KunDoc – Knowledge-based Document analysis

ScandSum meeting
Åre
March 19th, 2004

Till C. Lech
till@cognit.no
This Presentation

- KunDoc – an Introduction
- Overview – State of the Art in Co-reference chaining
- Overview – Ontologies and Semantic Web technology
- KunDoc – Working Hypotheses/Methodology
KunDoc – Fact Sheet

- Research Project, funded by the Norwegian Research Council (KUNSTI)
- Duration: 3 years, started in Oct. '03
- Partners: University of Bergen, CognIT as
- Goal: Develop a method for Knowledge-based Co-reference chaining
Recognition of co-reference chains is essential for tasks that rely on a thorough semantic document analysis:
- Summarisation
- Information Extraction
- Information Retrieval

Knowledge-based methods often fail due to the lack of available knowledge
Knowledge Management and Semantic Web Initiatives have developed tools for handling large scale knowledge life cycles.

Can language technology and KM-technology be combined in order to improve co-reference chaining?
Co-reference Chaining – Anaphora Resolution

- Traditional vs alternative approaches:
 - Traditional: Discount unlikely candidates, keep the one with highest salience value
 - Alternative: Most likely candidate is computed on basis of traditional models
Co-reference chaining – Anaphora Resolution

- Few knowledge-based approaches: Wilks’ Preference Semantics; earlier: Frames/Scripts
- Recent trends: Statistical methods (BREDT-project), Hybrid methods (Stuckardt: RoSANA-ML)
The Semantic Web – Background

- Information on WWW structured according to layout only (HTML)
- High quality IR/IE dependant on semantic annotation of Web Content
- Goal: Make Web Content processible by machines (agents)
- Storage and Interchange of Knowledge shall be enabled by means of formal Ontologies
The Semantic Web – Achievements

- Standards for Representation of content developed:
 - XTM, RDF, RDF(S), DAML+OIL, OWL
 - Formalisms for Representation and Interchange of ontologies

- Several tools developed for acquisition and maintenance of knowledge bases
 - Text mining: Text-to-Onto (AIFB)
 - Extraction: OnTo-Extract (CognIT)
 - Editing: Protege2000 (Stanford), Onto-Edit (FZI)
The Semantic Web – Results so far

- Theoretical Framework for Knowledge Representation and Queries
- Tools to handle the Framework
- Ontologies developed in many domains
KunDoc and Ontologies – some central Questions

- What kind of domain knowledge is needed in order to support co-reference chaining?
- How can this knowledge be acquired and used?
- How can formal ontologies provide the framework needed for Co-reference chaining?
KunDoc – Approach

- Transformation of syntactic/statistic knowledge into explicit domain knowledge
Knowledge Extraction

- Hypothesis: Verbs found in documents define the relations between concepts in a given domain
- Occurrence of verbs define the possible relationships
- Statistics determine the predominant relations
Knowledge Extraction

- Two parallel approaches
- UiB: Using precise parsing results from NorGram/XLE parser to extract NPs and predicates
- CognIT: Fuzzy approach, using Concept-verb collocations
Methods and Tools available

- CORPORUM Onto-Extract, for semantic annotation
- Oslo-Bergen Tagger
- Norgram-Grammar, XLE Parser
- Statistic models – unsupervised learning for verb clustering, latent semantic analysis
- Knowledge representation: RDF(S), Protégé2000
Architecture – Draft

- Corpus documents
- Extraction of NP-Verb collocations
- Statistic analysis
- Onto-Extract
- Tagger
- Ontology
- Concepts & Relations
- Document
- Extraction of NP-Predicate collocations
- Statistic analysis
- Onto-Extract
- Tagger
- Concept predicate list
- Selectional restrictions

Till C. Lech - till@cognit.no
KunDoc – Impact

- Improved Co-reference chaining will improve the analysis of text and thus improve related applications:
 - Summarisation
 - Information Extraction
 - Information Retrieval
 - Text mining
- Methods developed in KunDoc will also improve the automatic extraction of knowledge bases