Classification with Intersecting rules
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Abstract. Several rule induction schemes generate hypotheses in the
form of unordered rule sets. One important problem that has to be ad-
dressed when classifying examples with such hypotheses is how to deal
with overlapping rules that predict different classes. Previous approaches
to this problem calculate class probabilities based on the union of ex-
amples covered by the overlapping rules (as in CN2) or assumes rule
independence (using naive Bayes). It is demonstrated that a significant
improvement in accuracy can be obtained if class probabilities are cal-
culated based on the intersection of the overlapping rules, or in case of
an empty intersection, based on as few intersecting regions as possible.

1 Introduction

Methods for rule induction have been studied for more than two decades within
the field of machine learning. They include various techniques such as divide-and-
conquer (recursive partitioning), that generates hierarchically organized rules
(decision trees) [4], and separate-and-conquer (covering) that generates over-
lapping rules. The sets of rules generated by separate-and-conquer may either
be treated as ordered (decision lists) [5] or unordered [3,2]. In case of induc-
ing decision trees or decision lists, there is no need for resolving classification
conflicts among the rules. In the former case this is due to that the rules are
non-overlapping and hence there is only one single rule that is applicable to any
given problem. In the latter case, this is due to that the first applicable rule in
the list is always used.

In this work we focus on the problem of how to deal with overlapping rules
that predict different classes in unordered rule sets. Previous approaches to this
problem calculate class probabilities based on the union of examples covered by
the overlapping rules (as in CN2 [2]) or assumes rule independence (using naive
Bayes). We propose a novel approach to this problem that bases the calculation
of class probabilities on the intersection, rather than the union, of the overlap-
ping rules, or in case of an empty intersection, on as few intersecting regions as
possible. The new method, called intersection-based classification, is compared
to the two previous methods in an empirical evaluation.



The paper is organized as follows. In the next section, we briefly describe the
two previous methods, which are here referred to as union-based classification
and naive Bayes classification, together with an informal presentation of the
novel method, intersection-based classification. In section three, we describe the
algorithm in more detail and briefly present the system in which it has been
implemented. The empirical evaluation is given in section four, and finally, in
section five, we give some concluding remarks and point out directions for future
research.

2 Ways of resolving classification conflicts

In this section, we first recall two previous methods for resolving classification
conflicts among overlapping rules and then introduce a new method.

2.1 Union-based classification

The system CN2 [2] resolves classification conflicts among rules in the following
way. Given the examples in figure 1, the class frequencies in union of the rules
that covers the example to be classified is calculated:

C(+) = covers(Ry,+) + covers(Rs, +) + covers(Rsz, +) = 32

and
C(—) = covers(Ry, —) + covers(Ry, —) + covers(Rz,—) = 33

where covers(R, C) gives the number of examples of class C that are covered by
R. This means that CN2 would classify the example as belonging to the negative
class (-). More generally:

|CovRules|

UnionBasedClassi fication = argmaxciass; cClasses g covers(Rj, C;)
i=1

where C'ovRules is the set of rules that cover the example to be classified, and
covers is the function defined above.

2.2 Naive Bayes classification

Bayes theorem is as follows:

P(H|E) = P(H)%

where H is a hypotesis (in our case, a class label for the example to be classified)
and E is our evidence (the rules that cover the example). As usual, since P(E)



R3 + 6
-27

R4 +7 R5 +1
-0 -7

Apriori prob. (+) & (-) =50 %

Fig. 1. Three rules covering an example to be classified (marked with 7). The training
examples are labeled with their respective classes (+ and -).

does not affect the relative order of different hypotheses according to probability,
it is ignored.

The naive Bayes assumption is that each piece of evidence is conditionally in-
dependent in relation to other evidence given the hypotesis. Hence, the maximum
a posteriori probable hypotesis (MAP) according to the naive Bayes assumption
is:

|Rules|

hyap = argmazciass; cClasses P(Class;) H P(Rj|Class;)
Rj€Rules

where Rules is the set of rules that cover the example to be classified.
If we again consider the example shown in figure 1 we get:

P(+|R1 A Rz A R3) = P(+) * P(Ry|+) * P(R2|+) * P(R3|+) =
40/80 % 12/40 x 14/40 x 6/40 = 0.0079

P(—|R1 /\R2 /\R3) = P(—) *P(R1|—) * P(R2|—) * P(R3|—) -
40/80 * 3/40 * 3/40 % 27/40 = 0.0019



This means that naive Bayes classification results in that the example with
unknown class label is classified as belonging to the positive (+) class.

2.3 Intersection-based classification

The idea behind intersection-based classification is that if we are given some
training examples in the intersecting region of the overlapping rules, this infor-
mation should be used for the classification together with Bayes rule. In other
words, it should be checked whether it is possible to be less naive than naive
Bayes. In case there are some training examples that are covered by all rules
that cover the example to be classified, Bayes rule can be used directly without
having to assume independence of all rules. That is, from Bayes’ rule:

P(E|H)
PH|E)=PH)———+
(HIE) = PUH)
we obtain the following expression for the maximum a posteriori probable hy-
pothesis:
harap = argmazcigss; eclasses P(Class;) P(Ruley A Rules A ... A Ruley|Class;)

If we again look at figure 1, intersection-based classification would assign
the negative (-) class to the unknown example, since there exists a negative (-)
example in the intersection between rule Ry A Ry A R3 and the apriori is 40/80.
This gives the negative class a value of 40/80 % (14 1)/(40+ 2) = 2.4e — 2 using
Laplace correction (i.e., it is assumed that there is one additional example for
each class that is covered by all rules), while the positive class gets a value of
40/80%1/(40+2) =1.2e — 2.

However, if there are no training examples at all in the intersection, we can
check whether a small number of (non-empty) intersecting regions can be formed.

Assume that there is no negative (-) training example in the intersection of
Ry N Ry N R3 in figure 1. The smallest number of elements in a partition of
this set, such that the intersecting region of each element (subset) covers a non-
empty set of training examples, is two. There are three possible partitions of this
size, such that each intersection covers a non-empty sets of training examples:

[[1],2,3]1,[2],[1,3]] and [[3],[1,2]].
The probability values for partition one are:
Pos = 40/80 % (12 + 1) /(40 + 2) % (2 + 1) /(40 + 2) = 0.0111
Neg = 40/80 % (3 + 1)/(40 + 2) * (2 + 1)/(40 + 2) = 0.0034

The probability values for partition two is:



Pos =40/80 % (14 +1)/(40 + 2) = (1 + 1) /(40 + 2) = 0.0085

Neg =40/80« (34 1)/(40 4+ 2) = (2+ 1)/(40 4+ 2) = 0.0034

The probability values for partition three is:

Pos =40/80x% (6 +1)/(40 +2) x (0 + 1)/(40 + 2) = 0.0020

Neg =40/80* (27 +1)/(40 +2) * (24 1)/(40 + 2) = 0.0238

The highest probability value is obtained for the negative class (-), which is

the class that will be assigned to the example by the intersection-based classifi-
cation method.

3 Algorithm for Intersection-based Classification

In this section we first give pseudo-code for the intersection-based classification
algorithm, and then explain some parts of the algorithm in more detail.

Table 1. Pseudo-code for the Intersection-based Classification Algorithm.

IntersectionBasedClassification(Rules,Classes)
begin {
BestClassFreq := 0
ClassFreq := 1
NoElements := 0

repeat
NoElements := NoElements + 1
NewPartitions := make_part (NoElements,Rules)

until not_empty(NewPartitions)
for each Partition in NewPartitions do {
for each Class in Classes do {
for each Part in Partition do
ClassFreq := ClassFreq * covers(Part,Class)
ClassFreq := apriori(Class) * ClassFreq
if ClassFreq > BestClassFreq then {
BestClass := Class
BestClassFreq := ClassFreq
}
}
}

return BestClass



The intersection based classification algorithm takes as input the rules that are
applicable to the example to be classified as well as the classes in the current
domain.

The make_part function takes two arguments: the first argument tells how
many elements the make_part function should generate in the partition of the ap-
plicable rules (which are given as the second argument). The make_part function
is called in an iterative deepening fashion starting with the number of elements
set to one.

The function not_empty goes through the partitions made and returns true
if there is some partition for which the intersection of the rules in each subset is
non-empty (i.e., contains at least one training example).

The algorithm finally computes the class probability for all generated parti-
tions and returns the class label with maximum probability.

It should be noted that the algorithm may degrade to become identical to
naive Bayes, in case none of the rules overlap on the training examples. In that
case, all elements in the generated partition will consist of single rules.

4 Empirical evaluation

Intersection-based classification has been implemented in the system Virtual
Predict [1], which is a platform for experimenting with various rule induction
techniques, e.g., both separate-and-conquer and divide-and-conquer may be em-
ployed, and both ordered and unordered rule sets may be generated. The novel
method is compared to naive Bayes and union-based classification. We first
present, the parameter settings that were used in Virtual Predict and describe
the data sets that were used in the evaluation, and then give the experimental
results.

4.1 Experimental setting

Table 2. Virtual Predict settings used in the experiment

Parameter Value
Strategy Separate and Conquer (SAC)
Probability estimate M estimate, with M = 2
Structure cost 0.5
Measure Information gain
Incremental reduced error pruning Most Compressive
Experiment type 10 fold cross validation

There are several parameters that can be adjusted in Virtual Predict. The
settings used in our experiments are shown in Table 2, and they all determine



how rules are induced. All data sets used were taken from the UCI Machine
Learning Repository except the King-Rook-King-Illegal (KRKI) database which
comes from the Machine Learning group at the University of York. In Table 3 the
domains used in the experiment is shown, as well as their main characteristics.
The datasets were choosen to be as diverse as possible with respect to both size
and difficulty.

Table 3. The domains used in the experiment

Domain Classes Class distribution Examples
Shuttle Landing Control| 2 47.8, 52.2 278
Car Evaluation 4 4, 4,22, 70 1728
Balance Scale 3 8, 46, 46 625
Dermatology 6 5.5, 13.3, 14.2, 16.7, 19.7, 30.6 366
The Glass 2 24.1, 75.9 112
Congressional Votes 2 45.2, 54.8 435
KRKI 2 34, 66 1000
Liver-disorders 2 42, 58 345
Ionosphere 2 36, 64 351
Breast Cancer 2 29.7, 70.3 286
Lymphography 4 1.4, 2.7, 41.2, 54.7 148

4.2 Experimental results

The results from the eleven domains are shown in Table 4, where the result for
each domain has been obtained by ten-fold cross-validation. Exactly the same
folds and generated rules are used by the three classification methods. The last
column shows the percentage of all predictions for which at least two conflict-
ing rules overlap on training data (this gives an upper bound on the amount of
examples for which Intersection-based classification may perform in a less naive
way than naive Bayes). The p-values according to an exact version of McNe-
mar’s test for obtaining the observed difference between the novel method and
the two others are given in the columns after their accuracies. It can be seen that
Intersection-based classification outperforms both Union-based and naive Bayes
classification in all eleven domains. Even when considering only statistically sig-
nificant differences (p < 0.05), intersection-based classification is more accurate
in seven out of seven domains. The probability of obtaining this difference (7
wins and 0 losses), given that two methods are equally good, is 0.0078 according
to a sign test. This means that the null hypothesis (no improvement is obtained
with the new method) can be rejected at a 0.05 significance level.



Table 4. Intersecting rules compared with naive Bayes and Intersecting rules compared
with Union based classification

Data Set  |Inter.|naive B.| Sign. (Union-b.| Sign. |No. Conf.|Prediction
Shuttle 99.64| 98.20 0.125 98.56 0.250 1.0 3.6 %
Car 93.75| 93.17 |4.139e-002| 93.23 |3.515e-002| 25.1 14.5 %
Balance Scale |{90.88| 84.64 |2.706e-007| 86.08 |5.704e-005| 22.0 35.2 %
Dermatology |96.08| 94.12 [1.563e-002| 93.28 |1.953e-003 5.6 15.7 %

The Glass |94.64| 92.86 0.500 92.86 0.500 0.6 5.4 %
C. Votes 96.78| 95.40 7.031e-002| 95.86 0.388 7.1 16.3 %
KRKI 99.50| 99.20 0.375 95.80 |1.455e-010 8.8 8.6 %

Liver-disorders|77.68| 69.57 |4.056e-005| 68.99 |1.522e-005| 14.8 429 %

Tonosphere [92.02| 89.46 |2.246e-002| 89.17 |(3.088e-002 4.7 13.4 %
Breast Cancer [77.62| 71.68 [4.883e-004| 72.73 |[5.188e-004 6.1 21.3 %
Lymphography|84.46| 77.03 |7.385e-003| 81.08 0.180 5.7 385 %

5 Discussion

Previous approaches to the problem of classifying examples using conflicting
rules calculate class probabilities based on the union of examples covered by
the overlapping rules (union-based classification) or assumes rule independence
(naive Bayes classification). We have demonstrated that a significant improve-
ment in accuracy can be obtained if class probabilities are calculated based on
the intersection of the overlapping rules, or in case of an empty intersection,
based on as few intersecting regions as possible.

Union-based classification just sums all the covered classes and returns the
class with the highest frequency. Note that this means that this strategy weights
the examples in the intersection as more important than the rest of the examples.
This follows from that the examples in the intersection are counted as many times
as the number of conflicting rules. Naive Bayes does also weight the examples
in the intersection in a similar fashion. Intersection-based classification take this
notion to it’s extreme and considers examples in the intersection only (if there
are any, otherwise it tries to find a partition of the rules in conflict with as
few elements as possible, where the intersection of each element covers some
examples). The experiment supports the hypothesis that the most important
information actually resides in the intersection of the rules.

The number of possible partitions to consider in the worst-case grows ex-
ponentially with the number of rules. Hence, using this method together with
very large rule sets (e.g., as generated by ensemble learning techniques such as
bagging or randomization), calls for more efficient (greedy) methods for par-
titioning the set of conflicting rules. However, in the current experiment the
partitioning did not occur to a large extent, and the maximum number of rules
that were applicable to any example was not very high (less than ten), keeping
the computational cost at a reasonable level.
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