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Abstract. Gene expression array technology has rapidly become a standard tool 
for biologists. Its use within areas such as diagnostics, toxicology, and genetics, 
calls for good methods for finding patterns and prediction models from the 
generated data. Rule induction is one promising candidate method due to 
several attractive properties such as high level of expressiveness and 
interpretability. In this work we investigate the use of rule induction methods 
for mining gene expression patterns from various cancer types. Three different 
rule induction methods are evaluated on two public tumor tissue data sets. The 
methods are shown to obtain as good prediction accuracy as the best current 
methods, at the same time allowing for straightforward interpretation of the 
prediction models. These models typically consist of small sets of simple rules, 
which associate a few genes and expression levels with specific types of cancer. 
We also show that information gain is a useful measure for ranked feature 
selection in this domain.  

1   Introduction 

Gene expression array technology has become a standard tool for studying patterns 
and dynamics of the genetic mechanisms of living cells. Many recent studies have 
highlighted its usefulness for studying cancer [1], [2], [3]. Gene expression profiling 
does not only provide an attractive alternative to current standard techniques such as 
histology, genotyping, and immunostaining for tumor classification, but also valuable 
insights into the molecular characteristics of specific cancer types. In clinical settings, 
diagnosis is of great importance for the treatment of cancer patients since the 
responsiveness for various drugs and prognostic outcome can vary between subtypes 
of cancers. Correct tumor classification will ideally optimize treatment, save time and 
resources, and avoid unnecessary clinical side effects. 

To date, a number of methods have been applied to the problem of learning 
computers to classify cancer types based on gene expression measurements from 
microarrays. Alon et al used clustering as a means for classification in their original 
analysis of the colon cancer data set [2]. Subsequently, methods such as Support 



 

 

Vector Machines (SVMs) [4], [5], Naïve Bayesian Classification [6], Artificial Neural 
Networks (ANNs) [3], and decision trees [7] have been employed to address this task. 
Some of these studies indicate that besides creating accurate prediction models, an 
important goal is to find valuable information about the system components that are 
being used as input to these models. 

Previous studies have shown that classification accuracy can be improved by 
reducing the number of features used as input to the machine learning method [3], [1]. 
The reason for this is most likely that the high level of correlation between the 
expression levels of many genes in the cell makes much of the information from one 
microarray redundant. The relevance of good feature ranking methods in this domain 
has also been discussed by Guyon and colleagues [8]. 

Rule induction methods have been studied for more than two decades within the 
field of machine learning. They include various techniques such as divide-and-
conquer (recursive partitioning), that generates hierarchically organized rules 
(decision trees) [9], and separate-and-conquer (covering) that generates overlapping 
rules. These may either be treated as ordered (decision lists) [10] or unordered rule 
sets [11]. Common for all these methods is that they are very attractive with regard to 
the analysis of input feature importance. Since the rule induction process in itself takes 
redundancy of input parameters into account, and that the process will seek to use the 
most significant features first, superfluous features are commonly left outside the 
prediction model. In this study we investigate three different rule induction methods 
for classifying cancer types based on gene expression measurements from 
microarrays, together with a simple method for feature selection based on information 
gain ranking. 

Two public datasets are used in this study. The first data set is the colon cancer 
study published by Alon and co-workers [2]. Here the task is to separate between 
tumor tissue and normal colon tissue (a two class problem). This data set has been 
extensively studied by others [2], [4], [5], [6]. The prediction task for the second data 
set [3] is to discriminate between four types of small round blue cell tumors 
(SRBCTs): neuroblastoma (NB), rhabdomyosarcoma (RMS), Burkitt’s lymphoma 
(BL), and the Ewing family of tumors (EWS).  

 

2   Learning Algorithms 

The rule induction system used in this study, Virtual Predict 1.0 [12], extends several 
rule induction algorithms developed in Spectre 3.0 [13]. The three methods that are 
used in the experiments are briefly described below. All three methods use a technique 
for discretizing numerical features during the induction process based on finding split 
points that separate examples belonging to different classes [14]. The technique is 
further optimized with respect to efficiency by using a sampling scheme that randomly 
selects 10% of the possible split points for each feature. All methods use the m-
estimate [15], with m set to 2, for calculating class probabilities. 



 

 

2.1   Divide-and-Conquer Using the Minimum Description Length Principle 
(DAC-MDL) 

Divide-and-conquer (DAC), also known as recursive partitioning, is a technique that 
generates hierarchically organized rule sets (decision trees). In this work, DAC is 
combined with the information gain criterion [9] for selecting branching features. 
Furthermore, the minimum description length (MDL) criterion [16], modified to 
handle numerical attributes effectively, is used to avoid over-fitting. This method, 
referred to as DAC MDL, is preferred instead of splitting the training data into one 
grow and one prune set. Splitting into grow and prune set for this data is more likely 
to result in highly variable rule sets due to the limited size of the data sets. 

2.2   Boosting Decision Trees (Boosting 50) 

Boosting is an ensemble learning method that uses a weight distribution over the 
training examples and iteratively re-adjusts the distribution after having generated 
each component classifier in the ensemble. This is done in a way so that the learning 
algorithm focuses on those examples that are classified incorrectly by the current 
ensemble. New examples are classified according to a weighted vote of the classifiers 
in the ensemble [17]. The base learning method used in this study is divide-and-
conquer using information gain together with a randomly selected prune set 
corresponding to 33% of the total weight. The number of trees in the ensemble is set 
to 50. Thus, the method generates an ensemble consisting of 50 individual base 
classifiers. 

2.3   Separate-and-Conquer for Unordered Rule Sets (Unordered SAC) 

Finally, a method that employs a totally different search strategy is compared to the 
previous methods, namely separate-and-conquer (SAC), also known as covering. SAC 
iteratively finds one rule that covers a subset of the data instead of recursively 
partitioning the entire data set, cf., [18]. The examples covered by this rule are then 
subtracted from the entire data set. This strategy is combined with incremental 
reduced error pruning [19], where each clause immediately after its generation is 
pruned back to the best ancestor. The criterion for choosing the best ancestor is to 
select the most compressive rule using an MDL coding scheme similar to the one in 
[16] but adapted to the single-rule case. The method generates an unordered set of 
rules, in contrast to generating a decision list [10]. This means that rules are generated 
independently for each class, and any conflicts due to overlapping rules are resolved 
during classification by using the naïve Bayes’ inference rule (i.e., calculating class 
probabilities while assuming independent rule coverage). 



 

 

2.4   Feature Selection Using Information Gain 

Since the number of features in the two data sets in the current study is more than 
25 times the number of data points, some dimensionality reduction scheme may prove 
useful for obtaining accurate models, in particular for the methods that generate single 
models. Although the use of the minimum description length criterion has shown to be 
quite effective for generating models that are tolerant against noise and random 
correlations, a large number of irrelevant and redundant variables may cause the rules 
to be over-pruned due to the additional cost of investigating these superfluous 
variables. Commonly used dimensionality reduction methods include principal 
component analysis, multi-dimensional scaling, and feature selection. Since the two 
former classes of methods do not necessarily lead to dimensions that are suited for 
discriminating examples belonging to different classes, a feature selection method 
based on the discriminative power (as measured by information gain) is preferred. 
This method has the additional benefit of allowing for direct interpretation of the 
generated rules (i.e., there is no need for transforming the rules back to the original 
feature space). The following formula, which is a Laplace corrected version of the 
formula in [9], is used to measure the information content for a numeric feature f and 
threshold value t: 
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where n is the number of classes, li is the number of examples of class i in the first 
subset (i.e., examples with a value on f that is less than or equal to t), l is the total 
number of examples in the first subset, ri denotes the number of examples of class i in 
the second subset (i.e., examples with a value on f that is greater than t), and r is the 
total number of examples in the second subset. It should be noted that the above 
formula is restricted to evaluating binary splits (i.e., two elements in the partition), 
which is sufficient when dealing with numeric features that are divided into two 
intervals. For each numeric feature, all split points obtained from the examples were 
evaluated, and the k most informative features (i.e., those resulting in the subsets with 
least information content) were kept, for some given k. 

Other feature selection methods could be used as well, but the above was chosen 
because of its simplicity and expected suitability. 

 



 

 

3   Experimental Evaluation 

3.1   Colon Cancer Data Set 

For a set of 62 samples, 40 tumor samples and 22 normal colon tissue samples, the 
gene expression levels of 6500 genes were measured using Affymetrix oligonucleotide 
arrays [2]. Of these genes, the 2000 with the highest minimal intensity were selected 
by the authors for further analysis. The raw data was normalized for global variance 
between arrays by dividing the intensities of all genes by the average intensity of the 
array and multiplying by 50.  
 
Feature selection.  This is a two-class dataset, for which feature selection was done in 
one iteration. In this case, the 128 most highly ranked genes according to the 
information gain measure were selected for further analysis. 

 
Classification results.  Leave-one-out cross-validation was performed (Figure 1a) with 
the 2, 4, 8, 16, 32, 64, and 128 most highly ranked features. A few points can be made 
of the results of this analysis. The ensemble method Boosting 50, gave the best 
prediction accuracy using all 128 features, resulting in 7 misclassified examples. This 
accuracy does not significantly differ from other results reported for this data set. 
SVMs gave 6 errors [5], clustering gave 7 errors [2], [4], and Naïve Bayes 
classification gave 9 errors [6]. It is interesting to note that the boosting method works 
significantly better when applied to decision trees than decision stumps (i.e., one-level 
decision trees); 89% accuracy in our case vs. 73% for stumps, as evaluated by Ben-
Dor and co-workers [4]. Zhang and co-workers report classification accuracy above 
90% using a decision tree induction method similar to ours [7]. However, their 
analysis can be discussed from a methodological point of view, since the tree structure 
was induced using the entire data set, and the split-point values were the only 
parameters that were changed during the five-fold cross-validation for which this 
result was reported. This method thus takes advantage from a significant amount of 
information from the data it is going to be evaluated on, which is likely to result in an 
over-optimistic estimate. 

Interestingly, the largest number of features resulted in best prediction accuracy for 
the ensemble method (Boosting 50). Figure 1a highlights a trend towards better 
classification with fewer attributes for the simple methods, and the opposite trend for 
the ensemble method, which is known to be more robust with respect to handling 
variance due to small sample sizes in relation to the number of features. 

3.2   Small Round Blue Cell Tumor (SRBCT) Data Set 

The expression levels for 6567 genes in 88 samples of both tissue biopsies and cell 
lines were measured using cDNA microarrays and 2308 of those genes were selected 
by a filtering step and divided into one training set (63 samples) and one test set (25 



 

 

samples) [3]. Class labels were assigned by histological analysis. We have used the 
same division into test and training as in the original work. In the entire dataset, 29 
examples were from the Ewing family of tumors (EWS) (of which 6 were test 
examples), 11 were Burkitt’s lymphoma (BL) (3 test examples), 18 were 
neuroblastoma (NB) (6 test examples), and 25 were rhabdomyosarcoma (RMS) (5 test 
examples). The test set also included five non-tumor samples.  

 
Feature selection.  In order to select the best candidate features (genes) for this 
dataset, the information gain for each feature was calculated with respect to its 
usefulness for separating each of the four classes from the other three. The 32 top 
ranking features for each class were then selected, resulting in 125 unique genes out of 
a total of 128 selected (three genes occurred twice). 
 
Classification results.  The best classifier generated from the training set, Boosting 50, 
perfectly separates the 20 cancer samples in the test set. This separation is obtained 
using only the four attributes corresponding to the top ranked feature for each class. 
The same result is obtained for twelve and all selected features as well. Using the 96 
features selected by Khan and co-workers [3], 100 % accuracy is obtained as well. 
One difference between our results and the ANN approach of Khan et al is the relative 
simplicity of the model generated here. The rule based prediction models that produce 
100 % accuracy on test examples are typically based on about 200 rules, regardless of 
the number of features used. This means that every decision tree in the ensemble is on 
average composed of four rules, and that the entire classifier can be manually 
inspected (although with some difficulty). This can be compared to the 3750 ANN 
models created by Khan and colleagues. The other two methods performed slightly 
worse. At their best, Unordered SAC misclassified two test examples (for 32 features), 
while DAC MDL misclassified three test examples (also for 32 features). On the other 
hand, they generated significantly smaller models, consisting of five rules each. 

We also performed leave-one-out cross validation of the entire dataset (both 
training and test examples) using the 4, 8, 16, 32, 64, and 128 most highly ranked 
features. The top n/4 ranked features for each class were selected in every round, 
where n is the total number of features selected. Error free classification was obtained 
for Boosting 50 when all the 128 features were selected, while one example was 
misclassified for 16, 32, and 64 features resulting in 99% accuracy (Figure 1b). 

The trend of obtaining better classification with fewer attributes for the simple 
methods, and the opposite trend for the ensemble method that we noticed in the other 
experiment, can be observed also here, although this data set has four classes instead, 
where each class has its own ranked set of features.   
 

3.3   Inspecting the Rules 

In the previous section it was shown that the employed rule induction methods are 
useful for constructing accurate prediction models. In addition to this, rules can also 
give valuable insights into the studied systems. As an illustration, seven easily 



 

 

interpretable rules are found when applying the unordered SAC method using the 16 
highest-ranking features on the entire SRBCT data set (Table 1). 

 
 

 

Table 1: Rules discovered by unordered SAC for SRBCT data set 
  Coverage of examples 
Class Rule EWS BL NB RMS 
EWS FVT1 > 1.35535 27 0 0 1 
EWS Caveolin 1 > 1.59365 26 0 0 1 
BL WASP > 0.61645 0 11 0 0 
NB AF1Q > 2.1795 0 0 17 0 
NB CSDA <= 0.69175 0 0 13 0 
RMS SGCA > 0.4218 0 1 0 24 
RMS IGF2 > 13.5508 0 0 0 4 

Fig. 1. Results from leave-one-out cross validation both data sets using DAC MDL, 
Unordered SAC, and Boosting 50. a) Results from the COLON data set using 2, 4, 8, 16, 32, 
64, and 128 features. b) Results from the SRBCT data set using 4, 8, 16, 32, 64, and 128 
features.  
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Fig. 2. Graphical representation of the seven rules discovered for the SRBCT data set. 
The lines mark thresholds for the expression levels of discovered genes. a) The two 
rules that sepa-rate EWS from all other cancer types. b) BL is perfectly separated from 
all other examples by one gene. c) NB is distinguished by high expression of AF1Q and 
low expression of CSDA. d) RMS is separated by high expression of sarcoglycan alpha 
and IGF2. 
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The rules discovered for EWS involve two genes: Caveolin 1 and follicular lymphoma 
variant translocation 1 (FVT1). Caveolin 1 encodes a protein that is known to play an 
important role in signal transduction and lipid transport. It has been associated with 
prostate cancer [20] and adenocarcinoma of the colon [21].  FVT1 has been proposed 
to be associated with follicular lymphoma by its close localization with Bcl-2 [22]. 
The single rule for Burkitt’s lymphoma (BL) shows how this cancer type can be 
singled out based on a high expression level for the gene encoding the Wiskott-
Aldrich syndrome protein (WASP) only. Likewise, neuroblastoma (NB) is separated 
from all the other tumor types by two independent rules involving the expression 
levels of the genes for AF1Q and cold shock domain protein A (CSDA). Specific 
expression of a fusion between the AF1Q gene and the mixed lineage leukemia (MLL) 
gene has been associated with leukemia [23], and this finding suggests an involvement 
in NB, possibly indicating that the fusion is present in NB as well. CSDA is a 
transcriptional regulator involved in stress response, and is believed to act as a 
repressor of human granulocyte-macrophage colony stimulating factor (GM-CSF) 
transcription [24]. Its down regulation may indicate an involvement in tumorogenesis 
in NB. Finally, RMS is separated from the other tumor types by the specific 
expression of sarcoglycan alpha (SGCA), a muscle specific protein associated with 
muscular dystrophy [25]. High expression of this gene is probably more indicative of 
the tissue origin of this tumor type than related to the molecular background of RMS. 
The second rule for RMS involves insulin-like growth factor II (IGF2), which is an 
already known oncogene associated with this cancer type [26]. Figure 2 shows a 
graphic representation of the coverage of all the rules. 

4   Concluding Remarks 

We have shown that rule induction methods are strong candidates for microarray 
analysis. One attractive property of this class of methods is that they do not only 
generate accurate prediction models, but also allow for straightforward interpretation 
of the reasons for the particular classification they make. Rule induction represents a 
whole class of methods, of which decision trees is perhaps the best known, but not 
necessarily the best-suited method for this particular type of task, as demonstrated in 
this study. Common for this class of methods is that they allow for a trade off between 
increased accuracy versus low complexity (i.e. high interpretability) of generated 
models. We have evaluated three of these methods, DAC-MDL, SAC, and Boosting 
for two different tumor tissue classification tasks. The classification accuracy was 
shown to be on level with the best current methods while exhibiting a much higher 
level of interpretability. Moreover, as opposed to many other methods employed for 
microarray data classification, rule induction methods can be applied in a 
straightforward manner to multi-class problems, such as the SRBCT data set. 

From a histological point of view, the four tumor types represented in the SRBCT 
data set are rather similar. However, we found that the four classes can be 
distinguished quite easily due to a number of more or less obvious differences in their 



 

 

respective expression patterns. From a molecular genetics point of view, the cancer 
types are thus rather disparate. The extensive literature regarding cancer-associated 
genes has allowed us to verify relatedness between genes and cancer described by a 
small set of rules. 

Inspection of classification rules derived from numerical attributes typically gives 
the impression of the rules being very specific. However, since most rule sets 
generated only employ one split point for every gene used, the rules can easily be 
translated into qualitative conditions, i.e. whether a particular gene is relatively up- or 
down- regulated, when distinguishing between different classes, such as tumor types. 

One major goal of gene expression array analysis is to discover new and interesting 
pathways describing causal dependencies underlying characteristic cellular behavior. 
We believe that the methods described in this paper are useful tools can contribute to 
a complete understanding of these pathways. We also believe that this approach can 
be applicable to neighbouring areas of gene expression array classification where 
phenotypes are to be correlated with global gene expression patterns. 
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