
Resolving Rule Conflicts with Double Induction

Tony Lindgren and Henrik Boström

Department of Computer and Systems Sciences,
Stockholm University and Royal Institute of Technology,

Forum 100,
164 40 Kista, Sweden
tony,henke@dsv.su.se

http://www.dsv.su.se

Abstract. When applying an unordered set of classification rules, the
rules may assign more than one class to a particular example. Previous
methods of resolving such conflicts between rules include using the most
frequent class in the conflicting rules (as done in CN2) and using näıve
Bayes to calculate the most probable class. An alternative way of solving
this problem is presented in this paper: by generating new rules from the
examples covered by the conflicting rules. These newly induced rules are
then used for classification. Experiments on a number of domains show
that this method significantly outperforms both the CN2 approach and
näıve Bayes.

1 Introduction

Two major induction strategies are used in top-down rule induction: Divide-and-
Conquer (DAC) [15] and Separate-and-Conquer (SAC) [7]. The former strategy
does not generate overlapping rules and hence no conflict between rules can
occur, while the latter strategy can give rise to overlapping rules. The rules can
be ordered to avoid conflicts (which results in so called decision lists) [16, 3] or
they may be used without any ordering [2]. In the latter case one has to deal
with conflicts that can occur when two or more rules cover the same example
but assign different classes to it.

This work addresses the problem of handling conflicting rules and how to
solve the conflicts in a more effective way than using existing methods. Previous
methods that deals with conflicts among rules either returns the most frequent
class covered by the conflicting rules (as done in CN2 [2]) here referred to as
frequency-based classification, or uses näıve Bayes [13] to calculate the most
probable class, as done in the rule induction system RDS [1].

1.1 Motivation

Why bother solving rule conflicts when they can be avoided? When comparing
SAC with unordered rules to DAC it seems to the case that SAC induce fewer
rules which also are less complex than the rules induced by DAC. The complexity

of the DAC rules is caused by irrelevant attributes. These attributes also makes
it hard to interpret DAC rules, because there is an uncertainty if the conditions
of the rule are relevant or not. SAC rules does not use conditions that are
irrelevant for the classification. The use of irrelevant attribute is related to the
replication problem [14] that DAC suffers from. The replication problem is best
illustrated by an example: the smallest decision tree for the boolean function
(X1∧x2)∨(x3∧x4) is shown in Fig. 1. In that figure we see two similar structures
that are repeated, this repetition could be avoided using SAC. A comparison of
DAC, SAC with ordered rules and SAC with unordered rules on this problem is
shown in Fig. 2.

x1

x3

x4

x2

x3

x4

0

0

0

0

1

1

1

Fig. 1. The smallest decision tree for the boolean function (x1 ∧ x2) ∨ (x3 ∧ x4). Two
similar structures are replicated.

There exist at least two strong reasons of why to use SAC with unordered
rules instead of SAC with ordered rules. The first reason is that classification
using unordered rules compared to using ordered rules generally has a higher
prediction accuracy. The second reason is that with ordered rules, each rule is
dependent on the rules before it in the ordering. This means that the rules can
not be interpreted by them self, something which unordered rules can. Another
nice property that unordered rules has is that each class has their own set of
rules. Often in ordered rules one class is regarded as a default class this means
that the last rule in the ordering has no conditions and cover the default class.
This line of reasoning is known as closed world assumption. As a consequence it
is not easy to get understanding of why a particular example was classified as
the default class.

2

DAC:

IF X1 = 0 AND X3 = 0 THEN C = 0

IF X1 = 0 AND X3 = 1 AND X4 = 0 THEN C = 0

IF X1 = 0 AND X3 = 1 AND X4 = 1 THEN C = 1

IF X1 = 1 AND X2 = 1 THEN C = 1

IF X1 = 1 AND X2 = 0 AND X3 = 0 THEN C = 0

IF X1 = 1 AND X2 = 0 AND X3 = 1 AND X4 = 0 THEN C = 0

IF X1 = 1 AND X2 = 0 AND X3 = 1 AND X4 = 1 THEN C = 1

SAC ordered:

IF X1 = 1 AND X2 = 1 THEN C = 1 ELSE

IF X3 = 1 AND X4 = 1 THEN C = 1 ELSE

(Default rule): C = 0

SAC unordered:

IF X1 = 1 AND X2 = 1 THEN C = 1

IF X3 = 1 AND X4 = 1 THEN C = 1

IF X1 = 0 AND X3 = 0 THEN C = 0

IF X1 = 0 AND X4 = 0 THEN C = 0

IF X2 = 0 AND X3 = 0 THEN C = 0

IF X2 = 0 AND X4 = 0 THEN C = 0

Fig. 2. Rules describing the boolean function from DAC, SAC with and without or-
dering

In this work we propose a novel way of resolving such conflicts: by applying
rule induction on the examples covered by the conflicting rules, in order to
generate a new set of rules that can be used instead of the conflicting rules.
The motivation for this method is that by focusing on the examples within the
region of interest (i.e. where the example to be classified resides), one is likely
to obtain rules that better separate classes in this region compared to having to
consider all examples, since examples outside the region may dominate the rule
induction process, making the separation of classes within the region of marginal
importance. This novel method is called Double Induction.

The paper is organised as follows. In section 2, we first review frequency-based
classification and näıve Bayes to resolve rule conflicts, and then describe Double
Induction. In section 3, the three different methods are compared empirically and
the results are presented. In the discussion (Section 4) the results are analysed
and relations to other work is made. Finally, in section 5, conclusions are made
and pointers to future work is given.

2 Ways of Resolving Classification Conflicts

In this section, we first recall two previous methods for resolving classification
conflicts among overlapping rules and then introduce the novel method, Double
Induction.

3

2.1 Frequency-Based Classification

The system CN2 [2] resolves classification conflicts between rules in the following
way. Given the examples in Fig. 3, the class frequencies of the rules that covers
the example to be classified (marked with ’?’) are calculated:

C(+) = covers(R1, +) + covers(R2, +) + covers(R3, +) = 32

and

C(−) = covers(R1,−) + covers(R2,−) + covers(R3,−) = 33

where covers(R, C) gives the number of examples of class C that are covered
by rule R. This means that CN2 would classify the example as belonging to the
negative class (-). More generally:

FreqBasedClassification = argmaxClassi∈Classes

|CovRules|∑

j=1

covers(Rj , Ci)

where CovRules is the set of rules that cover the example to be classified.

++++
+++ + ++
 +
 ++
 - - -
 +

- - - - + - - + + + + +

+ + + + + +

- + + +

 + +

- - - -

- - -

-

?

- -- - - -

-

R1 + 12
 - 3

R2 + 14
 - 3

R3 + 6
 - 27

- - - - - - - +

a priori prob. (+) = 50 %
 (-) = 50 %

R4 +7
 - 0

R5 +1
 - 7

+ + + +
 + + +

- - - - - +
 - -

Fig. 3. Three rules covering an example to be classified (marked with ?). The training
examples are labelled with their respective classes (+ and -).

4

2.2 Näıve Bayes Classification

Bayes theorem is as follows:

P (C|R1 ∧ . . . ∧ Rn) = P (C)
P (R1 ∧ . . . ∧ Rn|C)
P (R1 ∧ . . . ∧ Rn)

where C is a class label for the example to be classified and R1 . . . Rn are the
rules that cover the example. As usual, since P (R1 ∧ . . . ∧ Rn) does not affect
the relative order of different hypotheses according to probability, it is ignored.
Assuming (naively) that P (R1 ∧ . . . ∧ Rn|C) = P (R1|C) . . . P (Rn|C), the max-
imum a posteriori probable hypothesis (MAP) is:

hMAP = argmaxClassi∈ClassesP (Classi)
|Rules|∏

Rj∈Rules

P (Rj |Classi)

where Rules is the set of rules that cover the example to be classified.
If we again consider the example shown in Fig. 3, we get:

P (+|R1 ∧ R2 ∧ R3) = P (+) ∗ P (R1|+) ∗ P (R2|+) ∗ P (R3|+) =

40/80 ∗ 12/40 ∗ 14/40 ∗ 6/40 = 0.0079

P (−|R1 ∧ R2 ∧ R3) = P (−) ∗ P (R1|−) ∗ P (R2|−) ∗ P (R3|−) =

40/80 ∗ 3/40 ∗ 3/40 ∗ 27/40 = 0.0019

Hence näıve Bayes assigns the positive (+) class to the example. Note that if
a rule involved in a conflict does not cover any examples of a particular class,
this would eliminate the chances for that class to be selected, even if there are
several other rules that cover the example with a high probability for that class.
To overcome this problem, we use Laplace-m correction (described in [8]) in the
experiments.

2.3 Double Induction

The idea of Double Induction is to induce new rules based on the examples that
are covered by the rules in conflict. By doing this we obtain a completely fresh
set of rules that are tailor made to separate the examples in this subset of the
whole domain. By concentrating on a small subspace of the example space there
is a higher chance to find rules that separate the classes better. The training
set is randomly divided into two halves in order to create a grow set (to induce
rules) and a prune set (to prune rules). This division is likely to further reduce
the probability that we will find the same rules as before. The Double Induction
algorithm is given in Fig. 4.

5

Input: R1 = rules from the first induction round, e = example to be

classified,

E1 = training examples

Output: C = a class assigned to e

collect all rules R1,e ⊆ R1 that cover e
if conflictingRules(R1,e) then

collect all training examples E2 ⊆ E1 covered by R1,e

induce new rules R2 from E2

collect all rules R2,e ⊆ R2 that cover e
if conflictingRules(R2,e) then

let C = naiveBayes(R2,e,E2)

else let C = majorityClass(R2,e)

else let C = majorityClass(R1,e)

Fig. 4. The Double Induction algorithm.

It is worth noting that when solving conflicts with näıve Bayes on the newly
induced rules, the a priori probability is computed from the examples covered by
the previously conflicting rules. This means that the a priori probability reflects
the probability distribution of this subspace (contained by the rules in conflict),
rather than the a priori probability of the whole domain.

Consider again the scenario shown in Fig. 3. Given the examples covered by
R1, R2 and R3, Separate-and-Conquer may come up with the three new rules
shown in Fig. 5. The unlabelled example is then classified using these newly
induced rules.

In our hypothetical scenario, the example is covered by R6 resulting in that
the positive class is assigned to the example.

In our experiments we use two different sets of examples as input in the
second rule induction round: one which has no duplicates of examples and one
with the concatenation of all the covered examples of every rule, in which some
examples may be present more than once (i.e., a multi-set). The latter is in a
sense a weighting scheme of the examples in the example set. One reason for
using such a weighting scheme is that it has been empirically demonstrated that
the examples in the intersection are more important (and hence should have more
weight) than other examples when doing the classification, see [9]. Note that this
type of weighting is implicitly used in both frequency-based classification and
näıve Bayes.

3 Empirical Evaluation

Double Induction has been implemented as a component to the Rule Discovery
System (RDS) [1], which is a rule based machine learning system that sup-

6

++++
++ ++
 +
 ++

- - - - + - - + + + + +

+ + + + + +

 + + +

 + +

- - - -

- - -

-

+
- -

?-

- -- -

- - - - - - -

a priori prob. (+) = 51 %
 (-) = 49 %

R6 + 23
 - 3

R8 + 6
 - 2

R7 + 1
 - 26

Fig. 5. Three new rules from a second induction round.

ports various rule induction techniques, e.g., separate-and-conquer, divide-and-
conquer, and ensemble methods like bagging and boosting.

Double Induction has been implemented both with and without weighting of
the examples according to the coverage of previous learned rules. Both of these
variants are compared to frequency-based classification and näıve Bayes.

3.1 Experimental Setting

The employed search strategy was Separate-and-Conquer together with informa-
tion gain to greedily choose what condition to add when refining a rule. One half
of the training set was used as grow set and the second half was used as pruning
set. The rules were pruned using incremental reduced error pruning (IREP) [6].
These settings were used in both induction rounds, i.e. both when inducing the
initial set of rules and when resolving rule conflicts.

The experiments were performed using 10 fold cross-validation. In N fold
cross-validation the data is partitioned in N disjunctive folds, running N separate
experiments on each domain. Using N-1 out of the N folds to train on and the
last fold to test on. Hence all N sets will be used as test set once and all sets will
be used for training N-1 times.

All datasets used were taken from the UCI Machine Learning Repository
except the King-Rook-King-Illegal (KRKI) database which comes from the Ma-
chine Learning group at the University of York. In Table 1, the domains used in
the experiment are shown, as well as their main characteristics.

7

Table 1. The domains used in the experiment

Domain Classes Class distribution Examples

The Glass 2 24.1, 75.9 112
Balance Scale 3 8, 46, 46 625
Breast Cancer 2 29.7, 70.3 286
Liver-disorders 2 42, 58 345
Car Evaluation 4 4, 4, 22, 70 1728
Dermatology 6 5.5, 13.3, 14.2, 16.7, 19.7, 30.6 366
Congressional Voting 2 45.2, 54.8 435
Ionosphere 2 36, 64 351
Lymphography 4 1.4, 2.7, 41.2, 54.7 148
New thyroid 3 69.8, 16.3, 13.9 215
Primary tumor 22 24.8, 5.9, 2.7, 4.1, 11.5, 0.3, 4.1, 339

1.8, 0, 0.6, 8.3, 4.7, 2.1, 7.1, 0.6,
0.3, 2.9, 8.6, 1.8, 0.6, 0.3, 7.1

Sonar 2 53, 47 208
Nursery 5 33.3, 0.0, 2.5, 32.9, 31.2 12960
Shuttle Landing Control 2 47.8, 52.2 278
KRKI 2 34, 66 1000

3.2 Experimental Results

The rule conflict resolution methods were tested on fifteen domains. In four of
these domains, the rules learned were without conflict. These domains were:
Glass, Liver-disorders, Ionosphere and Sonar.

The results from the domains with rule conflicts are shown in Table 2, where
the result for each domain has been obtained by ten-fold cross-validation. Exactly
the same folds and generated rules are used by the four classification methods.

In Table 2, the first column gives the name of the domain. The second column
shows the accuracy of Double Induction with weighted examples, while the third
column gives the accuracy of Double Induction with no weighting. The fourth
column shows the accuracy of frequency-based classification and the fifth column
shows the accuracy of näıve Bayes. The sixth column shows the percentage of all
classifications that involve conflicting rules. This gives an upper-bound of how
much the accuracy can be improved.

Table 3 gives numbers that are used for the significance test. Inside each
parenthesis, two numbers are given: the number of domains in which the method
in the leftmost column has a higher respectively lower accuracy compared to the
method in the upper row (wins, losses). The value after each parenthesis shows
the p-value according to an exact version of McNemar’s test. An asterisk (*)
is used to signal that the result is statistically significant, using the threshold
p < 0.05.

8

Table 2. Accuracy of Double Induction (with and without weights), frequency based
classification and näıve Bayes.

Domain D. Ind. w weight D. Ind. frequency-b. näıve B. conflicts

Balance scale 83.30 82.43 81.20 82.78 50.8

Breast cancer 75.00 74.60 73.81 75.00 21.4

Car 86.82 87.21 78.04 77.59 34.1

Dermatology 91.69 91.69 91.69 91.08 5.2

C. Votes 95.20 94.95 94.44 93.94 6.6

Lymphography 80.00 80.00 79.26 80.00 26

New thyroid 85.71 87.24 85.71 85.71 5.6

Primary tumor 38.33 38.33 37.50 37.50 49.2

Nursery 85.63 85.42 79.91 84.32 26.0

Shuttle 94.86 94.07 93.68 94.86 7.5

KRKI 98.35 98.24 92.20 98.02 11.2

Table 3. Result of McNemar’s test.

D. Ind. w. weight D. Induction frequency-b. näıve Bayes
D. Ind. w. weight (0, 0), 1 (6, 2), 0.289 (9, 0), 3.91e-3* (7, 0), 1.56e-2*
D. Induction (2, 6), 0.289 (0, 0), 1 (10, 0), 1.953e-3* (7, 3), 0.344
frequency-b. (0, 9), 3.91e-3* (0, 10), 1.953e-3* (0, 0), 1 (3, 7), 0.344
näıve Bayes (0, 7), 1.56e-2* (3, 7), 0.344 (7, 3), 0.344 (0, 0), 1

To minimise the amount of work within Double Induction, the conflicts al-
ready seen (for a particular fold) are saved to allow re-use of the generated rules
in the second round whenever the same conflict is observed again (within the
same fold). This can greatly speed up the classification process. For the current
domains, this reuse of classifications varies from 2 percent to 60 percent of all
classifications with conflicts.

4 Discussion and related work

It is worth noting that Double Induction with weighting is significantly more
accurate than both näıve Bayes and frequency-based classification. It is not
significantly more accurate than Double Induction without weighting, but is
still better (6 wins and 2 losses).

Double Induction without weighting performs significantly better than frequency-
based classification, but not significantly better than näıve Bayes. There is no
significant difference in accuracy between näıve Bayes and frequency-based clas-
sification.

4.1 Rule stretching

Rule stretching (RS)[5] addresses the problem of how to classify examples which
is not covered by any rule. The usual approach to this problem is to assign

9

the majority class of the domain to the uncovered example(s). RS deals with
this problem by “stretching” the rules, i.e. relaxing the conditions in the rules
(as little as possible), so that they cover the uncovered example that is to be
classified. Then the class coverage distributions for each rule is updated and the
rule with the highest class coverage distribution is used to classify the example.
Results from empirical comparison with this method compared to using the
majority class showed that RS method outperformed the use of the majority
class in all domains. The methods were compared in total on seven domains.

In a later article [4] RS was used for classification of all test examples in
a domain. In a comparison between RS and using the most accurate rule, RS
proved to perform better that using the most accurate rule in six out of seven
domains.

RS and Double Induction (DI) have similarities. Both use existing rules as a
basis for further investigation. DI only considers the coverage of the rule while RS
considers the rules conditions. But they aim at solving different problems. Both
methods are computationally more expensive then their standard counterpart
but there is a pay back of all the computing in the form of better performance.

4.2 Analogical Prediction

Analogical Prediction (AP) [11] is general method for inducing rules that are
tailor made for the prediction of a specific example. The method can be re-
garded as a step stone between standard Inductive Logic Programming (ILP)
[12] learning setting and that of Instance-Based Learning (IBL). In ILP rules are
induced from the training examples possibly together with background knowl-
edge. In IBL no rules are created, instead are the training examples used with
a proximity measure to classify test examples. AP uses the training examples
together with background knowledge and for each test example induce the most
compressive rule that is best for classifying that particular example. The positive
aspects of AP compared to IBL is that it uses rules which are easy to interpret,
while IBL use a proximity measure which can be hard interpret. And it have the
same nice properties that IBL have but ILP lack namely that it easy to update
the knowledge base (examples).

When comparing DI with AP they are quit similar, both methods induce
rules when a test example is to be classified. But DI only considers the examples
covered by the rules in conflict when inducing new rules while AP considers all
the training data. Also AP is restricted to find one rule such restrictions are not
applied to DI. The aim of both methods is quit similar, to find rules which best
predict a particular example.

4.3 Instance-Based Learning

As mentioned above IBL [10] uses a proximity measure which is applied to the
training examples for each example that is to be classified. In a sense DI is a IBL
type of algorithm, because when it induces new rules it only considers a subset
of the original training set (the examples covered by the rules in conflict). So

10

DI excludes examples that is not central to solving the rule conflict, similarly
to IBL which only considers training examples that are in the proximity of the
example to be classified.

4.4 Intersecting Rules

Intersecting rules (IR) [9] also considers solving the same problem as Double
Induction. The difference is that IR tries to use bayes rule if it can, i.e. use the
probability distribution in the intersection of the rules in conflict together with
the a priori probability of a domain to classify an example. The problem is that
often there are not any examples present in the intersection of the conflicting
rules. In such a case IR search for a partition of the rules in so few nonempty-
partitions as possible, i.e. it tries to preserve the dependencies between the rules
as long as possible. This has show to be successful when solving rule conflicts, in
11 domains IR has higher accuracy in all domains compared to frequnecy-based
classification and näıve Bayes.

DI and IR both aim at solving the same problem while IR is based on bayes
rule and uses the original induced rules to predict the class of an example DI
solves the same problem by inducing new rules. It should be noted that the
weighting scheme that DI uses comes from the empirical evidence that examples
in the intersection of conflicting rules is more important that rules which lie
outside the intersection. This is one of the conclusions which can be drawn from
IR experiments. This notion is further supported in the experiments done in
this paper which show better performance when using DI with weighting than
without it.

5 Conclusion

Instead of using the information conveyed in a set of conflicting rules (and the
class distributions of the whole training set, if using näıve Bayes) and making a
qualified guess of which class is most probable given the rules, we suggest doing
a second round of rule induction in hope of finding a better separation of the
examples. This is often possible due to that the induction algorithm only has to
consider the examples that are relevant to the region in which the example to be
classified resides. This idea has been empirically demonstrated to significantly
outperform two previous methods for resolving rule conflicts: frequency-based
classification and näıve Bayes.

Furthermore, as seen by the experiments, it is worthwhile to use the weighting
of the examples that is given by the first set of rules, because it helps in the second
round to produce a better set of rules. This confirms the earlier observation in
[9], that examples in the intersection of conflicting rules are more important than
other examples.

One of the major drawbacks of using Double Induction is of course the compu-
tational cost. However, if accuracy is of uttermost importance and quick response
time is not, then it is a useful technique.

11

One issue that needs further investigation is the use of other weighting
schemes than the one used in our experiments which is quite conservative. An-
other issue is to resolve new conflicts that occur between rules obtained in the
second round, by continuing recursively instead of using näıve Bayes after the
second round. This recursive step could be done until no further conflicts are
present in the resulting rules or until no new rules can be found. A more delicate
measure for rule conflicts could prove to be useful. As the case is now there exits
no measurement of the degree of the conflict. For example comparing two differ-
ent conflicts; in the first conflict 9 rules advocate the pos class and 1 rule the neg
class. All 9 rules that advocate the pos class are “good” rules (they cover a lot
of examples and are quite clean (few neg examples is covered)) while the single
rule advocate the neg class is a “bad” rule (cover few examples, and just barley
have a majority class of neg covered examples). The second conflict involves two
rules that both are good but have different majority classes. Clearly the second
conflict is a “harder” conflict than the first one, this should be captured by a
conflict measure.

References

1. Henrik Boström. Rule discovery system user manual. Compumine AB, 2003.
2. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In

Proceedings Fifth European Working Session on Learning, pages 151–163, Berlin,
1991. Springer-Verlag.

3. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3,
261-283, 1989.

4. M. Eineborg. Fuzzifying hyperplanes in the hypothesis space. In Proceedings of
the First International Workshop on Hybrid Intelligent Systems, pages 313–322.
Springer-Verlag, 2001.

5. M. Eineborg and H. Boström. Classifying uncovered examples using rule strech-
ing. In Proceedings of the Eleventh International Conference on Inductive Logic
Programming, pages 41–50. Springer-Verlag, 2001.

6. J. Fürnkranz and G. Widmer. Incremental reduced error pruning. In W.W. Cohen
and H. Hirsh, editors, Proceedings of the 11th International Conference on Machine
Learning, pages 70–77. Morgan Kaufmann, 1994.

7. Johannes Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence
Review, 1999.

8. R. Kohavi, B. Becker, and D. Sommerfield. Improving simple bayes. In Proceedings
of the European Conference on Machine Learning, 1997.

9. Tony Lindgren and Henrik Boström. Classification with intersecting rules. In
Proceedings of the 13th International Conference on Algorithmic Learning Theory
(ALT’02), pages 395–402. Springer-Verlag, 2002.

10. Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
11. Stephen Muggleton and Michael Bain. Analogical prediction. In Proceedings of

the 9th International Conference on Inductive Logic Programming, pages 234–244.
Springer-Verlag, 1999.

12. Stephen Muggleton and Luc de Raedt. Inductive logic programming: Theory and
methods. The Journal of Logic Programming, 1994.

13. Duda R. O. and Hart P. E. Pattern Classification and Scene Analysis. Wiley, 1973.

12

14. Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning.
Machine Learning, 5(1):71–99, 1990.

15. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
16. R. Rivest. Learning decision lists. Machine Learning, 2(3), 229-246, 1987.

13

