design in 1991, featuring several internal1 product attributes
[7]. In a more recent article, the authors present a more thorough treatise on their candidate metrics,
complemented by the analysis of two empirical studies and a short guideline of how to apply their met-
rics to support the object-oriented design process [8]. After a short review of the most important aspects
of measure theory pertinent to software metrics as put forward by, e.g., Fenton [10][11], the authors
link their metrics to an ontological foundation [4][5] and validate them according to a subset of
Weyuker's axioms [23]. Specifically, the metrics suggested are Weighted Methods Per Class (WMC),
Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling between Object Classes
(CBO), Response For a Class (RFC), and Lack of Cohesion in Methods (LCOM).

1Internal product attributes can be measured purely in terms of the product itself as opposed toexternal
attributes which can only be measured with respect to how the product relates to its environment [10].

- 2 -

A closer look on the proposed metrics reveals some shortcomings which can be detected (and avoided)
by rigorously applying simple measure theoretic principles2. In general, as has been pointed out be sev-
eral authors, measurement (in the assessment sense) consists of the following activities [1][10][11]:

• Identifying the attribute of interest,
• establishing an empirical relation system,
• finding a measure mapping the empirical relation system into a formal (numerical) one,
• validating the measure, and
• determining the scale type of the measure.

We show how more careful consideration of measurement theory highlights both the strengths and
weaknesses of some of the proposed metrics.

2. The importance of identifying attributes and empirical relation systems

Before any measurement activity, we must identify the attribute to be measured. Such an attribute must
bear a certainsignificance for a person involved in the development process, such as a designer, pro-
grammer, manager, user etc. The attribute might not necessarily be interestingper se, but might serve as
an independent variable for indirect measurement of another (interesting!) attribute or in a given predic-
tion model (a case we do not consider further here), however, one should avoid collecting data about
meaningless aspects of the software document under investigation (just because they happen to be eas-
ily collectible).

In the next step, a “sufficient” empirical relation system must be established, i.e., an empirical relation
system which captures all generally accepted intuitive ideas about the attribute under consideration. In
what follows, we demonstrate the consequences of not strictly adhering to this rule by means of a con-
crete coupling metric taken from [8]. Coupling is one of the most famous internal product attributes,
studied since the advent of structured programming [18][22][26] and more recently, in the context of
object-orientation [3][13][14][16][24]. Under the object-oriented paradigm, the notion of coupling dif-
fers somewhat from the classical one, but the main ideas remain the same.

In [8], Coupling Between Object Classes (CBO) is defined as “a count of the number of other classes to
which it is coupled”. This definition implies that all single couples as defined in [8] (“two classes are
coupled when methods declared in one class use methods or instance variables of the other class”) are
considered equal. However, a more complete empirical relation system would demand that, depending
on several circumstances, a single couple should contribute more or less to an overall coupling measure.
Specifically, one should consider at least the following empirical relations (where applicable) [12]:
• Access to instance variables constitutes stronger coupling than pure message passing.
• Access to instance variables of foreign classes constitutes stronger coupling than access to instance

variables of superclasess (the same holds,mutatis mutandis, for message passing).
• Passing a message with a wide parameter interface yields stronger coupling than passing one with a

slim interface.
• Violating the Law of Demeter [16][17] yields stronger coupling than restricted (Demeter conform-

ing) message passing3.
• Couples to the following types of objects should yield increasing coupling values: local objects,

method parameters, subobjects of self (= instance variables of class type), subobjects of a super class

2Recently, another comment on the work of C&K has been published by Churcher and Shepperd who argue that
it is most important to specify the mapping from a language-independent set of metrics to specific programming
languages [9]. Although we agree with this observation, here we are focusing on other issues.
3 In [16], the Law of Demeter in its so-called “object version” is defined for C++ as follows:
For all classes C, and for all member functions M attached to C, all objects to which M sends a message must
be: 1. M’s argument objects, including *this or2. a data member object of class C.

- 3 -

(= inherited instance variables of class type), global objects.

Of course, it is debateable, which of the above rules are to be taken into consideration. However, as
C&K explicitly refer to the Law of Demeter in the context of coupling, at least the fourth relationship
above should have been captured by their metric. For instance, both designs presented in Fig. 1 result in
CBO(C)= 2, because method M of class C uses methods of classes A and B in both cases. However,
the Law of demeter is violated in the left example in Fig. 1 due to the “indirect” method dispatch
b->f()->g() which is avoided in the right example by means of a specific access method in B.

We thus learn that it is indeed important to list the empirical relation systems beforehand. C&K share
this opinion in [8] where they start off giving “empirical relation systems” calledviewpoints for the
metrics proposed. However, their viewpoints deal with the effects of each proposed metric on different
(often external) attributes, e.g., for WMC: maintainability (Viewpoint 1) an reuse potential (Viewpoint
3); for DIT: predictability of behavior (Viewpoint 1) and reuse potential (Viewpoint 3); for NOC: reuse
(Viewpoint 1) and correctness of abstraction (Viewpoint 2); for CBO: reuse (Viewpoint 1), maintain-
ability (Viewpoint 2), and testability (Viewpoint 3); for RFC: testability (Viewpoint 1) and general
complexity (Viewpoint 2); and for LCOM: encapsulation (Viewpoint 1) and correctness (Viewpoint 4).
Discussing the effects of a metric on other attributes is certainly valuable, however, it can by no means
replace the specification of a generally accepted empirical relation system for the attribute to be mea-
sured.

3. Issues of validation

Having established an empirical relation system, a metric M should then map the empirical relation sys-
tem into an appropriate formal (or numerical) relation system,preserving the semantics of the empirical
relation(s) observed. In other words, for every empirical relation∠ and a corresponding formal relation
<, the so-calledrepresentation condition X∠Y ⇔ M(X)<M(Y) must hold. The task ofvalidating a
software measure in the assessment sense is equivalent to demonstrating empirically that the represen-
tation condition is satisfied for the attribute being measured [11].

This validation of the measure can of course be complemented by other considerations, but can cer-
tainly not be totally replaced, as we will see in the following discussion of another very important at-
tribute covered by C&K, namely, cohesion.

Cohesion is defined as an attribute of individual modules describing the extent to which the individual
module components are needed to perform the same task [10]. In object-oriented systems, the term
“module” in this definition is usually replaced by the term “class”. Seven different kinds of cohesion
have been identified and ranked with respect to the strength of the resulting binding, ranging from (the
weakest)coincidental cohesion which occurs when a class consists of a number of methods which do
not seem to be related in any way to (the strongest and most desirable)data cohesion4 which occurs

4The classical scale as proposed by Stevens et al. [21] has been slightly adapted for the object-oriented case by
Budd[3].

class A { ... void g(); ...};
class B { ... A* f(); ... };
class C {

A* a; B* b;
void M () { a->g(); b->f()->g(); }

};

class A { ... void g(); ...};
class B { ... A* f(); void apply_g(); ... };
class C {

A* a; B* b;
void M () { a->g(); b->apply_g(); }

};

Fig. 1. Violation of the Law of Demeter (left) and modified design conforming to the Law (right)

- 4 -

when a class is used to implement a data abstraction, i.e., it defines internally a set of data values and
exports methods that manipulate the data structure [3]. However, in order to correctly identify the cohe-
sion type for a given class, a considerable amount of semantic information is needed which is very of-
ten not available for the (automated) process of metric collection. In this situation, C&K take a reason-
able approach focussing on a simple notion ofsimilarity of methods which only takes into account
methods and their relationships to instance variables: Methods operating on acommon set of instance
variables are considered more similar than methods accessingdisjoint sets of instance variables. The
former contribute to high cohesion, while the latter reduce cohesion of the class, hinting at the possibil-
ity to split the class in two or more smaller classes.

To obtain an inverse measure of cohesion, C&K defineLack of Cohesion in Methods (LCOM) as the
number of pairs of methods operating on disjoint sets of instance variables, reduced by the number of
method pairs acting on at least one shared instance variable. For example, in class X in Fig. 2 below,

there are two pairs of methods accessingno common instance variables (<f, g>, <f, h>), while exactly
one pair of methods shares variable E, namely, <g, h>. Therefore, LCOM is 2 - 1 = 1.

Unfortunately, this cohesion metric exhibits some anomalies with respect to the intuitive understanding
of the attribute which will be explained below.

Consider the four designs presented in Fig. 3 where each Venn diagram represents a method by the set
of instance variables it employs.

According to our intuition about cohesion, all of these cases are non-cohesive (which could be formal-
ized in terms of an appropriate empirical relation): Without resorting to any semantic information about
the classes, we are inclined to conclude thatall classes should be broken up, despite the different

class X {
int A, B, C, D, E, F;
void f () { ... uses A, B, C ... }
void g() { ... uses D, E ... }
void h() { ... uses E, F ... }

};

Fig. 2. Example class with LCOM = 1

Fig. 3. Example LCOM computations

A B C f()

D
E F

g()

h()

Case II

LCOM = 2-1 = 1

Case I

LCOM = 1-0 = 1

Case III

LCOM = 3-3 = 0

Case IV

LCOM = 4-2 = 2

- 5 -

LCOM-values. Even according to C&K’s viewpoint, “Lack of cohesion implies classes should proba-
bly be split into two or more subclasses” (page 489). According to the C&K metrics, the first two cases
should be split (LCOM=1), case IV even more so (LCOM=2), while case III is considered structurally
cohesive (LCOM=0) and therefore presumably would not be a candidate for splitting. Furthermore, it
seems hard to explain why the addition of one method to an existing cluster in case I yielding case II
should not change the cohesiveness, while performing the same operation again to case II can have con-
flicting effects: it reduces LCOM in case III and raises LCOM in case IV.

As another example, consider a (fictive) general class structure, wheren methods are sequentially
“link ed” by shared instance variables as shown in Fig. 4.

A short calculation for this special case yields

where equalsk, if k>0 and 0 otherwise.

For n<5, LCOM is 0, well reflecting our intuitive view that all classes from this family are equally co-
hesive. However, for n=5, 6, 7, and 8, LCOM becomes 2, 5, 9, and 14, respectively, for the same struc-
tural pattern. On the other hand, if one argued that such a pattern can and should be split, thus support-
ing LCOM>0, the result LCOM=0 forn=3 and 4 is hard to explain.

It turns out that our intuition of this similarity-based notion of cohesion boils down to the approach of
considering “clusters” of methods accessing common instance variables. It is interesting to note that in
the earlier version of their metrics suite, C&K had probably the same idea in mind when they defined
LCOM:

Consider a Class C1 with methods M1, M2... , Mn. Let {Ii} = set of instance variables used by
method Mi. There are n such sets {I1}, ... {In}.
LCOM = The number of disjoint sets formed by the intersection of the n sets. [7]

Although this older version - albeit the last sentence in this definition being somewhat ambiguous - in
our interpretation does not exhibit the anomalies discussed above, C&K do not explain why they gave it
up in [8].

Li and Henry attempted to rephrase the above definition in order to overcome the ambiguity as follows:

LCOM = number of disjoint sets of local methods; no two sets intersect; any two methods in the
same set share at least one local instance variable; ranging from 0 to N; where N is a positive in-
teger. [15]

This version again supports our point of view. Taking this definition of LCOM, all our cases I-IV result
in LCOM=2 while the pattern in Fig. 4 yields LCOM=1 for every n.

At this point, we propose a different, graph-theoretic formulation of Li and Henry’s version of LCOM
which is hopefully even more precise and also leads to a second (subordinate) metric which helps to
differentiate among the ties in cases with LCOM=1 (for a more detailed discussion, see[12]).

Fig. 4. Sequential cohesion

...

LCOM
n
2 

  2 n 1–()–
+

=

k +

- 6 -

Let X denote a class,IX the set of instance variables ofX, andMX the set of its methods. Consider a sim-
ple, undirected graphGX(V, E) with V = MX and E = {<m, n> ∈V×V | ∃ i∈IX: (m accessesi) ∧ (n accesses
i)}, i.e., exactly those vertices are connected which represent methods with at least one common in-
stance variable. We can now define LCOM(X) as the number of connected components ofGX,that is, the
number of method “clusters” operating on disjoint sets of instance variables. According to our interpre-
tation of the definitions for LCOM in [7] and [15], the new formulation is equivalent.

In the cases where LCOM=1, there are still more and less cohesive classes possible. Especially for big
classes, it might be desirable to refine the measure to tell the structural difference between the members
of the set of classes with LCOM=1. For this purpose, let us consider the two extreme cases of con-
nected graphs: The pattern in Fig. 4 which leads to a graph with |E|=n-1 represents the minimum cohe-
sive case, while the a maximally cohesive design where alln methods access the same set of instance
variables is mapped to the complete graph with |E|=n⋅(n-1)/2. Thus, we can break many of the ties in the
set of classes yielding LCOM=1 by considering the number of edges |E|: The more edges inGX for a
given method setV=MX, the higher the cohesion of classX. For convenience, we map |E| into the inter-
val [0, 1]:

For classes with more than two methods,C can be used to discriminate among those cases where
LCOM=1 asC gives us a measure of the deviation of a given graph from the minimal connective (that
is, cohesive) case.

We conclude our discussion of LCOM with the observation that the above mentioned anomalies of
LCOM have remained undiscovered in [8], in part because validation of the representation condition
has beensubstituted by another rule set (Weyuker’s axioms [23]). Put differently, we want to emphasize
that any such set of validation criteria should only be employed inaddition to the more fundamental
representation condition.

As far as the applicability of Weyuker’s properties is concerned, one should note that several defects
have been identified in the past. C&K note this by citing formal criticisms by Cherniavsky and Smith
[6], Fenton [10], and Zuse [27], and exclude three of the originally proposed properties from their list
because they consider them trivially met by their metrics (properties 2 and 8) or not relevant for object-
oriented design (Property7). Moreover, in a more recent paper, Zuse has proved that Weyuker’s axioms
are contradictory within the representational theory of measurement ([28], cf. also [11]).

As a “philosophical” aside, we would like to point out a principle issue related to the application of
Weyuker’s axioms in C&K’s paper: The validation of the three Weyuker‘s propertiesmonotonicity,
nonequivalence of interaction, and “interaction increases complexity” depends on the definition of a
join operator “;” for software parts. For instance, the monotonicity criterion for metric |⋅| is defined as
∀P∀Q: |P|≤|P ; Q|∧ |Q|≤|P ; Q| where P and Q denote software parts. It can be re-stated sloppily as
“whenever you measure the complexity of a of a thing which is composed of two parts, the result must
not be less than the measure applied to one of the parts in isolation”. Our observation here is that the
definition of operator “+” employed by C&K in place of Weyuker’s “;” is not very well suited to
Weyuker’s rule set and might thus render the interpretation of validation results somewhat questionable
(no matter whether they are positive or negative). In the remainder of this section, we explain our con-
cerns with C&K’s definition of operator “+”.

Weyuker’s “view of programs is that they are objects composed from simpler ... program bodies.” ([24],
pp. 1360-1361). She denotes a program built by sequential concatenation of parts P and Q by “P ; Q”.
In C&K (and below), the + operator is used to compose two objects. Thus, a ‘whole’ object P+Q is
composed of two ‘parts’ P and Q. When one focusses on classes as building blocks in an object-ori-
ented system (as C&K do), one needs a definition for +:C×C→C (C denoting the set of classes) which

C 2
E n 1–()–

n 1–() n 2–()⋅
--------------------------------------=

- 7 -

combines two classes to a bigger thing which must be a class again. Given two classes A and B, there
are several possible ways (cf. standard textbooks, e.g. [2][3][20][19][25]) to produce a new class AB
“consisting” of both, A, and B:

a) Create AB which contains A and B as subobjects (aggregation). AB internally contains all properties
of A and all properties of B, but does not present them to the outside unless a specific (additional)
protocol is provided for that purpose.

b) Create AB by deriving B from A (i.e., leaving B as is except for deriving it from A). AB contains the
bag of all properties of A and B, although A’s instance variables which appear also in B are hidden in
AB and A’s methods which appear also in B are overridden in AB (but are nevertheless there).

c) Create AB by deriving a new class from both, A and B. AB again contains all properties of A and all
of B, but some name conflict resolution mechanism must be used to avoid ambiguities.

d) Create AB by “merging” A and B in the C&K sense. In this case, AB receives the theunion of prop-
erties (i.e., methods and instance variables) which means that common properties of A and B are
reduced to a single appearance in AB (due to the union operator).

As we have shown, there are many ways to combine two classes into a single class. Thus, the most rig-
orous approach would be to check Weyuker’s properties with respect toall of the above combination
rules. However, if one restricts the validation process to only one of these possibilities, d) seems not the
best choice, as it is not a very usual way of actually combining classes and it also involves the risk of in-
advertently removing necessary properties when applying the union operator to seemingly “common”
properties which happen to be homonyms denoting distinct concepts.

4. Conclusion

We have shown that the very interesting suggestions of C&K in the field of object-oriented design met-
rics can still be improved by adhering to some measure theoretic principles. Several authors have pro-
posed a commonly agreed upon procedure to design useful measures for assessing (in contrast to pre-
dicting) attributes used in software development [1][10][11]. We have focussed on some of these steps
in this paper, but would like to present an overview of the whole process from our point of view in Fig.
5. Revealing the possible error exits of this flowchart (which usually lead to iteration of the whole pro-
cess or parts thereof) will help to analyze and improve previously proposed measures and may guide
software scientists in the identification of new attributes and development of corresponding measures to
avoid these branches in the first place.

As far as the concrete metrics discussed in this paper are concerned, we feel that it is most important
that we exchange our intuitive understanding of the matter in order to arrive at a sound collection of
measures. Thus, we agree with Fenton in [11]: “For many software attributes, we are still at the stage of
having very crude empirical relation systems.”. Although it will most probably take much more time
and effort until we have arrived at our goal, we are certain, that the metrics community is on the right
way.

Acknowledgements

We wish to thank the anonymous referees and the associate editor for their valuable suggestions as well
as Norman Fenton for his comments on an earlier draft of this paper.

- 8 -

Fig. 5. Phases of measurement construction and possible mistakes

Measurement for assessment

Identify the attribute of interest (A)

Is A interesting
by itself?

∃ any function of A
yielding an attribute
interesting by itself

Establish empirical relation system R
to capture the generally accepted

intuitive understanding of A

Is R sufficient?

Find a mapping M
 into a numerical system

Validate M (check the
 representation condition)

Is the representation
condition satisfied?

Determine the scale type for R

Is the scale type
appropriate?

?

Measure M for A is ok

I. Usefulness of
A is doubtful

no

yes yes

yes

yes

yes

no

no

no

no

II. A is either part of a prediction model
(not the main scope of this process) or
may be used for an indirect measurment
of another attribute of interest

III. Measure for A may not
become broadly accepted - a
major source of dissatisfaction

IV. M does not consistently
represent the intuitive under-
standing of A

V. Illegal operations can be
applied to the measurement
results

- 9 -

References

[1] A.L. Baker, J. M. Bieman, N. Fenton, D. A. Gustafson, and A. C. Melton, R. Whitty, “A Philosophy for
Software Measurement”,J. Systems Software vol. 12, 1990, pp. 277-281.

[2] T. Bar-David, Object-Oriented Design for C++, Prentice Hall, 1993.
[3] T. A. Budd,An Introduction to object-oriented Programming. Reading: Addison Wesley, 1990.
[4] M. Bunge,Treatise on basic philosophy: Ontology I: The furniture of the world. Boston: Riedel, 1977.
[5] M. Bunge,Treatise on basic philosophy: Ontology II: The world of systems. Boston: Riedel, 1979.
[6] J. C. Cherniavsky and C. H. Smith, “On Weuker’s Axioms for Software Complexity Measures”,IEEE

Trans. Software Eng., vol 17 no. 6, pp. 636-638, 1991.
[7] S.R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object-oriented design”, inProc. 6th

OOPSLA Conference, ACM 1991, pp. 197-211.
[8] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-Oriented Design”,IEEE Trans. Soft-

ware Eng., vol. 20, no. 6, June 1994, pp. 476-493.
[9] N. I. Churcher and M. J. Shepperd, “Comments on ‘A Metrics Suite for Object-Oriented Design’”,

IEEE Trans. Software Eng., vol. 21, no. 3, March 1995, pp. 263-265.
[10] N. E. Fenton,Software Metrics - A Rigorous Approach. Chapman & Hall, 1992.
[11] N. E. Fenton, “Software Measurement: A necessary scientific basis”,IEEE Trans. Software Eng., vol.

20, no. 3, March 1994, pp. 199-206.
[12] M. Hitz and B. Montazeri, “Measuring Coupling and Cohesion In Object-Oriented Systems”, inProc.

Int. Symposium on Applied Corporate Computing (ISACC ‘95) , Oct. 25-27, 1995, Monterrey, Mexico.
[13] I. Jacobson,Object-Oriented Software Engineering - A Use Case Driven Approach. Reading: Addison

Wesley, 1992.
[14] J. P. LeJacq, “Semantic-Based Design Guidelines for Object-Oriented Programs”, inJOOP, Focus on

Analysis & Design, 1991, pp. 86-97.
[15] W. Li and S. Henry, “Maintenance Metrics for the Object Oriented Paradigm”, inProc. 1st Int. Soft-

ware Metrics Symp., Los Alamitos, CA, May 21-22 1993, IEEE Comp. Soc. Press, 1993, 52-60.
[16] K. Lieberherr, I. Holland, and A. Riel, “Object-Oriented Programming: An Objective Sense of Style”,

in Proc. OOPSLA '88, ACM 1988, pp. 323-334.
[17] K. Lieberherr and I. Holland, “Assuring Good Style for Object-Oriented Programs”,IEEE Software,

September 1989, pp. 38-48.
[18] A. Macro and J. Buxton,The Craft of Software Engineering, Reading: Addison-Wesley, 1987.
[19] J. Martin and J. J. Odell, Object-Oriented Analysis & Design, Prentice Hall, 1992.
[20] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,Object-Oriented Modeling and

Design, Prentice Hall, 1991.
[21] W. Stevens, G. Myers, and L. Constantine, “Structured Design”,IBM Systems Journal, vol. 13, 1974,

pp. 115-139.
[22] D. A. Troy and S. H. Zweben, “Measuring the Quality of Structured Designs”,Journal of Systems and

Software, vol. 2, 1981.
[23] E. J. Weyuker, “Evaluating software complexity measures”,IEEE Trans. Software Eng., vol. 14, no. 9,

September 1988, pp. 1357-1365.
[24] N. Wilde and R. Huitt, “Maintenance Support for Object-Oriented Programs”,IEEE Trans. Software

Eng., vol. 18, no. 12, December 1992.
[25] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software, Prentice Hall,

1990.
[26] E. Yourdon and L. L. Constatine,Structured Design. Fundamentals of a Discipline of Computer Pro-

gram and System Design. Yourdon Press Computing Series, Prentice-Hall, 1979.
[27] H. Zuse, “Properties of Software Measures”,Software Quality J, vol. 1, pp. 225-260, 1992.
[28] H. Zuse, “Support of Experimentation by Measurement Theory”, inExperimental Software Engineer-

ing Issues (LNCS vol. 706), H. D. Rombach, V. R. Basili, and R. W. Selby, eds., Springer Verlag, 1993,
pp. 137-140.

