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The rise of healthcare text mining
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State of the art

The rise of machine learning
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Methods - clinical NLP
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Methods - clinical NLP
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Methods - NIPS

Prevalence of selected ML terms in DBLP abstracts
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State of the art

« Dictionary and rule-based approaches are not
dead?

— E.g. the latest n2c2 clinical trial track

— A number of tasks in some clinical subdomains are
doable via rules
« e.g. radiology reports?
* e.g. medication prescriptions?
— But many are not
* e.g. organisation names, professions?
« e.g. patient-generated data




State of the art

 There is no a single clinical language

« Deal with very different domains
— e.g. mental health vs. cardiology notes

« Deal with very different datasets
— Clinical notes, letters, reports, hand-over notes
— Patient-generated data
— Literature




State of the challenges
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Which data used?
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Using patient data?

 What do patients say?
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The jury was slightly more cautious about using free-text than coded
health data for research but were nevertheless broadly supportive as

long as there was a transparent process for patients to easily opt out
of their data being used in this way.

http://healtex.org/jury/
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Other issues

« Interpretability
— Black-box models

 Evaluation metrics
— Intrinsic vs. extrinsic

 Provenance, sharing methods and models
— Reproducibility
— Reusability
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