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Abstract—In this study, the task of obtaining accurate and
comprehensible concept descriptions of a specific set of production
instances has been investigated. The suggested method, inspired
by rule extraction and transductive learning, uses a highly
accurate opaque model, called an oracle, to coach construction
of transparent decision list models. The decision list algorithms
evaluated are JRip and four different variants of Chipper, a
technique specifically developed for concept description. Using 40
real-world data sets from the drug discovery domain, the results
show that employing an oracle coach to label the production
data resulted in significantly more accurate and smaller models
for almost all techniques. Furthermore, augmenting normal
training data with production data labeled by the oracle also
led to significant increases in predictive performance, but with
a slight increase in model size. Of the techniques evaluated,
normal Chipper optimizing FOIL’s information gain and allowing
conjunctive rules was clearly the best. The overall conclusion is
that oracle coaching works very well for concept description.

Index Terms—Data mining, Concept description, Decision lists

I. INTRODUCTION

One of the most intensive areas of research within the

pharmaceutical industry today is to collect and analyze data

on absorption, distribution, metabolism, excretion and toxicity

(ADMET) [1]. The overall purpose is to learn how various

compounds interact with the human body in order to guide

drug development projects in the search for promising com-

pounds. Specifically, compounds unsuitable as drug candidates,

e.g., due to toxicity, should be detected as early as possible.

Currently, a commonly adopted approach is to leverage

large libraries of chemicals (acquired or synthesized to meet

stringent quality criteria) and use high-throughput screening

(HTS) to test for biological activity. Promising compounds

found in this way become the focus for continued research,

which typically leads to further synthesis and screening.

Synthesis and screening processes are, however, often time

consuming and costly, making it desirable to estimate the

biological activity, as well as ADMET properties, before

synthesis. When computer software is used for this initial mod-

eling, the procedure is referred to as in silico modeling [1]. If

successful, in silico modeling saves much time and investments

by excluding non-promising compounds, thus allowing earlier

focus on drug candidates with high potential.

Obviously, in silico modeling can be performed by using

powerful machine learning techniques, such as artificial neural

networks (ANNs) or support vector machines (SVMs), which

produce opaque models with high predictive performance.

However, domain experts (e.g. computational chemists) also

have a need for comprehensible models, to help gain insights

into which attributes of compounds that are of importance for

possessing certain biological properties. An obvious criterion

for a model to be comprehensible is that it is transparent, but

one could also argue that it should be relatively small, include

the most important relationships and describe these succinctly.

These comprehensible models should, of course, also be as

accurate as possible. It is a well-known fact that there exists

a trade-off between comprehensibility and accuracy, in that

techniques that produce transparent models generally obtain

worse predictive performance than, e.g., ANNs or SVMs.

A common situation in early phases of drug development is

that a large number of compounds with known values, obtained

by HTS, for a certain type of biological activity are available,

but that sets of newly acquired or synthesized compounds

should be evaluated by using in silico modeling. Naturally,

the targeted biological activity for these new compounds needs

to be estimated in an accurate and comprehensible way. In

data mining terms, this can be identified as an instance of

the problem type concept description, as described by the

CRISP-DM data mining framework [2]. Simply put, the overall

purpose of concept description is to gain insights. So, rather

than focusing only on producing models with high predictive

accuracy, obtaining adequate descriptions of the most impor-

tant relationships in the data is essential. Another important

feature of concept description that is mentioned in [2] is that

models need not capture the whole dataset, i.e., partial models

are perfectly acceptable.

The main idea in this paper is to utilize existing libraries of

compounds as training data to build high-performance opaque

models, and then use these models to coach the building

of comprehensible models to obtain concept descriptions for

new sets of data. This idea of using coaching to obtain high

accuracy on specific (production) instances is obviously similar

to transductive learning, but we explicitly focus on situations

where the final model must be transparent, leading to a process

where a stronger model coaches a weaker.

More generally, this study targets the specific situation

where production input vectors are already determined and

available when building the concept description model. In real-

world applications, this is actually a very common situation,

meaning that the model is explicitly built for the task and

production set at hand. In this exact situation, the unlabeled

production instances, i.e., the very same instances that later
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will be used for actual predictions and descriptions, could also

be used for building the model. The purpose of this paper

is thus to study how coaching techniques can be used for this

kind of concept description modeling, using the drug discovery

domain described above as a motivating example.

II. BACKGROUND AND RELATED WORK

When supervised learning is used to build a predictive

classification model, a function mapping data instances to the

target class variable is learned from a set of labeled instances;

i.e., the class value is known for each training instance. Semi-

supervised learning, on the other hand, uses both labeled and

unlabeled data for the model construction. In some situations,

typically when labeled data is hard or costly to obtain, but

unlabeled data is relatively cheap and easily accessible, semi-

supervised models will outperform models built using labeled

data only. In such situations, the number of labeled instances

used is normally much smaller than the number of unlabeled

instances. Naturally, several fundamental methods based on

semi-supervised learning exist; for a good survey see [3].

Several standard approaches first build a model using only

labeled data, and then use this model to label unlabeled

instances, thus creating more training instances. This process

may be repeated over several iterations, and there are many

variations, but the final classifier is normally trained using a

majority of initially unlabeled instances.

Transductive learning is, in a strict sense, the opposite of

inductive learning; i.e., the inference is directly from training

instances to production instances. Or, put in another way,

transductive learning omits the model building, thus solving

a less general problem than standard predictive classification.

Using this definition, however, even transductive support vector

machines become inductive learners since they partition the

entire input space. With this in mind, the term transductive

learning is often used to characterize an algorithm utilizing

both labeled and unlabeled data to obtain high accuracy on

specific production instances; see e.g. [4].

The main inspiration for the method suggested in this

paper comes, however, from the field of rule extraction. Rule

extraction, which is the process of generating a transparent

model based on a corresponding opaque model, has been used

mainly to understand and analyze ANN models; for a good

survey see [5].

Black-box rule extraction algorithms approach rule extrac-

tion as a learning task, where the target concept is the function

originally learned by the opaque model. A training instance is,

consequently, the original input vector and the corresponding

prediction from the opaque model. Most black-box rule extrac-

tion algorithms maximize fidelity i.e., the number of identical

classifications.

Most importantly, for this application, the opaque model

is also a very accurate model of the function between input

and output, so it could be used to label novel instances with

unknown target values, as they become available. Naturally,

these newly labeled instances could then be used as learning

examples.

We have previously shown that the procedure of letting a

highly-accurate model (called an oracle) act as a coach can be

successfully applied to both rule extraction [6] and standard

tree or rule induction [7].

Within the field of machine learning, there are many tech-

niques producing transparent models, typically either decision

trees or ordered rule sets, also called decision lists. Unfor-

tunately, very few techniques specifically aim for compre-

hensible models, and even fewer contain explicit means for

controlling the accuracy vs. comprehensibility trade-off. In [8],

we introduced the decision list algorithm Chipper, which is

tailor-made for concept description. The basic idea in Chipper

is to, in every step, search for the rule that classifies the

maximum number of instances using a split on one attribute.

For continuous attributes, this means a single comparison using

a relational operator. For nominal attributes, this is translated

to a set of instances having identical values for that attribute.

Two main parameters, called ignore and stop, are used

to control the rule generation process. The ignore parameter

specifies the misclassification rate (as percentage of remaining

instances) that is acceptable for each rule and can have

different values for each output class. The motivation for the

ignore parameter is that it can be used to view the data set

at different levels of detail, with higher values prioritizing the

really broad discriminating features of data items and with low

values trying to capture more specific rules. The stop parameter

specifies the proportion of all instances that should be covered

by rules before formulating a default rule and terminating. The

motivation for this parameter is that it can be used to find only

the most general relationships in the data, instead of trying to

find rules to cover particular instances in the training data. This

parameter is also motivated by the observation in CRISP-DM

that concept description models may well be partial. In effect,

these two parameters control the level of granularity of the

decision list.

III. METHOD

The first subsection introduces the drug discovery data sets

used. The second subsection describes the different techniques

evaluated, and the third subsection, finally, gives the experi-

mental details.

A. Datasets

The data sets used are from the medicinal chemistry domain

and consist of 8 different data sets, from the study of Bruce

et al. [9], originally used by Sutherland [10]. In the study by

Bruce et al., the two attribute sets 2.5D and Frags. were used;

here a further three attribute sets are available, thus bringing

the total number of data sets to 40 (8 data sets, with 5 different

attribute sets). All the data sets used in this study will be

made publicly available on the INFUSIS homepage1. Of the

five different attribute sets, two describe physical-chemical

properties (e.g. number of atoms or types of bonds) of the

compounds and the other three molecular fingerprints. The

characteristics for each combination of data set and attribute

1www.his.se/infusis
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set are summarized in Table I below, where Inst. means number

of instances. As can be seen in the table, the data sets have

relatively few instances, but a substantial number of attributes,

especially for the fingerprint attribute sets.

TABLE I
DATA SET CHARACTERISTICS - NUMBER OF ATTRIBUTES

Physical-chemical Fingerprint
Name Inst. 2.5D AZ Desc. Frags. ecfi1024 sign12

ACE 114 56 196 1024 1024 332
AchE 111 63 196 774 1024 211
BZR 163 75 196 832 1024 450
COX2 332 74 196 660 1024 573
DHFR 397 70 196 951 1024 487
GPB 66 70 196 692 1024 239
THER 76 64 196 575 1024 251
THR 88 66 196 527 1024 220

The motivation for the use of these data sets is that they

represent the data mining situation described above, where

concept descriptions of production data are desired, since

relationships found are of interest to domain experts and can

also be used to guide further search for promising molecules.

All data sets concern biological activity for inhibitor com-

pounds. The continuous numerical values for activity (pIC50

for the first five data sets and pKi for the last three) in the

study by Sutherland et al. were transformed by Bruce et al.

into two categorical classes (active and inactive), using the

median activity value as a threshold between the two classes

to create a 50/50 split of active/inactive observations, since

each data set showed a uniform distribution of activity values.

The data sets concern the following biological targets:

• A set of 114 angiotensin converting enzyme (ACE) in-

hibitors. Activities of these compounds spread over a wide

range, with pIC50 values ranging from 2.1 to 9.9.

• A set of 111 acetylcholinesterase (AchE) inhibitors, with

pIC50 values ranging from 4.3 to 9.5.

• A set of 163 ligands for the benzodiazepine receptor

(BZR), with activity (pIC50) values ranging from 5.5 to

8.9.

• A set of 322 cyclooxygenase-2 (COX2) inhibitors, having

pIC50 values that range from 4.0 to 9.0.

• A set of 397 dihydrofolate reductase inhibitors (DHFR),

with pIC50 values for rat liver enzyme ranging from 3.3

to 9.8.

• A set of 66 inhibitors of glycogen phosphorylase b (GPB),

with pKi values ranging from 1.3 to 6.8.

• A set of 76 thermolysin inhibitors (THERM), having pKi

values ranging from 0.5 to 10.2.

• A set of 88 thrombin inhibitors (THR) with pKi values

ranging from 4.4 to 8.5.

B. Techniques

As mentioned in the introduction, the purpose of this study

was to evaluate whether the use of a high-accuracy opaque

model (serving as a coaching oracle) may be beneficial for

creating concept descriptions using decision list algorithms.

More specifically, rule sets induced directly from training data

only were compared to rule sets built using different combi-

nations of training data and oracle data, i.e., the production

instances with corresponding ensemble predictions as target

values. For simplicity, and to allow easy replication of the

experiments, the Weka data mining workbench [11] was used

for all experiments. In this study, large Random Forest [12]

ensemble models were used as oracles. For producing the

decision lists, JRip and Chipper were used. The motivation

for including JRip is that it represents the state-of-the-art

rule inducer RIPPER [13], providing a benchmark to compare

Chipper’s concept description performance against. The JRip

parameter settings were left at their default values, but with

Chipper, four different parameter settings were tried, varying

granularity by using different ignore and stop parameter values

and also varying the rule selection criteria between accuracy

and optimizing FOIL’s information gain. In addition, two dif-

ferent representation languages were also tried. The difference

was whether conjunctions were allowed or not when building

the rules. The four Chipper settings used were:

• Chip1-A: Here Chipper was set to produce very detailed

decision lists, by using a 1% ignore and a 99% stop value,

and also using rule selection based on accuracy.

• Chip1-F5: The same ignore and stop values as above,

but rule selection based on FOIL’s information gain and

allowing up to 5 conjunctions in each rule.

• Chip2-A: Here Chipper was used with its normal predic-

tion settings, using a 5% ignore and a 95% stop value,

and using rule selection based on accuracy.

• Chip2-F5: The same ignore and stop values as above,

but rule selection based on FOIL’s information gain and

allowing up to 5 conjunctions in each rule.

C. Experiments

For the experimentation, 4-fold cross-validation was used.

The reason for not using the more standard value of ten folds

was the fact that the use of only four folds results in what

we believe to be a more representative proportion between

training and production data. On each fold, the Random Forest

ensemble was first trained, using training data only. This

ensemble (the oracle) was then applied to the production

instances, producing production predictions. This resulted in

two different data sets:

• The training data: this is the original training data set, i.e.,

original input vectors with corresponding correct target

values.

• The oracle data: this is the production instances with

corresponding ensemble predictions as target values.

In the experimentation, training and oracle date were evaluated

as training data for the decision list algorithms, both separately

and together. In practice, this means that JRip and Chipper

optimized different combinations of training accuracy and

production fidelity towards the oracle. More specifically, each

experiment had the following different setup:

• Experiment 1 - Induction (I): Standard induction using

2958



original training data only. This maximizes training accu-

racy.

• Experiment 2 - Explanation (X): Uses only oracle data,

i.e., maximizes fidelity towards the oracle on production

data.

• Experiment 3 - Indanation2 (IX): Uses training data and

oracle data, i.e., will maximize training accuracy and

oracle fidelity on the production data.

Table II below summarizes the different setups.

TABLE II
SETUPS

Data Maximizes
Setup Training Oracle Training Accuracy Production Fidelity

I x x
X x x
IX x x x x

Evaluation was performed using the three measures accu-

racy, area under the ROC curve (AUC) and size. The size

measure is the number of conditions in a rule set. In Figures

1 and 2 below, sample JRip and Chipper rule set are shown.

(HBAsum ≥ 6.505) and (MaxNegChargeGH ≥ -0.9987) and
(MMSPEC VDW EP N AREA ≥ 0.392) → activity = 0 (72.0/3.0)

(ClogP ≤ 3.618) and (VDW HB D AREA ≤ 24.26) → activity
= 0 (28.0/4.0)

(MM RNCS ≤ 2.826) and (M3M ≤ 4.299) and (HOMO ≤ -0.5016) →

activity = 0 (17.0/1.0)

(VDW HB A AREA ≥ 51.45) and (MM SAS EP N AREA ≥ 259)
and (MM VDW EP P VAR ≤ 40.75) → activity = 0 (9.0/0.0)

(SAS POL AREA ≤ 97.62) and (AverPosCharge GM ≥ 0.0707)
and (Polarizability ≤ 38.42) → activity = 0 (16.0/3.0)

(MM HACA ≥ 0.5937) → activity = 0 (8.0/1.0)

→ activity = 1 (172.0/23.0)

Number of Rules : 7

Fig. 1. Sample JRip rule

IF Chi6p ≤ 1.119 THEN 0 [56/5]
IF Chi5p ≥ 2.322 THEN 1 [50/2]
DEFAULT: 0 [8/4]

Number of Rules : 3

Fig. 2. Sample Chipper rule

IV. RESULTS

In Table III below, the accuracy results from Experiment

1, i.e., normal rule induction, are shown aggregated over the

five different attribute sets. Since there are some fundamental

differences in characteristics between the chemical-physical

2This name, combining the terms induction and explanation, is of course
made-up

(2.5D and AZ Descriptors) and fingerprint (Frags., sign12

and ecfi) data sets, results are also aggregated over these two

groups. The chemical-physical group thus consists of 16 data

sets and the fingerprint group of 24 data sets. The total mean

ranks are, of course, over all 40 data sets.

TABLE III
EXPERIMENT 1 - AGGREGATED ACCURACY RESULTS

JRip Chip1 Chip2
A F5 A F5

2.5D .678 .681 .678 .679 .681
AZ Desc. .732 .714 .712 .735 .720

Mean Acc Chem-Phys .705 .697 .695 .707 .700

Mean Rank Chem-Phys 2.94 2.81 3.00 2.94 3.13

Frags. .680 .712 .708 .707 .734
sign12 .695 .705 .705 .705 .716
ecfi1024 .689 .704 .705 .720 .712

Mean Acc Fingerpr. .688 .707 .706 .711 .721

Mean Rank Fingerpr. 3.75 2.83 2.88 3.08 2.29

Total Mean .695 .703 .702 .709 .713
Total Mean Rank 3.43 2.83 2.93 3.03 2.63

As can be seen in the table, when performing normal

rule induction there are only small differences in accuracies

between the techniques on the chemical-physical data sets

and this is reflected by the mean ranks. On the fingerprint

data sets, there is a slight advantage in average accuracies

for Chip2, but this is not reflected in the mean ranks. To

establish whether there are any statistically significant differ-

ences between the techniques for the fingerprint data sets,

we follow the procedure recommended by Demšar [14] for

comparing several classifiers over a number of data sets, i.e., a

Friedman test [15], followed by a Nemenyi post-hoc test [16].

The result of these tests should however be treated with some

care in this study as it is not obvious that sets of compounds

represented by different feature sets can be considered to be

independently selected datasets. Hence, this, and subsequent

statistical tests employed, should be seen as approximate tests.

With five classifiers and 24 data sets, the critical distance (for

α = 0.05) is 1.25, so based on these tests, the only statistically

significant difference is that Chip2-F5 obtained significantly

higher accuracy than Jrip on the fingerprint data sets.
To illustrate the origin of the aggregated results, Table IV

below shows the detailed accuracy results for the AZ Descrip-

tor attribute set. There are, of course, another four sets of

accuracy results, one for each attribute set.

TABLE IV
EXPERIMENT 1 - ACCURACY FOR AZ Descriptors ATTRIBUTE SET

JRip Chip1 Chip2
A F5 A F5

ACE .846 .790 .791 .835 .824
AchE .626 .637 .635 .634 .614
BZR .698 .666 .655 .724 .698
COX2 .681 .700 .674 .669 .653
DHFR .760 .744 .743 .712 .733
GPB .593 .624 .617 .647 .657
THR .637 .642 .665 .647 .663
THERM .585 .646 .646 .590 .602

Mean .678 .681 .678 .679 .681

Mean Rank 3.13 2.50 2.88 3.13 3.25
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Here it is clearly seen that the small differences in average

differences do not mean that all techniques perform similarly

on all data sets, indeed there are quite large differences at

times. However, as shown by the mean ranks, no technique

consistently performs better than the others.

As can be seen in Table V below, the picture for AUC is

similar to the accuracy results, but with a more pronounced

advantage for Chip2.

TABLE V
RESULTS EXPERIMENT 1 - AUC

JRip Chip1 Chip2
A F5 A F5

2.5D .685 .675 .679 .688 .699
AZ Desc. .740 .710 .713 .743 .736

Mean AUC Chem-Phys .713 .693 .696 .715 .718

Mean Rank Chem-Phys 2.63 2.94 2.88 2.31 2.00

Frags. .689 .721 .719 .738 .740
sign12 .701 .710 .709 .722 .744
ecfi1024 .698 .704 .705 .740 .736

Mean AUC Fingerpr. .696 .712 .711 .737 .740

Mean Rank Fingerpr. 3.83 3.08 3.17 1.88 1.63

Total Mean .703 .704 .705 .728 .731
Total Mean Rank 3.35 3.03 3.05 2.05 1.78

Notably, for AUC there is a difference between Chip2 and

the other techniques also on the chemical-physical data sets,

even if the differences are not statistically significant. Looking

at the mean ranks for the fingerprint data set, however, there are

significant differences between both Chip2 variants and JRip

and Chip1-F5. When considering the total ranks, the critical

distance (for α = 0.05) with 40 data sets is 0.96, so both

Chip2 variants performed significantly better than the three

other techniques.

Turning to size, Table VI below shows the aggregated size

results for Experiment 1.

TABLE VI
RESULTS EXPERIMENT 1 - SIZE

JRip Chip1 Chip2
A F5 A F5

2.5D 8.4 14.4 17.1 5.9 14.4
AZ Desc. 7.7 12.6 15.0 5.2 12.0

Mean Size Chem-Phys 8.1 13.5 16.0 5.6 13.2

Mean Rank Chem-Phys 2.06 3.69 4.44 1.00 3.69

Frags. 7.0 35.2 38.0 12.6 22.9
sign12 8.2 32.3 35.5 10.0 20.5
ecfi1024 8.5 21.0 24.1 8.2 17.4

Mean Size Fingerpr. 7.9 29.5 32.5 10.3 20.3

Mean Rank Fingerpr. 1.29 4.42 4.46 1.71 3.00

Total Mean 8.0 23.1 25.9 8.4 17.4
Total Mean Rank 1.60 4.13 4.45 1.43 3.28

Here, both JRip and the Chip2-A consistently produced

quite compact rule sets. There is also a notable difference

between Chip2-A and Chip2-F5, in that the latter has about

twice the average size, which is mainly due to the use of

conjunctions. Chip1, with its high demand on rule accuracy

and small amount of instances in the default rule, often

produced very large models.

Summarizing Experiment 1, then, Chip2-F5 obtained the

best predictive performance, measured both as accuracy and

as AUC, but this was achieved at the expense of comprehen-

sibility, with models about twice the size of Chip2-A. JRip

produced small models, but performed worst on both accuracy

and AUC. Overall, a good compromise between predictive

performance and compact models was achieved by Chip2-

A. Looking at the results on predictive performance (both

measured as accuracy and AUC) and size, it is clear that Chip1

is over-training, producing very detailed models at the expense

of generalization ability. When the task is prediction, this is of

course not a desirable property, but if the aim, as in Experiment

2 and 3, is to describe a relatively small set of production

instances, it might actually be beneficial.

Turning to Experiment 2, where the transparent models

were built using only oracle data, Table VII shows the ag-

gregated accuracy results.

TABLE VII
RESULTS EXPERIMENT 2 - X - ACCURACY

JRip Chip1 Chip2
A F5 A F5

2.5D .724 .741 .741 .738 .762
AZ Desc. .734 .750 .750 .751 .767

Mean Acc Chem-Phys .729 .746 .746 .745 .764

Mean Rank Chem-Phys 3.81 2.69 2.81 3.06 1.50

Frags. .671 .736 .736 .736 .729
sign12 .691 .719 .719 .734 .754
ecfi1024 .690 .753 .753 .728 .750

Mean Acc Fingerpr. .684 .736 .736 .733 .744

Mean Rank Fingerpr. 4.58 2.00 1.96 2.96 2.04

Total Mean .702 .740 .740 .738 .752
Total Mean Rank 4.28 2.28 2.30 3.00 1.83

Here, the differences between the techniques are much more

marked than in Experiment 1, showing that Chipper managed

to use the oracle data in a more effective way than JRip. This is

especially true for the fingerprint data sets, where JRip actually

obtains lower average accuracy when using oracle data com-

pared to using training data only. It is also notable that Chip1

obtains the same averages for all attribute sets, regardless of

rule selection criterion and representation, suggesting that the

same rules are often chosen. Closer inspection of the results,

on data set level, shows that while results are very similar, they

are not identical for most data sets. For the chemical-physical

data sets, a Friedman test followed by a Nemenyi post-hoc

test, with the critical distance for α = 0.05 being 1.52 for 16

data sets and five classifiers, shows that the only significant

differences are that Chip2-F5 performed significantly better

than JRip and Chip2-A. For the fingerprint data sets, where

the critical distance is 1.25, all Chipper techniques performed

significantly better than JRip, and all these differences hold for

the total ranks. In addition, Chip2-F5 performed significantly

better than Chip2-A overall.

In Table VIII, the aggregated AUC results for Experiment

2 are shown.
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TABLE VIII
RESULTS EXPERIMENT 2 - X - AUC

JRip Chip1 Chip2
A F5 A F5

2.5D .725 .741 .743 .746 .771
AZ Desc. .738 .751 .751 .756 .776

Mean AUC Chem-Phys .731 .746 .747 .751 .774

Mean Rank Chem-Phys 3.25 2.63 2.56 2.94 1.38

Frags. .675 .738 .738 .738 .748
sign12 .693 .720 .720 .746 .766
ecfi1024 .694 .754 .754 .738 .764

Mean AUC Fingerpr. .687 .737 .737 .740 .759

Mean Rank Fingerpr. 4.58 2.29 2.29 2.38 1.21

Total Mean .705 .741 .741 .745 .765
Total Mean Rank 4.05 2.43 2.40 2.60 1.28

For the chemical-physical data sets, the significant differ-

ences are the same as for accuracy, but for the fingerprint

data sets, Chip2-F5 obtained significantly better AUC than all

other techniques. It also still holds that all Chipper techniques

are significantly better than JRip on the fingerprint data sets.

Over all data sets, Chip2-F5 performed significantly better than

all other techniques and JRip was significantly worse than all

Chippers.

In Table IX, the size results from Experiment 2 are given.

TABLE IX
RESULTS EXPERIMENT 2 - X - SIZE

JRip Chip1 Chip2
A F5 A F5

2.5D 6.1 5.1 5.1 3.4 5.2
AZ Desc. 5.9 4.6 4.6 3.1 4.6

Mean Size Chem-Phys 6.0 4.9 4.8 3.3 4.9

Mean Rank Chem-Phys 4.38 3.00 2.88 1.56 3.06

Frags. 6.0 10.8 10.6 6.2 7.8
sign12 5.9 11.3 10.9 5.7 7.9
ecfi1024 6.4 7.3 7.1 4.8 6.4

Mean Size Fingerpr. 6.1 9.8 9.5 5.6 7.4

Mean Rank Fingerpr. 2.21 4.58 3.54 1.96 2.46

Total Mean 6.1 7.8 7.6 4.7 6.4
Total Mean Rank 3.08 3.95 3.28 1.80 2.70

The overall impression is that all techniques produce very

small rule sets, which is to be expected since the task is

now to build a model using oracle data only, which for some

data sets contains as few as 17 instances. There are some

significant differences in ranks, of course, such as Chip2-A

being significantly better than JRip on the chemical-physical

data sets. Interestingly, JRip performs very well regarding

size on the fingerprint data sets, being significantly better

(together with Chip2-A) than both Chip1 variants. This, in

conjunction with the relatively poor results on accuracy and

AUC, suggests too much emphasis on generalization in this

situation, where the pruning and rule optimization procedures

in the JRip algorithm end up pruning away useful conjuncts.

To summarize Experiment 2, then, Chip2-F5 once again

obtained the highest accuracy and AUC, and also produced

reasonably small models. A comparison of the results between

Chip1 and Chip2 shows that using parameter settings favoring

very detailed rule sets is not the best option even for the

task of describing only a small set of production instances;

rather the normal Chipper prediction settings should be used.

It is, however, beneficial for accuracy and AUC to use the

FOIL rule selection and allow conjunctions in rules. Regarding

JRip, it is quite clear that this task does not suit the technique

at all. Even though it produces rule sets of competitive size,

performance on accuracy and AUC are significantly worse than

most Chipper variants.

Turning to Experiment 3, where the transparent models are

built using both training and oracle data, Table X shows the

aggregated accuracy results.

TABLE X
RESULTS EXPERIMENT 3 - IX - ACCURACY

JRip Chip1 Chip2
A F5 A F5

2.5D .737 .745 .742 .735 .755
AZ Desc. .762 .762 .748 .760 .763

Mean Acc Chem-Phys .749 .753 .745 .747 .759

Mean Rank Chem-Phys 3.13 2.81 3.31 3.00 2.31

Frags. .719 .735 .734 .734 .742
sign12 .735 .726 .721 .732 .754
ecfi1024 .735 .750 .707 .739 .759

Mean Acc Fingerpr. .730 .737 .721 .735 .752

Mean Rank Fingerpr. 3.38 2.63 3.50 3.13 1.88

Total Mean .738 .744 .730 .740 .755
Total Mean Rank 3.28 2.70 3.43 3.08 2.05

Here, the picture is again back to that of Experiment 1, i.e.

quite small differences between the techniques, especially for

the chemical-physical data sets. For the fingerprint data sets,

Chip2-F5 is again the clear winner and is significantly better

than all other techniques except Chip2-A. The same significant

differences also hold when the comparison is made over all

data sets.

In Table XI below, the corresponding AUC results are

shown.

TABLE XI
RESULTS EXPERIMENT 3 - IX - AUC

JRip Chip1 Chip2
A F5 A F5

2.5D .745 .735 .741 .741 .770
AZ Desc. .766 .741 .750 .774 .775

Mean AUC Chem-Phys .756 .738 .746 .758 .773

Mean Rank Chem-Phys 2.69 3.75 3.00 2.38 1.56

Frags. .726 .736 .741 .765 .758
sign12 .741 .720 .721 .759 .771
ecfi1024 .743 .745 .705 .751 .764

Mean AUC Fingerpr. .737 .734 .723 .758 .764

Mean Rank Fingerpr. 3.29 3.29 3.54 1.75 1.75

Total Mean .744 .736 .732 .758 .768
Total Mean Rank 3.05 3.48 3.33 2.00 1.68

Again, Chip2-F5 clearly performed best, and the interest-

ing significant differences are that both Chip2 variants were

significantly better than all other techniques.

Table XII shows the size results from Experiment 3.
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TABLE XII
RESULTS EXPERIMENT 3 - IX - SIZE

JRip Chip1 Chip2
A F5 A F5

2.5D 9.7 16.1 20.6 5.8 15.6
AZ Desc. 8.8 14.3 18.0 5.1 13.4

Mean Size Chem-Phys 9.2 15.2 19.3 5.4 14.5

Mean Rank Chem-Phys 2.00 3.75 4.88 1.00 3.81

Frags. 8.9 37.3 41.6 11.1 21.3
sign12 10.6 37.5 43.4 9.7 21.5
ecfi1024 10.6 23.3 30.5 8.0 18.3

Mean Size Fingerpr. 10.1 32.7 38.5 9.6 20.3

Mean Rank Fingerpr. 1.58 4.33 4.67 1.42 3.00

Total Mean 9.7 25.7 30.8 7.9 18.0
Total Mean Rank 1.75 4.10 4.75 1.25 3.10

The picture is again similar to Experiment 1, with JRip

and Chip2-A consistently producing small rule sets; indeed

these techniques are significantly better than the three other

techniques both on the fingerprint data sets and over all data

sets. The differences in rule set size are also about the same

as in Experiment 1.

To summarize Experiment 3, where both training and oracle

data were used, Chip2-F5 obtained the best predictive perfor-

mance, measured both as accuracy and AUC, and JRip and

Chip2-A produced the smallest models. Again, there are clear

benefits from using Chipper with its normal prediction settings,

and there is the possibility to gain some predictive power,

at the expense of comprehensibility, by using rule selection

based on FOIL and allowing conjunctive rules. JRip again

produced small models, but had worse predictive performance

than Chip2.

The results section will conclude with some comparisons

across the three experiments, with the aim of illustrating

the effect of using oracle data and to compare the different

techniques.

To get a clearer picture of the effect of using oracle data,

Table XIII below shows significant gains in accuracy for the X

and IX setups. A + indicates a significant improvement, using

a sign test, compared to normal rule induction; i.e. the detailed

accuracy results from Experiment 1. For the 16 chemical-

physical data sets, 13 wins are needed for a statistically

significant difference (for α = 0.05) and for the 24 fingerprints

data sets, 18 wins are necessary to establish a significant

difference.

TABLE XIII
EFFECTS OF ORACLE DATA - ACCURACY

Jrip Chip1 Chip2
A F5 A F5

X Chem-Phys. + + + +
Fingerprint + + + +

IX Chem-Phys. + + + + +
Fingerprint + + + +

The overall impression from this is that all Chipper tech-

niques utilized oracle data very well. The increases in accuracy

were generally bigger when using oracle data to supplement

training data, confirming IX to be the best setup. JRip per-

formed rather badly on oracle data only and was furthermore

not able do exploit the additional oracle data in setup IX to

increase its predictive performance as much as the two best

Chippers.

Looking at the size results across the three experiments,

there is a clear ordering with the smallest models being

obtained when using setup X, i.e., oracle data only, followed by

setup I, i.e., normal rule induction, and the largest models when

using setup IX, i.e., both training and oracle data. This ordering

corresponds to the number of instances used for model building

in the different setups. The result is to be expected since

decision list algorithms operate by sequential covering and

more instances to cover means that more rules need to be

formulated before the default rule. That the differences in size

are much more accentuated for Chip1 is also a consequence of

how the algorithm works and the parameter settings requiring

very accurate rules and few instances covered by the default

rule.

For a comparison of the techniques, Table XIV below shows

the averaged accuracy results and mean ranks over all three

experiments.

TABLE XIV
COMPARISON OF TECHNIQUES - ACCURACY

Jrip Chip1 Chip2
A F5 A F5

I Mean Acc. .695 .703 .702 .709 .713
Mean Rank 3.43 2.83 2.93 3.03 2.63

X Mean Acc. .702 .740 .740 .738 .752
Mean Rank 4.28 2.28 2.30 3.00 1.83

IX Mean Acc. .738 .744 .730 .740 .755
Mean Rank 3.28 2.70 3.43 3.08 2.05

Total Mean Acc. .712 .729 .724 .729 .740
Mean Rank 3.66 2.60 2.88 3.03 2.17

This confirms the picture from the experiments that Chip2-

F5 performed best overall on accuracy and that the other

Chipper techniques also outperformed JRip. Regarding AUC,

the overall result was that Chipper performed relatively better

on AUC than JRip, and that this held regardless of model size.

As noted in the summaries of each experiment above, Chip2

quite often obtained significantly better AUC than all other

techniques.

Finally, looking at model size for the different techniques,

JRip and Chip2-A consistently obtained the smallest models,

often significantly better than the other techniques. Of the other

techniques, Chip2-F5 was almost always better than Chip1.

V. CONCLUSION

In this paper, different ways of utilizing oracle data for a

concept description task in the drug discovery domain have

been evaluated using the standard decision list technique JRip

and the Chipper technique, specifically aimed at concept de-

scription, with four different parameter settings. The evaluation

was carried out using both predictive performance, measured
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as accuracy and AUC, and comprehensibility, measured as rule

set size.

When the task was normal rule induction, all techniques

performed similarly on accuracy, but with a small advantage

for Chipper over JRip, with the best Chipper variant being

normal prediction settings augmented with rule selection based

on optimizing FOIL’s information gain and with conjunctive

rules allowed. When measuring AUC, both this Chipper and

the normal Chipper performed significantly better than all other

techniques.

The use of oracle data only for building models resulted in

clear gains in accuracy and AUC, coupled with smaller models

for all Chipper variants, showing that Chipper is very well

suited to producing concept descriptions for a set of production

instances. JRip had some problems with this task, with putting

too much emphasis on generalization being the most probable

explanation.

The best way of using oracle data was together with normal

training data; indeed all techniques consistently performed

much better on both accuracy and AUC with this setup,

compared to normal rule induction. There were, however, some

increases in average model size when more data was used to

build the models.

When looking at how the different techniques performed,

the clear winner regarding predictive performance was normal

Chipper with rule selection based on FOIL’s information

gain and conjunctions. This technique, however, produced

somewhat larger models than JRip and normal Chipper, so

if really compact concept descriptions are needed, normal

Chipper is a good alternative. Indeed, the Chipper algorithm

performed remarkably well on all tasks in this study, managing

to produce accurate and compact concept descriptions both

with and without oracle data.

The overall conclusion is that oracle coaching works very

well for concept description. Further, it was seen that augment-

ing normal training data with oracle data will lead to better

predictive performance for all techniques evaluated.
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