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Abstract. A method for learning multivariate time series classifiers by
inductive logic programming is presented. Two types of background pred-
icate that are suited for this task are introduced: interval based predi-
cates, such as always, and distance based, such as the euclidean distance.
Special purpose techniques are presented that allow these predicates to
be handled efficiently when performing top-down induction. Further-
more, by employing boosting, the accuracy of the resulting classifiers
can be improved significantly. Experiments on several different datasets
show that the proposed method is highly competitive with previous ap-
proaches.

1 Introduction

Multivariate time series classification is useful in domains such as biomedical sig-
nals [13], continuous systems diagnosis [2] and data mining in temporal databases
[6]. This problem can be tackled by extracting features of the series through some
kind of preprocessing, and using some conventional machine learning method.
However, this approach has several drawbacks [12]: the preprocessing techniques
are usually ad hoc and domain specific, there are several heuristics applicable
to temporal domains that are difficult to capture by a preprocess and the de-
scriptions obtained using these features can be hard to understand. The design
of specific machine learning methods for the induction of time series classifiers
allows the construction of more comprehensible classifiers in a more efficient way.

When learning multivariate time series classifiers, the input consists of a set
of training examples and associated class labels, where each example consists of
one or more time series. The series are attributes of the examples, and are often
referred to as variables, since they vary over time.

The method for learning time series classifiers that we propose in this work is
based on inductive logic programming (ILP) and utilises two types of background
predicate: i) interval based predicates, such as always( Example, Variable, Region,
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Beginning, End ), where Region is an interval in the domain of the variable, and
ii) distance based predicates, such as euclidean_le( Example, Reference, Variable,
Value), which considers the euclidean distance between two series.

The proposed system is neither a generic ILP system, nor is it an extension of
one of the ILP systems available. In our experience, it is not enough to simply give
predicates of the above types as background knowledge to an existing system,
but it is also necessary to incorporate knowledge about how to process them
efficiently. Hence, specific methods have been developed that allow for an efficient
search for hypotheses that include these types of literals.

Moreover, we have also incorporated boosting, which is a method for gener-
ating ensembles of classifiers that has been demonstrated to improve accuracy
significantly. In our case, the individual classifiers are composed only of rules with
one literal in the body. When tested on several previously proposed datasets, the
new method achieves better results than all previously published results on these
datasets.

The rest of the paper is organized as follows. Section 2 describes the special
purpose background predicates for time series classifiers. The proposed method
is presented in section 3, including techniques for efficiently handling the special
purpose predicates. Section 4 presents experimental results when using the new
method. In section 5, it is demonstrated that these results can be improved
substantially by employing boosting. Finally, we give some concluding remarks
in section 6.

2 Temporal Predicates

2.1 Interval Predicates

The interval predicates make use of regions, which are intervals in the domain of
the variable. The regions used are independent of the time, as is usual practice
when working with series. The interval predicates are the following:

— always( Example, Variable, Region, Beginning, End ). It is true, for the Example,
if the Variable is always in this Region in the interval between Beginning and
End.

— sometime( Example, Variable, Region, Beginning, End ).

— true_percentage( Example, Variable, Region, Beginning, End, Percentage ). It
is true, for the Example, if the percentage of the time between Beginning and
End where the variable is in Region is greater or equal to Percentage.

Once that it has been decided to work with temporal intervals, the use of the
predicates always and sometime seems natural. Since the former predicate might
be too demanding and the latter too flexible, a third one has been introduced,
true_percentage.



2.2 Distance Predicates

Several machine learning methods, such as instance-based learning, are based
on the use of similarity functions to measure distances between examples. The
framework of ILP allows us to include several such definitions in the background
knowledge. In our case, we use predicates on the following form:

<distance>_le( Example, Reference, Variable, Value )

which is true if the <distance>, for one Variable of the examples, between the
Example considered and another Reference example is less or equal (-le) than
Value. The predicate euclidean_le uses the euclidean distance. It is defined, for
two univariate series s and ¢ as: \/Y_;_, (s; — t;)2. Its execution time is O(n).

Dynamic Time Warping (DTW) aligns a time series to another reference
series in a way such that a distance function is minimized, using a dynamic
programming algorithm [6]. If the two series have n points, the execution time is
O(n?). The predicate dtw_le uses the minimized value obtained from the DTW
as a similarity function between the two series.

3 Top-Down Induction of Time Series Classifiers

The proposed technique follows the scheme of the top-down methods in ILP [5].
The particularities arise in the selection of literals. The selection mechanisms
suggested in this section could be incorporated in other ILP systems as well by
using the generic method for numerical reasoning described in [18].

Obtaining Regions. In some cases, the definitions of the regions for the in-
terval literals can be obtained from an expert. Otherwise, they can be obtained
with a discretization preprocess, which obtains r disjoint, consecutive intervals.
The regions considered are these r intervals (equality tests) and others formed
by the union of the intervals 1...4¢ (less or equal tests), as suggested by [8].

Selection of Interval Literals. Given an overly general clause that covers
both positive and negative examples, the best literal to add to the body must
be selected, according to some criterion. Then it is necessary to search over the
space of literals. The possible number of intervals, if each series has n points, is
(n® —n)/2. With the objective of reducing the search space, not all the intervals
are explored. Only those that are of size power of 2 are considered. The number
of these intervals is of Ele(n — 271 = kn — 2% — 1 where k = |Ign].

If p is the number of predicates considered, and v the total number of regions
in the different variables, the possible number of atoms is pvnlgn. In the case
of predicates with additional arguments (true_percentage), it is also necessary
to consider how many values are possible for them, but its number is a con-
stant. Using a dynamic programming algorithm, the information that needs to
be obtained from a window of size 2 is computed from two consecutive intervals
of size i, with a time of O(e), where e is the number of examples. Hence, the
selection of the best literal requires a time of O(epunlgn).



class( Example, cylinder ) - % 213, 426
not true_percentage( Example, x, 1.4, 22, 86, 50 ), % 193, 18
not true_percentage( Example, x, 3, 78, 110, 30 ), % 182, 0
1
class( Example, bell ) :- % 213, 244
true_percentage( Example, x, 1.4, 3, 35, 95 ), % 213, 1
not always( Example, x, 1_4, 39, 103 ), % 213, 0
I
class( Example, funnel ) :- % 213, 31
dtw_le( Example, f_35, x, 1.241447 ), % 200, 1
not euclid_le( Example, c_162, x, 8.629407 ), % 200, 0
1
class( Example, cylinder ) :- % 31, 13
not true_percentage( Example, x, 3, 9, 73, 15 ), % 31, 0
I

class( Example, funnel ). % 13, 0

Fig. 1. Rules example. The rules are ordered, organized in a decision list. They were
obtained from the dataset CBF (Sect. 4). At the right of each literal, the number of
positive and negative examples covered by the (partial) rule.

Selection of Distance Literals. Calculating the distances between all the
examples requires computing O(e?) distances, which might be too costly. Fur-
thermore, considering all the examples as reference for selecting a literal can
also be too slow. Instead, in each iteration, r reference examples are randomly
selected from the non-covered examples (it is possible to use only positive ref-
erence examples or positive and negative). If d(n) is the time necessary for
calculating the distance between two series with n points (n for the euclidean
distance, n?> for DTW), the best literal for r reference example can be calcu-
lated in O(rv(ed(n) +elge)). The term elge is the time necessary for ordering
the distances to the reference example and selecting the best value according to
the criterion. Since the same example can be selected in several iterations, the
calculated distances are saved.

Multiclass Problems. When there are more than two classes, it is necessary
to learn a theory for each class. The question is how to apply these theories to
a new example. We have employed two approaches for dealing with multiclass
problems. The first one is the use of ordered rules, also named decision lists
[14]. In this case, the first rule that covers the example assigns its label to
it. The learning process consists of generating a rule for the class with most
uncovered examples and iterate until all the examples are covered. Figure 1
shows an example of such a decision list. The second approach [19] is to learn
different theories independently for each class, apply all the rules to the new
example and if there is a conflict, solve it by considering the distribution of
training examples covered by the rules.



4 Experimental Validation

Datasets for classification of time series are not easy to find [12]. For this reason
we have used four artificial datasets and only one “real world” dataset:

— Cylinder, Bell and Funnel (CBF). This is an artificial problem [12],
in which there are there are 3 classes: cylinder, bell and funnel. Figure 2.a
shows two examples of each class. There are 266 examples of each class and
each series has 128 points.

— Control Charts. In this dataset there are 6 classes of control charts [1].
Figure 2.b shows some examples of three of the classes. The data used were
obtained from the UCI KDD Archive [4]. The number of examples is 600,
with 60 points in each series.

— Waveform. This dataset was introduced by [9]. We used the version from
the UCI ML Repository [7]. The number of examples is 900 and the number
of points in each series is 21.

— Wave + Noise. This dataset was generated in the same way as the previous
one, but 19 random points are added at the end of each example, with mean
0 and variance 1. Again, we used the dataset from the UCI ML Repository.

— Auslan. Auslan is the Australian sign language, the language of the Aus-
tralian deaf community. Instances of the signs were collected using an in-
strumented glove [12]. Each example is composed by 8 series: z, y and z
position, wrist roll, thumb, fore, middle and ring finger bend. There are 10
classes and 20 examples of each class. The number of points in each example
is variable and currently the system does not support variable length series,
so they were resampled to 20 points.

The results for each dataset and setting were obtained using five five-fold
stratified cross-validations. The percentages considered for the predicate true_per-
centage were 5, 15, 30, 50, 70, 85 and 95. For similarity literals, at most 10 positive
and 10 negative reference examples were considered when selecting literals.

Results are shown in Table 1. Euclidean is the best for the Wave and Wave
+ Noise using decision lists or unordered rules, and for the Auslan dataset
with decision lists. The performance of the euclidean distance is a bit surprising
considering its simplicity. Nevertheless its results are the worst for CBF and
Control Charts. In these cases DTW works much better. This situation is rea-
sonable, because the CBF and Control datasets are designed specifically to test
time series classifers, and hence involve situations like shifts, compressions and
expansions. These situations are not present in the Wave datasets, and hence
euclidean works better than DTW.

The use of always and sometimes gives the best results in the Control dataset.
In the case of decision lists, the first position is shared with the use of the predi-
cate true_percentage. The advantages of using it over using always and sometimes
are only clear for the CBF dataset. This is probably due to the fact that the
different situations that characterize the examples have a beginning and end for
the CBF dataset but for the Control dataset there are no returns to the nor-
mal situation. The results obtained using all the predicates are the best for the



Fig. 2. Some examples of the datasets. Two examples of the same class are shown in
each graph.

Auslan dataset with unordered rules and for the CBF' dataset. In the rest of the
cases, the results are close to the best.

With respect to the use of decision lists or unordered rules, there is no clear
winner regarding the error, although for the Auslan dataset decision lists work
much better than unordered rules. Probably the inclusion of pruning methods
could alter this situation.

5 Improving Accuracy by Boosting

At present, an active research topic is the use of ensembles of classifiers. They
are obtained by generating and combining base classifiers, constructed using
other machine learning methods. The target of these ensembles is to increase the
accuracy with respect to the base classifiers. One of the most popular methods for
creating ensembles is boosting [17], a family of methods, of which ADABOOST is
the most prominent member. They work by assigning a weight to each example.
In each iteration a base classifier is constructed, according to the distribution
of weights. Afterwards, the weights are readjusted according to the result of the
example in the base classifier. The final result is obtained by weighted votes of
the base classifiers. Boosting inductive logic programming is described in [15].

Inspired by the good results of works using ensembles of very simple classi-
fiers [17], stumps, we have studied base classifiers consisting only of one literal.
The criterion used for selecting the best literal is to select the one with the
smallest error, relative to the weights.



EUC DTW AST TRP ALL

CBF 6.67 2.39| 2.16 1.22| 4.51 1.38| 2.76 1.25| 1.65 1.10
o Control 4.63 1.38| 3.23 1.71| 3.07 1.64| 3.07 1.66| 3.20 1.55
= Wave 19.64 2.82(24.38 3.65(22.29 2.85(21.44 2.96| 19.95 2.72
e é Wave+Noise|21.07 3.04|26.78 2.78|24.80 3.35|24.62 2.44| 22.31 3.17
A a Auslan  |15.00 4.21|21.60 6.33|21.40 7.00{20.10 4.97| 16.60 5.49

CBF 6.87 2.16| 2.11 1.02| 4.31 2.03| 2.88 1.28| 1.10 0.89
_§ Control 6.03 2.20| 4.10 1.89|2.97 1.23| 4.13 1.98| 3.60 1.64
5 " Wave 19.47 2.73|25.49 3.75(23.04 3.18|22.64 3.09| 20.65 3.10
§ % Wave+Noise|21.64 2.16|28.84 2.51|24.67 2.53|25.58 3.39| 22.91 2.54
e Auslan 24.60 7.49|24.20 5.94/22.80 6.55(23.80 6.13|21.50 7.74

Table 1. Experimental Results. The predicates considered are EUClidean, DTW, Al-
ways / SomeTime, TRue Percentage and ALL together. For each combination, the
averaged error (in %) and the standard deviation of the 25 executions are shown. In
boldface, the best results.

Multiclass Problems. There are several methods of extending AdaBoost to
the multiclass case [17]. We have used ADAB00ST.OC [16] since it can be used
with any weak learner which can handle binary labeled data. It does not require
that the weak learner can handle multilabeled data with high accuracy. The key
idea is, in each round of the boosting algorithm, to select a subset of the set of
labels, and train the binary weak learner with the examples labeled positive or
negative depending if the original label of the example is or is not in the subset.
In our concrete case, the rule inducer searches for a rule with the head:

class( Example, [classy, ...classg] )

This predicate means that the Example is of one of the classes in the list. Figure 3
shows an ensemble of these classifiers.

The classification of a new example is obtained from a weighted vote of the
results of the weak classifiers. For each rule, if its antecedent is true the weights
of all the labels in the list are incremented by the weight of the rule, if it is false
the weights of the labels out of the list are incremented. Finally, the label that
has been given the highest weight is assigned to the example.

5.1 Results

The results obtained with the boosting process are summarized in Table 2. For
all the datasets, the benefits of using boosting are substantial. Moreover, the
evolution of the error with the number of iterations is rather good. Until the
limit of the number of iterations considered, the increment of the number of
iterations do not cause more overfitting.

— Cylinder, bell and funnel. The best previously published result, according
to our knowledge, with this dataset is an error of 1.9 [12], using 10 fold cross



class( Example, [ decreasing, downward, increasing | ) :- % 240, 240
not true_percentage( Example, x, 5, 43, 59, 5 ). % 197, 26
% 0.456818

class( Example, [ decreasing, upward, normal | ) :- % 240, 240
true_percentage( Example, x, 1.4, 14, 22, 70 ). % 229, 84
% 0.422232

class( Example, [ cyclic, decreasing, downward | ) :- % 240, 240
sometime( Example, x, 2, 22, 54 ). % 240, 0
% 0.700627

class( Example, [ cyclic, decreasing, normal ] ) :- % 240, 240
dtw_le( Example, cyclic_54, x, 59.898940 ). % 159, 0
% 0.536895

Fig. 3. Initial fragment of an ensemble of classifiers, obtained with ApaABoosT.OC,
for the dataset control charts (Sect. 4). The weights of each individual classifier are
below each classifier.

Tterations || 5 [ 10 [ 20 [ 30 | 40 [ 50 ]
CBF 2.41 1.21] 1.50 0.85] 0.75 0.60[ 0.60 0.53] 0.58 0.65] 0.50 0.60
Control 22.30 2.58] 8.70 5.38| 2.27 1.62] 1.80 1.22] 1.60 1.25] 1.47 1.19
Wave 19.58 2.55[18.36 2.79[15.64 2.46]15.49 2.08[15.00 2.32| 15.04 2.36
Wave + Noise[|23.87 3.13]20.56 3.24]18.29 2.73]17.60 2.41] 17.18 2.36]16.78 2.11
Auslan 61.50 7.14]37.90 7.90[16.70 5.72[11.50 4.39| 8.40 3.88] 7.60 3.27
+100 iter. 3.60 2.51| 3.80 2.71| 3.20 2.34| 3.10 2.20| 2.90 1.87
+150 iter. 3.00 1.77| 3.10 2.20| 2.50 1.91| 2.80 2.20| 2.40 2.22
4200 iter. 2.40 2.22| 2.30 2.16 1.90 2.20] 2.20 1.95] 2.00 1.77

Table 2. Results obtained with boosting, for several numbers of iterations, using all
the background predicates. For the Auslan dataset, the table includes results with more
iterations (110, 120 ...150; 160 ...200 and 210 ... 250). In some cases, it is possible to
improve these results using not all the predicates (see discussion for each dataset).

validation. From iteration no. 10, the results shown in table 2 are better
than this result, and from iteration no. 20 the results are smaller than 1.0.
Moreover, the results using rules without boosting (Table 1) are also better
than 1.9 (1.65 and 1.10).

— Control charts. The only previous result we are aware of regarding this
dataset is for similarity queries [1], and not for supervised classification. To
check if this dataset was trivial, we tested it with C4.5, over the raw data, and
obtained an average error of 8.6 (also using five five-fold cross validation).
It should also be noted that obtained error is reduced to 0.82 using 100
iterations and only dtw._le.

— Waveform. The error of a Bayes optimal classifier on this dataset is approx-
imately 14 [9]. The best previous result we are aware of for this dataset is an
error of 15.21 [11]. That result was obtained using boosting, with decision



trees as base classifiers, which are much more complex than our base classi-
fiers (clauses with one literal in the body). The obtained error is reduced to
14.42 using 100 iterations and euclid_le.

— Wave + Noise. Again, the error of an optimal Bayes classifier on this
dataset is 14. This dataset was tested with bagging, boosting and variants
over decision trees [3]. Although their results are given in graphs, their best
error is apparently approximately 17.5. The obtained error is reduced to
14.69 using 100 iterations and euclid_le.

— Auslan. This is the dataset with the highest number of classes (10). In
order to distinguish between this large number of classes, it turned out that
50 one-body-literal clauses were too few, so we incremented the number of
iterations for this dataset, until 250. The best result previously published
is an error of 2.50 [12], which is greater than the results obtained after 200
iterations, as shown in Table 2.

6 Conclusions and Future Work

A multivariate time series classification system has been developed, using ILP
techniques. Two types of background predicate were considered: those based on
intervals and regions and those based on similarity functions. The use of simi-
larity literals allows a smooth integration of Instance Based Learning and ILP,
leading to that similarity functions can be defined by the user and incorporated
as background knowledge and that these functions appear explicitly in the rules
instead of being an external element to the learned theory. Special purpose tech-
niques have been presented that allow these predicates to be handled efficiently
when performing top-down induction. Furthermore, we have demonstrated that
by employing boosting, the accuracy of the resulting time series classifiers can be
improved significantly. Experiments on several different datasets show that the
proposed method is highly competitive with previous approaches. On all data
sets, the proposed method achieves better than all previously reported results.

Boosting generic learners, which are not designed for time series, such as de-
cision trees, can produce good results for time series classification. Nevertheless,
the incorporation of temporal predicates, in the background knowledge, improves
the performance of boosting, especially with respect to the size of the classifiers.

Another method to improve the accuracy of a classifier is the use of prun-
ing techniques. Pruning also enhances the comprehensibility of classifiers, while
boosting worsens it. Nevertheless, pruning and boosting are not incompatible,
e.g., when boosting rules it is possible to prune them [10]. Hence, it would be
convenient to incorporate pruning techniques in the rule induction system, and
also to apply boosting over pruned rules.
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