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Abstract. This paper investigates different ways of combining feature selection with
bagging and rule extraction in predictive modeling. Experiments on a large number of
data sets from the medicinal chemistry domain, using standard algorithms implemented
in the Weka data mining workbench, show that feature selection can lead to significantly
improved predictive performance. When combining feature selection with bagging, em-
ploying the feature selection on each bootstrap obtains the best result. When using deci-
sion trees for rule extraction, the effect of feature selection can actually be detrimental,
unless the transductive approach oracle coaching is also used. However, employing or-
acle coaching will lead to significantly improved performance, and the best results are
obtained when performing feature selection before training the opaque model. The over-
all conclusion is that it can make a substantial difference for the predictive performance
exactly how feature selection is used in conjunction with other techniques.
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1 Introduction

When performing predictive modeling, feature selection is used for two main reasons.
First of all, high dimensionality data sets rule out some techniques, simply because of
the computational cost. Second, irrelevant attributes are detrimental for most machine
learning algorithms, making feature selection a standard preprocessing technique, often
used to increase predictive performance.
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For some machine learning techniques, typically where several models are built ei-
ther in sequence or in parallel, the feature selection could, however, be applied at dif-
ferent stages. With this in mind, it is interesting to investigate, if, when and how feature
selection should be applied to the two common data mining techniques bagging and
rule extraction.

The simplest way to select a subset of features is to use variable ranking on the input
features, typically based on correlation with the target attribute, error rate or some in-
formation theoretic measure. However, since variable ranking methods do not consider
dependencies between features, they are unable to find features that are of limited or
no use by themselves, but useful together with other features. Some good examples of
this phenomenon are presented in [8]. A more sophisticated, but more computationally
intensive, approach is to search for subsets containing features that work well together.
Exhaustive search is obviously infeasible for all but very small feature sets, so some
search strategy capable of finding optimal, or near optimal, feature sets with reason-
able computational effort is needed. Typical search strategies include forward selection,
backward elimination, bidirectional search, best-first and beam search.

Feature selection methods are generally divided into three main approaches: wrap-
per, filter and embedded methods. Wrapper methods [11] take into account the specific
machine learning algorithm to be applied for prediction and use this algorithm to evalu-
ate the performance of candidate subsets. The machine learning algorithm is treated as
a black box by the feature selection process, making this approach extremely versatile
since, in principle, any feature subset selection method can be combined with any ma-
chine learning algorithm. The drawback is having to build a complete predictive model
to evaluate each candidate subset considered during the feature selection process, which
is not always computationally feasible. In contrast, the main idea in filter methods is to
disconnect the feature selection process from the machine learning algorithm used for
the actual prediction, which means that a subset of features is selected without evaluat-
ing the performance of that subset on the algorithm later being used for classification.
Variable ranking is thus a filter method. Some of the advantages of filter methods for
subset selection mentioned in [8] are that they are faster than wrapper methods and
that they yield feature sets which are useful for prediction in some general sense, rather
than being tailored to a particular algorithm or learning scheme. In embedded methods,
finally, the actual feature selection is performed by the machine learning algorithm dur-
ing model construction. The typical example here is a decision tree algorithm choosing
different split attributes. It should, however, be noted that such methods may still benefit
from first applying some of the other techniques.

Ensembles is a standard technique for increasing performance in predictive model-
ing. The core idea behind ensembles is that the combined predictions from a collection
of base classifiers will have better performance than a single classifier. For this to work,
the base classifiers need to be individually accurate but also diverse, which means that
they commit their errors on different instances, preferably independently of each other
[12]. One way of producing diversity in an ensemble is to train each base classifier on
only a subset of the instances. In the standard technique bagging [2], each subset, called
a bootstrap or bag, is of the same size as the original data set and is created by drawing
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from a uniform distribution with replacement, resulting in approximately 63% of all
instances being present in each base classifier’s particular training set.

Rule extraction is the process of generating a transparent model based on a corre-
sponding opaque predictive model. Rule extraction has been heavily investigated in the
neural network domain, and the techniques have been applied mainly to ANN models;
for an introduction and a good survey of traditional methods, see [1]. When performing
black-box rule extraction, the core idea is to view rule extraction as a learning task,
where the target concept is the function originally learnt by the opaque model. One typ-
ical and well-known black-box rule extraction algorithm is TREPAN [5]. Naturally, the
predictions from extracted models must be close to predictions from the opaque mod-
els. This criterion, called fidelity, is therefore a key part of the optimization function
in most rule extracting algorithms. Most, if not all, rule extraction algorithms targeting
fidelity use 0/1 fidelity, i.e., maximize the number of identical classifications. One moti-
vation for that rule extraction may produce more accurate models than models induced
directly from the data set is that a highly accurate opaque model often is a more useful
representation of the data than the data set itself; i.e., the opaque model will act as a
filter and smoothen irregularities caused by a few atypical instances.

But, the opaque model could also be used to generate predictions for novel instances
with unknown target values, as they become available. Naturally, these newly labeled
instances could then be used by the rule extraction algorithm. Despite this, all rule
extraction algorithms that we are aware of use only training data (possibly with the
addition of artificially generated instances) when extracting the transparent model. We
have previously argued that it could be advantageous for a data miner to use test data
input vectors together with predictions from the opaque model when performing rule
extraction [10]. In this situation, the highly accurate opaque model, called the oracle
since the target values it produces are treated as ground truth by the training regime of
the transparent model, will coach the weaker transparent model. More specifically, the
transparent model is built using a combination of standard, labeled, training data and
oracle data; i.e., test data inputs together with predictions from the opaque model.

Using a coaching oracle is somewhat similar to semi-supervised self training, but
there are two main differences: First we use one (stronger) classifier to label the in-
stances, and another (weaker but transparent) classifier for the final model. Second,
since the purpose is increased accuracy on a specific test set, we explicitly utilize the
fact that we have the corresponding test input vectors available. Obviously, transductive
learning also utilizes both labeled and unlabeled data, and the overall purpose is similar
to oracle coaching; i.e., to obtain high accuracy on specific (test) instances; see e.g. [9].
But the main difference is that we explicitly focus on situations where the final model
must be transparent, leading to the process described above where a stronger opaque
model coaches a weaker transparent model.

Finally, it should be noted that since the test instances labeled by the oracle and then
used for inducing the transparent model are the very same instances that later will be
used for the actual prediction, the use of oracle data requires a sufficiently sized test set.
This method is thus suitable in the very common situation where the predictive model
is built for a specific situation, and the input vectors for the actual test data are avail-
able already when inducing the model. Clearly, this description matches the situation
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targeted in this paper where a computational chemist wants to predict biological activity
for a specific set of molecules (compounds).

The main purpose of this paper is to investigate how feature selection can be used
together with the two standard techniques bagging and rule extraction (possibly also
utilizing oracle data in the rule extraction process), to increase predictive accuracy for
opaque and transparent models, respectively.

2 Method

The data sets used are from the domain of medicinal chemistry and consist of 8 different
sets of compounds, from the study of Bruce et al. [4], originally used by Sutherland
[15]. In the study by Bruce et al., the two attribute sets 2.5D and Frags. were used;
here a further 4 attribute sets are available, thus bringing the total number of data sets
to 48 (8 sets of compounds, with 6 different attribute sets). Of the six different attribute
sets, three describe physical-chemical properties of the compounds and the other three
molecular fingerprints. The physical-chemical attributes sets are 2.5D, oeSelma, and
AZ Desc., while the fingerprint attribute sets are Frags., sign12, and ecfi 1024. The
characteristics for each combination of compound set and attribute set are summarized
in Table 1 below, where Inst. means number of instances (compounds) in each data set.

The motivation for the use of these data sets is that they represent data mining tasks
in which, on the one hand, high predictive accuracy is essential and, on the other hand,
a comprehensible model is sometimes needed, since relationships found are of interest
to domain experts and can also be used to guide further search for promising molecules.
All data sets concern biological activity for inhibitor compounds. The continuous nu-
merical values for activity (pIC50 for the first five data sets and pKi for the last three)
in the study by Sutherland et al. were transformed by Bruce et al. into two categorical
classes (active and inactive), using the median activity value as a threshold between the
two classes to create a 50/50 split of active/inactive observations, since each data set
showed a uniform distribution of activity values.

Table 1. Data set characteristics

Number of attributes

Name Meaning Inst. 2.5D oeSelma
AZ

Desc.
Frags. sign12

ecfi
1024

ACE
angiotensin converting
enzyme

114 56 93 196 1024 1024 332

AchE acetylcholinesterase 111 63 93 196 774 1024 211

BZR
benzodiazepine receptor
ligands

163 75 93 196 832 1024 450

COX2 cyclooxygenase-2 332 74 93 196 660 1024 573
DHFR dihydrofolate reductase 397 70 93 196 951 1024 487
GPB glycogen phosphorylase b 66 70 93 196 692 1024 239
THER thermolysin 76 64 93 196 575 1024 251
THR thrombin 88 66 93 196 527 1024 220
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2.1 Experiments

For simplicity, and to allow easy replication of the experiments, the Weka [16] data
mining workbench was used for the two experiments. In the first experiment, feature
selection is combined with bagging and in the second experiment, the use of feature se-
lection together with rule extraction is investigated. The choice of techniques evaluated
is motivated by the domain’s need for both high predictive accuracy and comprehen-
sible models to explain relationships. It was deemed that the only feasible approach
was to use a filter feature selection method, both considering computational cost and
the fact that different types of predictive models would be generated. In Weka, one
filter method is implemented as the AttributeSelectedClassifier. To evaluate candidate
feature sets, the AttributeSelectedClassifier used CfsSubsetEval, which favors subsets
of features with low intercorrelation, but high correlation with the target variable. The
search strategy employed was best-first forward selection.

In the second experiment, an ensemble of bagged RBF networks was used as the
opaque model. The transparent model was generated by using rule extraction from these
ensembles to obtain decision trees. To enable evaluation of the effect of using feature
selection, the ensemble models also have to be built without feature selection, i.e., for
data sets with up to 1024 attributes. Using RBF networks as base classifiers was judged
to be a reasonable compromise between performance and computational cost for this
kind of data set. For all inbuilt Weka algorithms, the settings were left at the default val-
ues. Finally, since the data sets contain relatively few instances, all experiments were
conducted using 10x4-fold cross-validation. Experiment 1 used the following three
setups:

1) standard bagging in Weka of 30 RBF networks (Bag)
2) feature selection employed as a filter for bagging 30 RBF networks, i.e., in Weka

terms, an AttributeSelectedClassifier using bagging as classifier, (FS-Bag)
3) feature selection employed as a filter for each bag, i.e., bagging 30 AttributeSelect-

edClassifier RBF networks (Bag-FS)

For the rule extraction experiment, we decided to use the readily available J48, which
is the Weka implementation of the standard decision tree algorithm C4.5 [14] as rule
extractor, instead of a specialized rule extraction algorithm. Naturally, feature selection
can be performed either before the opaque model is trained (the rule extractor uses the
same reduced feature set as the opaque model) or after the opaque model is trained,
i.e., the feature set is reduced based on the predictions from the opaque model. It must
be noted that both these feature reductions are based on training data only. If, however,
oracle data is used, the feature selection algorithm can also utilize the test set instances
together with the predictions from the oracle. More specifically, the setups utilizing
oracle data used the oracle (here an ensemble consisting of 30 bagged RBFs) to label
the test data, and then used this test data together with the standard training data for
both the feature selection and the actual tree induction. In Experiment 2, a total of eight
setups were compared, three of which used oracle data. The setups were:
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1) standard J48 decision trees induced directly from the data set; this represents a base-
line comparison against a simple transparent model (J48)

2) feature selection employed as a filter for J48 decision trees, i.e., an AttributeSelect-
edClassifier using J48 as the classifier (FS-J48)

3) J48 trees obtained using rule extraction from 30 bagged RBF networks (Ens-J48)
4) feature selection employed as a filter for rule extraction, i.e., an AttributeSelected-

Classifier using rule extraction from a 30-bag RBF ensemble as classifier (FS-Ens-
J48)

5) feature selection employed for each bag before rule extraction, i.e., bagging 30 At-
tributeSelectedClassifier RBF networks and then using rule extraction (Ens-FS-J48)

6) same setup as 3) above, but also utilizing oracle data during the rule extraction
(EnsO-J48)

7) same setup as 4) above, but also utilizing oracle data during the rule extraction (FS-
EnsO-J48)

8) same setup as 5) above, but also utilizing oracle data during feature selection and
rule extraction (EnsO-FS-J48)

3 Results

Due to the large number of data sets, most results have to be reported aggregated over
the different attribute sets, treating the physical-chemical attribute sets as one group and
the fingerprint attribute sets as another group. Predictive performance is evaluated as
accuracy and AUC, where the reported numbers for each data set is, of course, averaged
over the 10x4 folds.

Table 2 below shows a summary of all accuracy results for Experiment 1, aggregated
over the different attribute sets. As can be seen from the table, the setup employing
feature selection separately for each bag clearly obtains the best performance, whereas
feature selection as a filter for the whole bagging process is actually slightly worse than
not using feature selection at all. To determine if there are any statistically significant
differences, we use the statistical tests recommended by Demšar [6] for comparing
several classifiers over a number of data sets, i.e., a Friedman test [7], followed by a

Table 2. Experiment 1 - Accuracy

Bag FS-Bag Bag-FS
Avg. acc Avg. rank Avg. acc Avg. rank Avg. acc Avg. rank

2.5D .741 2.00 .730 2.50 .746 1.50
oeSelma .741 2.75 .748 2.13 .766 1.13
AZ Desc .751 2.13 .750 2.50 .768 1.38
Mean Phys-Chem .745 2.29 .743 2.38 .760 1.33
Frags .721 2.13 .709 2.50 .730 1.38
sign12 .730 1.88 .710 2.50 .735 1.63
ecfi .700 2.63 .702 2.25 .725 1.13
Mean Fingerprint .717 2.21 .707 2.42 .730 1.38
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Nemenyi post-hoc test [13]. With three classifiers and 24 data sets, the critical distance
(for α = 0.05) is 0.68, so based on these tests, all differences between Bag-FS and the
other two techniques are significant for both groups of attribute sets. These significant
differences between the three techniques also hold for AUC. The result of these tests
should, however, be treated with some care in this study, as it is not obvious that sets of
compounds represented by different feature sets can be considered to be independently
selected data sets. Hence, the statistical tests employed here should rather be seen as
approximate tests.

Table 3 below shows the detailed accuracy and AUC results for the oeSelma attribute
set. This table illustrates that the superior overall performance of Bag-FS is due to
consistently obtaining slightly higher accuracy and AUC for almost every data set.

Table 3. Experiment 1 - oeSelma attribute set

Accuracy AUC
Bag FS-Bag Bag-FS Bag FS-Bag Bag-FS

ACE .858 .868 .867 0.92 0.93 0.94
AchE .698 .708 .730 0.76 0.76 0.78
BZR .712 .718 .747 0.80 0.81 0.84
COX2 .758 .769 .776 0.84 0.83 0.84
DHFR .799 .801 .806 0.88 0.88 0.89
GPB .714 .756 .769 0.80 0.85 0.87
THER .692 .688 .724 0.77 0.75 0.79
THR .700 .676 .708 0.75 0.73 0.79
Mean .741 .748 .766 0.82 0.82 0.84
Avg Rank 2.75 2.13 1.13 2.25 2.38 1.00

Summarizing Experiment 1, it is clear that when using feature reduction together
with bagging on these medicinal chemistry data sets, the only reasonable choice is
to use a separate feature selection for each bag, which unfortunately is also the most
computationally costly procedure. However, this extra cost is clearly justified given the
significant improvement in predictive performance obtained by the ensemble. Turning
to Experiment 2, Table 4 below shows a summary of the accuracy results.

The most important observation is that the use of oracle coaching clearly led to more
accurate transparent models. Especially the setup using feature selection before build-
ing the oracle model (FS-EnsO-J48) consistently produced very accurate models. As a
matter of fact, using the statistical tests described above, the critical distance for eight
setups and 24 data sets is 2.14, so this setup obtained significantly higher accuracies
than all setups not utilizing oracle data on the physical-chemical data sets. Looking at
fingerprint data sets, the picture is almost identical since the FS-EnsO-J48 setup again
obtained the lowest mean rank, even if the difference in accuracy when compared to
standard J48 is not statistically significant using this test. It could be noted, however,
that any pairwise test (e.g. a standard sign test) would result in a significant difference.

Another interesting observation is that if no oracle data is used, the best option is,
for most feature sets, actually to use standard tree induction directly on the data; i.e.,
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no feature selection and no rule extraction. This is of course a very good result for J48,
showing that the algorithm is well capable of finding and utilizing the most important
attributes, without the help of explicit feature selection. It should be noted that this result
does not necessarily reflect poorly on rule extraction in general. As a matter of fact,
more specialized rule extraction algorithms, explicitly maximizing fidelity, have often
been shown to outperform decision tree induction. When oracle data is used, it clearly
becomes better to perform feature selection, preferably before building the oracle. So,
summarizing the accuracy results, the use of oracle data when building comprehensible
models improved accuracy significantly, and the best results overall were obtained by
performing feature selection before the oracle was trained.

Looking at the mean AUC results in Table 5 below, the first impression is probably
that most setups result in similar AUCs. This is, however, somewhat deceptive since

Table 4. Experiment 2 - Accuracy results

J48
FS-
J48

Ens-
J48

FS-
Ens-
J48

Ens-
FS-J48

EnsO-
J48

FS-
EnsO-

J48

EnsO-
FS-J48

2.5D Mean Acc. .704 .698 .706 .699 .696 .742 .749 .745
Avg Rank 5.75 5.75 5.13 6.25 5.75 2.88 1.75 2.63

oeSelma Mean Acc. .745 .745 .730 .736 .732 .750 .764 .753
Avg Rank 4.63 4.88 6.00 5.13 6.00 3.50 2.25 3.50

AZ Desc. Mean Acc. .732 .736 .732 .736 .734 .764 .764 .757
Avg Rank 5.50 4.25 5.50 5.00 5.50 4.38 2.50 2.63

Phys-Chem Mean Acc. .727 .726 .723 .724 .721 .747 .759 .752
Phys-Chem Mean Rank 5.29 4.96 5.54 5.46 5.75 3.58 2.17 2.92
Frags. Mean Acc. .723 .703 .708 .697 .682 .738 .727 .731

Avg Rank 3.75 4.88 5.00 5.75 6.88 3.00 3.38 3.13
sign12 Mean Acc. .728 .712 .722 .707 .707 .739 .740 .740

Avg Rank 3.75 5.75 4.88 6.38 6.38 3.13 2.50 3.00
ecfi Mean Acc. .709 .709 .704 .695 .701 .702 .733 .716

Avg Rank 5.00 4.00 4.75 6.00 5.13 5.50 1.88 3.75
Fingerprint Mean Acc. .720 .708 .711 .700 .696 .726 .733 .729
Fingerprint Mean Rank 4.17 4.88 4.88 6.04 6.13 3.88 2.58 3.29

Table 5. Experiment 2 - AUC results

J48 FS-J48
Ens-
J48

FS-
Ens-
J48

Ens-
FS-J48

EnsO-
J48

FS-
EnsO-

J48

EnsO-
FS-J48

Phys-Chem Mean AUC 0.73 0.74 0.73 0.73 0.73 0.76 0.76 0.76
Phys-Chem Mean Rank 4.71 4.42 5.21 5.08 5.04 3.42 2.83 2.71
Fingerprint Mean AUC 0.74 0.72 0.73 0.71 0.71 0.74 0.75 0.75
Fingerprint Mean Rank 3.46 4.79 4.25 6.08 5.63 3.71 2.38 2.75



Using Feature Selection with Bagging and Rule Extraction in Drug Discovery 421

the mean ranks show that the setups utilizing oracle coaching actually outperformed all
other setups, on a large majority of the data sets, also with regard to AUC.

4 Conclusions

We have in this paper investigated when and how feature selection should be applied to
two common data mining techniques; bagging and rule extraction. When using bagging,
feature selection could be used either before the data set is used to draw the bootstraps,
or locally on each bootstrap. The experimental results clearly show that the best option
is to perform the feature selection on each bootstrap. As a matter of fact, that setup
obtained significantly higher accuracy and AUC compared to both feature selection
before the bootstrapping and not using feature selection at all. In addition to being a
straightforward recipe, it is also an interesting theoretical finding, since it indicates that
for data sets like the ones studied here (i.e. fairly high dimensionality with at least
some redundancy) the increased diversity obtained by performing the feature selection
independently for each bag turned out to improve ensemble accuracy. This hence has a
similar effect as random feature selection in random forests [3].

In the rule extraction experiment, the somewhat surprising result was that unless
oracle data is used, the best option is actually to skip both feature selection and rule ex-
traction and just perform standard J48 rule induction directly on the data set. However,
the results also show that utilizing oracle coaching led to a significant improvement in
both accuracy and AUC, with a relatively low extra computational cost. Specifically,
the best setup evaluated first performed feature selection (using training data only) and
then used the reduced feature set to build the opaque (oracle) model. The oracle was
then used to label the test data instances, which together with the original training in-
stances (with reduced features) were used as training instances when inducing the final
J48 model. The most important observation from this experiment is that the use of ora-
cle coaching affects the performance much more than if and how the feature selection
is applied. Having said that, if oracle data is used, both setups that contain feature se-
lection clearly outperformed the setup using unreduced feature sets, with regard to both
accuracy and AUC.
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