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Abstract. A method for learning multivariate time series classifiers by
inductive logic programming is presented. Two types of background pred-
icate that are suited for this task are introduced: interval based predi-
cates, such as “always”, and distance based, such as the euclidean dis-
tance. Special purpose techniques are presented that allow these pred-
icates to be handled efficiently when performing top-down induction.
Furthermore, by employing boosting, the accuracy of the resulting clas-
sifiers can be improved significantly. Experiments on several different
datasets show that the proposed method is highly competitive with pre-
vious approaches. On all data sets, the proposed method achieves better
than all previously reported results. Moreover, the comprehensibility of
the induced classifiers is found to be better than for classifiers produced
by previous approaches.

1 Introduction

Multivariate time series classification is useful in domains such as biomedical sig-
nals [19], continuous systems diagnosis [2] and data mining in temporal databases
[6]. This problem can be tackled by extracting features of the series through some
kind of preprocessing, and using some conventional machine learning method.
However, this approach has several drawbacks [17]: the preprocessing techniques
are usually ad hoc and domain specific, there are several heuristics applicable
to temporal domains that are difficult to capture by a preprocess and the de-
scriptions obtained using these features can be hard to understand. The design
of specific machine learning methods for the induction of time series classifiers
allows the construction of more comprehensible classifiers in a more efficient way.

When learning multivariate time series classifiers, the input consists of a set
of training examples and associated class labels, where each example consists
of one or more time series. The series are attributes of the examples, and are
� This work has been supported by the CYCIT project TAP 99–0344.



often referred to as variables, since they vary over time. Nevertheless, in a logic
program they will appear as constants. The objective is to find a classifier with
a low error rate and that is comprehensible.

The method for learning time series classifiers that we propose in this work is
based on inductive logic programming (ILP) and utilises two types of background
predicate: i) interval based predicates [26], such as always( Example, Variable,
Region, Beginning, End ) , where Region is an interval in the domain of the
variable, and ii) distance based predicates [25], such as euclidean le( Example,
Reference, Variable, Value), which considers the euclidean distance between two
series.

The proposed system is neither a generic ILP system, nor is it an extension of
one of the ILP systems available. In our experience, it is not enough to simply give
predicates of the above types as background knowledge to an existing system,
but it is also necessary to incorporate knowledge about how to process them
efficiently. Hence, specific methods has been developed that allow for an efficient
search for hypotheses that include these types of literals.

Moreover, we have also incorporated boosting, which is a method for gener-
ating ensembles of classifiers that has been demonstrated to improve accuracy
significantly. In our case, the individual classifiers are composed only of one
literal in the body of a rule.

When tested on several previously proposed datasets, the new method achieves
better results than all previously published results on these datasets. Further-
more, the comprehensibility of the classifiers produced by the new method is in
our opinion better by far than of the classifiers produced by previous methods.

The rest of the paper is organized as follows. Section 2 describes the special
purpose background predicates for time series classifiers. The proposed method
is presented in section 3, including techniques for efficiently handling the special
purpose predicates. Section 4 presents experimental results when using the new
method. In section 5, it is demonstrated that these results can be improved
substantially by employing boosting. Finally, we give some concluding remarks
in section 6.

2 Temporal Predicates

2.1 Interval Predicates

The interval predicates are based on the ones used in a visual rule language for
dynamic systems [2] and were introduced in [27]. They make use of regions, which
are intervals in the domain of the variable. The regions used are independent of
the time, as is usual practice when working with series.

The interval predicates are the following:

– always( Example, Variable, Region, Beginning, End ). It is true, for the Example,
if the Variable is always in this Region in the interval between Beginning and
End.



– sometime( Example, Variable, Region, Beginning, End ). It is true, for the
Example, if the Variable is sometime in this Region in the interval between
Beginning and End.

– true-percentage( Example, Variable, Region, Beginning, End, Percentage ). It
is true, for the Example, if the percentage of the time between Beginning and
End where the variable is in Region is greater or equal to Percentage.

Once that it has been decided to work with temporal intervals, the use of
the predicates always and sometime seems natural, due to the fact that they are
extensions of conjunction and disjunction to intervals. Since the former predicate
might be too demanding and latter too flexible, a third one has been introduced,
true-percentage. It is a “relaxed always” (or a “restricted sometime”). The addi-
tional parameter indicates the degree of flexibility (or restriction).

These predicates can also capture the concepts of “increasing” and “stable”,
which appear as predicates in [18], by including new auxiliar series as background
knowledge, which are obtained from the original ones. In these auxiliar series the
value in an instant is defined as the difference between the value in the original
series for that instant and the value of a previous, e.g. one minute, instant [26].
In this way it is not only possible to allow for detection of increments but also
to detect if the increments are big or small and with the use of the predicate
true-percentage it is also possible to capture concepts like “generally increasing”.

2.2 Distance Predicates

Several machine learning methods, such as instance-based learning, are based
on the use of similarity functions to measure distances between examples. The
framework of ILP allows us in a very flexible way to include several such def-
initions in the background knowledge. In our case, we use predicates on the
following form:

<distance> le( Example, Reference, Variable, Value )

which is true if the <distance>, for one Variable of the examples, between the
Example considered and another Reference example is less or equal ( le) than
Value.

The predicate euclidean le uses the euclidean distance. It is defined, for two
univariate series s and t as:

√∑n
i=1(si − ti)2. Its execution time is O(n).

Dynamic Time Warping (DTW) aligns a time series to another reference series
in a way such that a distance function is minimized, using a dynamic program-
ming algorithm [6]. This technique is frequently used in speech recognition. If the
two series have n points, the execution time is O(n2). The predicate dtw le uses
the minimized value obtained from the DTW as a similarity function between
the two series.



3 Top-Down Induction of Time Series Classifiers

The proposed technique follows the scheme of the top-down methods in ILP [5].
The particularities arise in the selection of literals. The use of interval literals
require the definition of the different regions, which is described in section 3.1.
The selection of interval and distance literals are described in section 3.2 and
3.3 respectively.

3.1 Obtaining Regions

In some cases, the definitions of the regions that are necessary for the interval
literals can be obtained from an expert. Otherwise, they can be obtained with
a discretization preprocess, which obtains r disjoint, consecutive intervals. The
regions considered are these r intervals (equality tests) and others formed by the
union of the intervals 1 . . . i (less or equal tests), as suggested by [8].

The reasons for fixing the regions before the induction process starts, instead
of obtaining them during the process, are efficiency and comprehensibility. The
literals are easier to understand if the regions are few, fixed and disjoint.

3.2 Selection of Interval Literals

Given an overly general clause that covers both positive and negative examples,
the best literal to add to the body must be selected, according to some criterion.
Then it is necessary to search over the space of literals. The possible number of
intervals, if each series has n points, is (n2−n)/2. If p is the number of predicates
considered, and v the total number of regions in the different variables, the
possible number of atoms is pv(n2 − n)/2, and the possible number of literals
(atoms possibly negated) is pv(n2 −n). In the case of predicates with additional
arguments (true-percentage), it is also necessary to consider how many values
are possible for them.

Linear Probing. The process starts with windows of size 1 (between two con-
secutive points) and the windows of size i + 1 are evaluated from the windows
of size i with the same origin. The initialization of the windows of size 1, for
each predicate, it is done in O(e), where e is the total number of examples. The
amplification of the size of the window in one unit is also done in O(e). It is nec-
essary to calculate the number of positive and negative examples covered. In the
most complex case, true-percentage, this requires a time of O(e + f), where f is
the number of values allowed in the additional argument of this predicate. Sum-
marizing, the worst execution time for finding the best literal is O((e+ f)pvn2).
If e > f (the most common case) or true-percentage is not used, then it is
O(epvn2).



Exponential Probing. With the objective of reducing the search space, not all the
windows are explored. Only those that are of size power of 2 are considered. The
number of these windows is of

∑k
i=1(n − 2i−1) = kn − 2k − 1 where k = �lg n�.

Using a dynamic programming algorithm it is possible to obtain the information
necessary of the window of size 2i from two consecutive windows of size i, with
a time of O(e) (in the case of true-percentage, O(e + f)). The selection of the
best literal in this case requires a time of O(epvn lg n).

3.3 Selection of Distance Literals

Calculating the distances between all the examples requires computing O(e2)
distances, which might be too costly. Furthermore, considering all the examples
as reference for selecting a literal can also be too slow. Instead, in each iteration,
r reference examples are randomly selected from the non-covered examples (it is
possible to use only positive reference examples or positive and negative). Since
the same example can be selected in several iterations, the calculated distances
are saved.

3.4 Multiclass Problems

When there are more than two classes, it is necessary to learn a theory for each
class. The question is how to apply these theories to a new example [31]. We
have employed two approaches for dealing with multiclass problems. The first
one is the use of ordered rules, also named decision lists [24, 20]. In this case,
the first rule that covers the example assigns its label to it. The learning process
consists of generating a rule for the class with most uncovered examples and
iterate until all the examples are covered. Figure 1 shows an example of such a
decision list.

The second approach, proposed by [31] and based on [10] is to learn different
theories independently for each class, apply all the rules to the new example and
if there is a conflict, solve it by considering the distribution of training examples
covered by the rules.

4 Experimental Validation

4.1 Datasets Description

The characteristics of the datasets are summarized in table 1. Datasets for clas-
sification of time series are not easy to find [17]. For this reason we have used
four artificial datasets and only one “real world” dataset.

Cylinder, Bell and Funnel (CBF). This is an artificial problem, introduced
in [28]. The learning task is to distinguish between three classes: cylinder (c),
bell (b) or funnel (f). Examples are generated using the following functions:



class( Example, cylinder ) :- % 213, 426
not true-percentage( Example, x, 1 4, 22, 86, 50 ), % 193, 18
not true-percentage( Example, x, 3, 78, 110, 30 ), % 182, 0
!.

class( Example, bell ) :- % 213, 244
true-percentage( Example, x, 1 4, 3, 35, 95 ), % 213, 1
not always( Example, x, 1 4, 39, 103 ), % 213, 0
!.

class( Example, funnel ) :- % 213, 31
dtw le( Example, f 35, x, 1.241447 ), % 200, 1
not euclid le( Example, c 162, x, 8.629407 ), % 200, 0
!.

class( Example, cylinder ) :- % 31, 13
not true-percentage( Example, x, 3, 9, 73, 15 ), % 31, 0
!.

class( Example, funnel ). % 13, 0

Fig. 1. Rules example. The rules are ordered, organized in a decision list. They were
obtained from the dataset CBF (Sect. 4.1). At the left of each literal, the number of
positive and negative examples covered by the (partial) rule.

Dataset Classes Variables Examples Points

CBF 3 1 798 128
Control charts 6 1 600 60
Waveform 3 1 900 21
Wave + noise 3 1 900 40
Auslan 10 8 200 *20

Table 1. Characteristics of the datasets. The number of points in the original Auslan
dataset was variable, the examples were resampled to 20 points.



c(t) = (6 + η) · χ[a,b](t) + ε(t)
b(t) = (6 + η) · χ[a,b](t) · (t − a)/(b − a) + ε(t)
f(t) = (6 + η) · χ[a,b](t) · (b − t)/(b − a) + ε(t)

χ[a,b] =
{

0 if t < a ∨ t > b
1 if a ≤ t ≤ b

η and ε(t) are obtained from a standard normal distribution N(0, 1), a is an
integer obtained from a uniform distribution in [16, 32] and b − a is another
integer obtained from another uniform distribution in [32, 96]. The examples
are generated evaluating those functions for t = 1, 2 . . . 128. Figure 2.a shows
two examples of each class. For ease of comparison with previous results, 266
examples of each class were generated.

Control Charts. In this dataset there are six different classes of control charts,
synthetically generated by the process in [1]. Each time series is of length n, and
is defined by y(t), with 1 ≤ t ≤ n:

1. Normal: y(t) = m+s r(t). Where m = 30, s = 2 and r(t) is a random number
in [−3, 3].

2. Cyclic: y(t) = m + s r(t) + a sin(2πt/T ). a and T are in [10, 15].
3. Increasing: y(t) = m + s r(t) + gt. g is in [0.2, 0.5].
4. Decreasing: y(t) = m + s r(t) − gt.
5. Upward: y(t) = m + s r(t) + x k(t). x is in [7.5, 20] and k(t) = 0 before time

t0 and 1 after this time. t0 is in [n/3, 2n/3].
6. Downward: y(t) = m + s r(t) − x k(t).

Figure 2.b shows two examples of each class. The data used were obtained
from the UCI KDD Archive [4]. It contains 100 examples of each class, with 60
points in each example.

Waveform. This dataset was introduced by [9]. The purpouse is to distinguish
between three classes, defined by the evaluation for i = 1, 2 . . .21, of the following
functions:

x1(i) = uh1(i) + (1 − u)h2(i) + ε(i)
x2(i) = uh1(i) + (1 − u)h3(i) + ε(i)
x3(i) = uh2(i) + (1 − u)h3(i) + ε(i)

where h1(i) = max(6− |i− 7|, 0), h2(i) = h1(i− 8), h3(i) = h1(i− 4), u is a uni-
form aleatory variable in (0, 1) and ε(t) follows a standard normal distribution.
Figure 2.c shows two examples of each class.

We use the version from the UCI ML Repository [7]. In the experiments
the first 300 examples of each class were selected, the total number of examples
available in the dataset is 5000. It is a normal practice to work only with 300
examples in total for this dataset [22, 32].



-2 0 2 4 6 8

20
40

60
80

100
120

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
-2 0 2 4 6 8

0
5

10
15

20

-2 0 2 4 6 8

20
40

60
80

100
120

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
-2 0 2 4 6 8

0
5

10
15

20

-2 0 2 4 6 8

20
40

60
80

100
120

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
-2 0 2 4 6 8

0
5

10
15

20

(a
)

C
B

F
(b

)
C

o
n
tro

l
C

h
a
rts

(c)
W

av
e

F
ig

.
2
.
S
o
m

e
ex

a
m

p
les

o
f
th

e
d
a
ta

sets.
T

w
o

ex
a
m

p
les

o
f
th

e
sa

m
e

cla
ss

a
re

sh
ow

n
in

ea
ch

g
ra

p
h
.



Wave + Noise. This dataset is generated in the same way than the previous
one, but 19 points are added at the end of each example, with mean 0 and vari-
ance 1. Again, we used the first 300 examples of each class of the corresponding
dataset from the UCI ML Repository.

Auslan. Auslan in the Australian sign language, the language of the Australian
Deaf community. Instances of the signs were collected using an instrumented
glove [17]. Each example is composed by 8 series: x, y and z position, wrist roll,
thumb, fore, middle and ring finger bend. The number of points in each example
is variable, so they were resampled to 20 points.

4.2 Results

The results for each dataset and setting were obtained using five five-fold strati-
fied cross-validation. For interval predicates, exponential probing was used. The
percentages considered for the predicate true-percentage were 5, 15, 30, 50, 70,
85 and 95. For similarity literals, at most, 10 positive and 10 negative reference
examples were considered when selecting literals.

Results are shown in Table 2. For each experiment, it includes the mean error
in percentage and its standard deviation. The standard deviation is calculated
from the 25 values obtained from the 5×5 cross-validation process.

The first remarkable point is that each predicate is the best for some dataset.
Euclidean is the best for the Wave and Wave + Noise using decision lists or
unordered rules, and for the Auslan dataset with decision lists. The performance
of the euclidean distance is a bit surprising considering its simplicity. Neverthe-
less its results are the worst for CBF and Control Charts. In these cases DTW
works much better. This situation is reasonable, because the CBF and Con-
trol datasets are designed specifically to test time series classifers, and hence
involve situations like shifts, compresions and expansions. These situations are
not present in the Wave datasets, and hence euclidean works better than DTW.

The use of always and sometimes gives the best results in the Control dataset.
In the case of decision lists, the first position is shared with the use of the predi-
cate true-percentage. The advantages of using it over using always and sometimes
are only clear for the CBF dataset. This is probably due to the fact that the
different situations that characterize the examples have a beginning and end for
the CBF dataset but for the Control dataset there are no returns to the normal
situation.

The results obtained using all the predicates are the best for the Auslan
dataset with unordered rules and for the CBF dataset. In the rest of the cases,
the results are close to the best.

With respect to the use of decision lists or unordered rules, there is no clear
winner regarding the error, although for the Auslan dataset decision lists work
much better than unordered rules. Probably the inclusion of pruning methods
could alter this situation.



Decision Lists Unordered Rules
Predicates Error Clauses Literals Error Clauses Literals

EUC 6.67 2.39 16.16 1.93 34.76 3.88 6.87 2.16 26.48 1.74 61.04 4.22
DTW 2.16 1.22 9.00 1.41 12.69 1.60 2.11 1.02 11.80 1.04 19.44 1.90
AST 4.51 1.38 9.72 0.89 15.16 1.82 4.31 2.03 13.52 0.87 33.08 2.12
TRP 2.76 1.25 7.44 0.88 10.00 1.23 2.88 1.28 9.64 0.86 22.28 2.19

C
B

F

ALL 1.65 1.10 5.92 0.91 7.12 0.97 1.10 0.89 7.46 0.65 12.68 1.22

EUC 4.63 1.38 11.92 1.19 18.20 2.00 6.03 2.20 16.72 2.07 30.84 3.53
DTW 3.23 1.71 10.76 0.93 13.52 1.45 4.10 1.89 13.52 1.59 20.28 1.95
AST 3.07 1.64 10.88 1.01 15.44 1.45 2.97 1.23 11.96 0.79 23.84 1.25
TRP 3.07 1.66 9.76 1.33 14.04 1.97 4.13 1.98 12.44 1.26 24.44 1.83

C
o
n
tr

o
l

ALL 3.20 1.55 8.80 1.33 11.04 1.49 3.60 1.64 11.40 1.26 17.36 1.44

EUC 19.64 2.82 26.28 1.65 83.48 5.69 19.47 2.73 49.24 2.52 177.68 9.88
DTW 24.38 3.65 30.48 2.14 101.64 4.80 25.49 3.75 55.80 1.96 209.40 7.33
AST 22.29 2.85 31.24 2.97 105.88 7.60 23.04 3.18 51.52 1.85 217.20 9.61
TRP 21.44 2.96 28.12 1.36 92.56 4.69 22.64 3.09 45.68 2.17 188.44 7.08

W
av

e

ALL 19.95 2.72 23.44 1.76 69.76 6.08 20.65 3.10 38.60 1.63 141.16 6.14

EUC 21.07 3.04 27.72 2.21 92.72 7.27 21.64 2.16 51.12 2.21 188.44 7.39
DTW 26.78 2.78 32.76 1.86 109.48 4.00 28.84 2.51 60.60 2.58 226.08 7.27
AST 24.80 3.35 27.48 1.42 90.24 3.73 24.67 2.53 44.64 1.08 183.56 6.18
TRP 24.62 2.44 25.64 1.52 89.96 4.36 25.58 3.39 41.64 1.19 164.92 5.74

W
a
v
e
+

N
o
is

e

ALL 22.31 3.17 22.00 1.19 66.68 3.45 22.91 2.54 36.88 1.92 134.64 6.47

EUC 15.00 4.21 12.76 1.23 16.52 1.69 24.60 7.49 18.04 1.49 31.40 2.10
DTW 21.60 6.33 14.40 1.29 20.44 2.22 24.20 5.94 18.68 1.07 30.64 1.58
AST 21.40 7.00 15.16 1.31 23.56 1.78 22.80 6.55 18.88 1.30 38.64 2.22
TRP 20.10 4.97 14.92 0.76 22.64 1.44 23.80 6.13 19.04 1.46 37.76 2.44

A
u
sl
a
n

ALL 16.60 5.49 12.08 0.64 14.64 0.91 21.50 7.74 15.64 1.50 25.44 1.76

Table 2. Experimental Results. The predicates considered are EUClidean, DTW, Al-
ways / SomeTime, TRue Percentage and ALL together. For each combination, the
averaged error (in %) and its standard deviation of the 25 executions are shown. In
boldface, the best results. Also, the number of clauses and the total number of literals
(excluding the heads) are shown.



5 Improving Accuracy by Boosting

At present, an active research topic is the use of ensembles of classifiers. They are
obtained by generating and combining base classifiers, constructed using other
machine learning methods, typically decision tree learners. The target of these
ensembles is to increase the accuracy with respect to the base classifiers.

One of the most popular methods for creating ensembles is boosting [30], a
family of methods, of which AdaBoost is the most prominent member. They
work by assigning a weight to each example. Initially, all the examples have
the same weight. In each iteration a base classifier is constructed, according to
the distribution of weights. Afterwards, the weights are readjusted according to
the result of the example in the base classifier. The final result is obtained by
combining the weighted votes of the base classifiers. Boosting inductive logic
programming is described in [23].

Inspired by the good results of works using ensembles of very simple classi-
fiers [15], sometimes named stumps, we have studied base classifiers consisting
only of one literal. The reasons for using so simple base classifiers are:

– Ease of implementation. In fact, it is simpler to implement a boosting algo-
rithm than a decision tree or rule inducer, especially if pruning methods are
included.

– Comprehensibility. It is easier to understand a sequence of weighted literals
than a sequence of weighted decision trees or rules.

The criterion used for selecting the best literal is to select the one with the
smallest error, relative to the weights.

5.1 Multiclass Problems

There are several methods of extending AdaBoost to the multiclass case [30]. We
have used AdaBoost.OC [29] since it can be used with any weak learner which
can handle binary labeled data. It does not require that the weak learner can
handle multilabeled data with high accuracy. AdaBoost.OC incorporates the
method of error-correcting output codes [13], for handling multiclass learning
problems, into the boosting algorithm.

The key idea is, in each round of the boosting algorithm, to select a subset
of the set of labels, and train the binary weak learner with the examples labeled
positive or negative depending if the original label of the example is or is not
in the subset. In our concrete case, the rule inducer searches for a rule with the
head:

class( Example, [class1, . . . classk] )

This predicate means that the Example is of one of the classes in the list1. Figure 3
shows an ensemble of these classifiers.
1 If we are not restricted to Horn clauses, we can say that the the clause is of the form

class( Example, class1), . . . , class( Example, classk) :- . . . .



class( Example, [ decreasing, downward, increasing ] ) :- % 240, 240
not true-percentage( Example, x, 5, 43, 59, 5 ). % 197, 26
% 0.456818

class( Example, [ decreasing, upward, normal ] ) :- % 240, 240
true-percentage( Example, x, 1 4, 14, 22, 70 ). % 229, 84
% 0.422232

class( Example, [ cyclic, decreasing, downward ] ) :- % 240, 240
sometime( Example, x, 2, 22, 54 ). % 240, 0
% 0.700627

class( Example, [ cyclic, decreasing, normal ] ) :- % 240, 240
dtw le( Example, cyclic 54, x, 59.898940 ). % 159, 0
% 0.536895

class( Example, [ decreasing, upward, downward ] ) :- % 240, 240
not true-percentage( Example, x, 5, 37, 53, 5 ). % 179, 23
% 0.390684

. . .

Fig. 3. Initial fragment of an ensemble of classifiers, obtained with AdaBoost.OC,
for the dataset control charts (Sect. 4.1). Below each individual classifier is its weight.

The classification of a new example is obtained from a weighted vote of
the results of the weak classifiers. For each rule, if its antecedent is true, then
the weights of all the labels in the list are incremented by the weight of the
rule. Finally, the label that has been given the highest weight is assigned to the
example.

5.2 Results

The results obtained with the boosting process are summarized in Table 3. For
all the datasets, the benefits of using boosting are substantial. Moreover, the
evolution of the error with the number of iterations is rather good. Until the
limit of the number of iterations considered, the increment of the number of
iterations do not cause more overfitting.

Cylinder, bell and funnel. The best previously published result, according
to our knowledge, with this dataset is an error of 1.9 [17], using 10 fold cross
validation. From iteration no. 10, the results shown in table 3 are better than
this result, and from iteration no. 20 the results are smaller than 1. Moreover,
the results using rules without boosting (Table 2) are also better than 1.9 (1.65
and 1.10).

Control charts. The only previous result we are aware of regarding this dataset
is for similarity queries [1], and not for supervised classification. To check if this
dataset was trivial, we tested it with C4.5 [21], over the raw data, and obtained
an average error of 8.6 (also using five five-fold cross validation).



Iterations 5 10 20 30 40 50

CBF 2.41 1.21 1.50 0.85 0.75 0.60 0.60 0.53 0.58 0.65 0.50 0.60

Control 22.30 2.58 8.70 5.38 2.27 1.62 1.80 1.22 1.60 1.25 1.47 1.19

Wave 19.58 2.55 18.36 2.79 15.64 2.46 15.49 2.08 15.00 2.32 15.04 2.36

Wave + Noise 23.87 3.13 20.56 3.24 18.29 2.73 17.60 2.41 17.18 2.36 16.78 2.11

Auslan 61.50 7.14 37.90 7.90 16.70 5.72 11.50 4.39 8.40 3.88 7.60 3.27
+100 iter. 3.60 2.51 3.80 2.71 3.20 2.34 3.10 2.20 2.90 1.87
+150 iter. 3.00 1.77 3.10 2.20 2.50 1.91 2.80 2.20 2.40 2.22
+200 iter. 2.40 2.22 2.30 2.16 1.90 2.20 2.20 1.95 2.00 1.77

Table 3. Results obtained with boosting, for several numbers of iterations, using all
the background predicates. For the Auslan dataset, the table includes results with more
iterations (110, 120 . . . 150; 160 . . . 200 and 210 . . . 250).

Waveform. The error of a Bayes optimal classifier on this dataset is approxi-
mately 14 [9]. This dataset is frequently used for testing classifiers. It has also
been tested with boosting (and other methods of combining classifiers), over the
raw data, in different works [22, 16, 32, 12]. The best previous result we are
aware of for this dataset is an error of 15.21 [12]. That result was obtained using
decision trees as base classifiers, which are much more complex than our base
classifiers (clauses with one literal in the body).

Wave + Noise. Again, the error of an optimal Bayes classifier on this dataset
is 14. This dataset was tested with bagging, boosting and variants over MC4
(similar to C4.5) [3], using 1000 examples for training and 4000 for testing and
25 iterations. Although their results are given in graphs, their best error is ap-
parently approximately 17.5.

Auslan. This is the dataset with the highest number of classes (10). In order to
distinguish between this large number of classes, it turned out that 50 one-body-
literal clauses were too few, so we incremented the number of iterations for this
dataset, until 250. The best result previously published is an error of 2.50 [17].

6 Conclusions and Future Work

A multivariate time series classification system has been developed, using ILP
techniques. Two types of background predicate were considered: those based on
intervals and regions and those based on similarity functions. The use of simi-
larity literals allows a smooth integration of Instance Based Learning and ILP,
leading to that similarity functions can be defined by the user and incorporated
as background knowledge and that these functions appear explicitly in the rules
instead of being an external element to the learned theory. Special purpose tech-
niques have been presented that allow these predicates to be handled efficiently



when performing top-down induction. Furthermore, we have demonstrated that
by employing boosting, the accuracy of the resulting time series classifiers can be
improved significantly. Experiments on several different datasets show that the
proposed method is highly competitive with previous approaches. On all data
sets, the proposed method achieves better than all previously reported results.
Moreover, the comprehensibility of the induced classifiers is found to be better
than for classifiers produced by previous approaches.

Two methods have been used for dealing with multiclass problems: decision
lists and unordered rules with associated distribution of training examples. It
would also be possible to use the method of error-correcting output codes, used
in AdaBoost.OC, for dealing with multiclass problems, when learning rules.
We have not explored this possibility because we believe that the obtained results
would be less comprehensible. When using boosting, it is also possible to learn
a classifier for each class independently, as done in [25], but in this case the
resulting classifiers can be much more bigger, since it is necessary an ensemble
for each class, instead of an ensemble for all the classes.

Boosting has been used over very simple individual classifiers: clauses with
a body consisting of one literal only and a head that assigns the example to
one of several classes. This situation is the opposite to the one that appears
when learning rules: there are typically several literals in the body, but only one
label in the head. Nevertheless, it would be possible to apply boosting over more
complicated classifiers, such as rules with several literals.

Boosting generic learners, which are not designed for time series, such as de-
cision trees, can produce good results for time series classification. Nevertheless,
the incorporation of temporal predicates, as background knowledge, improves
the performance of boosting, especially regarding the size of the classifiers.

Another method to improve the accuracy of a classifier is the use of prun-
ing techniques. Pruning also enahnces the comprehensibility of classifiers, while
boosting worsens it. Nevertheless, pruning and boosting are not incompatible,
e.g., when boosting rules it is possible to prune them [11]. Hence, it would be
convenient to incorporate pruning techniques in the rule induction system, and
also the application of boosting over pruned rules.
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