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Abstract 

The standard kNN algorithm suffers from two major 
drawbacks: sensitivity to the parameter value k, i.e., the 
number of neighbors, and the use of k as a global constant 
that is independent of the particular region in which the 
example to be classified falls. Methods using weighted 
voting schemes only partly alleviate these problems, since 
they still involve choosing a fixed k. In this paper, a novel 
instance-based learner is introduced that does not require k 
as a parameter, but instead employs a flexible strategy for 
determining the number of neighbors to consider for the 
specific example to be classified, hence using a local instead 
of global k. A number of variants of the algorithm are 
evaluated on 18 datasets from the UCI repository. The novel 
algorithm in its basic form is shown to significantly 
outperform standard kNN with respect to accuracy, and an 
adapted version of the algorithm is shown to be clearly 
ahead with respect to the area under ROC curve. Similar to 
standard kNN, the novel algorithm still allows for various 
extensions, such as weighted voting and axes scaling. 

Introduction   

A data miner performing predictive classification has many 
different techniques to choose from. Most approaches 
consist of a two-step process: first an inductive step, where 
a model is constructed from data, and then a second, 
deductive, step where the model is applied to test instances.  

An alternative approach is, however, to omit the model 
building and directly classify novel instances based on 
available training instances. Such approaches are named 
lazy learners or instance based learners. The most 
common lazy approach is nearest neighbor classification. 
Given an instance to classify, the algorithm first finds the 
majority class Cm among the k closest (according to some 
distance measure) data points in the training set. The new 
instance is then classified as belonging to class Cm. The 
value k is a parameter, and the entire technique is known as 
k-Nearest Neighbor (kNN) classification. 

kNN, in contrast to techniques like neural networks and 
decision trees, performs classification based on local 
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information rather than using a global model covering the 
entire input space. kNN can, in theory, produce arbitrary 
shaped decision boundaries, while decision trees and rule-
based learner are constrained to rectilinear decision 
boundaries. 

All in all, kNN is a simple and frequently used 
technique, especially for classification problems. In spite 
of its simplicity, kNN often performs quite well. One 
purpose of using kNN is to get an idea of the classification 
rate that should, at the very least, be achieved by more 
powerful methods like neural networks or ensemble 
techniques; see e.g. (Bishop, 1995).  

kNN does, however, suffer from two major drawbacks. 
First of all, the parameter k is extremely important. If k is 
too small, the algorithm becomes very susceptible to noise. 
If k is too large, a test instance may be misclassified based 
on training instances quite far away. Needless to say, there 
is no “golden” k, performing well on a majority of 
problems, although most data mining tools use a default 
value of k=10. The second drawback is slightly more 
subtle. Even for a single problem, the optimal value for k 
may vary depending on the particular region in which an 
example to be classified falls. For example, a 7-4 result for 
k=11, where the seven closest instances vote for a specific 
class, should intuitively be a very strong support for that 
class, in contrast to what is provided by a class probability 
estimate based only on the relative frequency of that class 
among all votes. A related consequence of how kNN 
operates, is that the only way of increasing the confidence 
in the class probability estimates obtained by votes from 
nearest neighbors is by increasing k. As a result, the 
increased confidence often comes at the cost of a decreased 
predictive performance, following from the sub-optimal 
choice of k.  

More sophisticated kNN algorithms have partly 
addressed these issues by using voting scheme where each 
vote is weighted with the distance to the test instance; see 
e.g. (Zavrel, 1997). However, it should be noted that again 
the classifications still involve a fixed number of votes, and 
although several of these methods are less sensitive to the 
actual choice of k compared to standard kNN, the choice 
can still be of major importance. One straightforward way 
of finding out which k to use, is by means of cross-
validation on the training data, which however involves a 



significant computational cost. Furthermore, weighted 
voting methods are still restricted to using a global k, i.e., 
for the entire dataset, rather than a local k that is tailored 
for each instance to classify.  

In this paper, we introduce a novel instance-based 
learner that does not require the number of neighbors as a 
parameter, but instead employs a flexible strategy for how 
many neighbors to consider for a specific example that 
falls into a particular region (hence it uses a local instead 
of a global k). In this study, we investigate how the novel 
algorithm, in its basic form, compares to standard kNN. It 
should be noted, though, that the suggested algorithm can 
easily be extended with more elaborate strategies like 
distance-weighted voting or axes scaling based on attribute 
importance, that are not considered in this study. 

Method 

In this section we first introduce the BuLL (Bubble Lazy 
Learner) algorithm. In the second part, we describe the 
details regarding the experiments conducted. 

The basic idea of BuLL is to first create spheres 
(“bubbles”) of confidence around each training instance. 
When later classifying a novel (test) instance, all spheres of 
confidence covering the test instance are considered. 
Exactly how the spheres are constructed, and how they are 
combined when classifying a test instance, varies slightly 
between the different versions described below.   

When constructing a sphere of confidence around a 
training instance (the center instance) in the basic version, 
all instances are first ordered based on their proximity to 
the center instance. The radius of the sphere of confidence 
is then set to the distance to the last instance before the first 
conflicting instance. A conflicting instance in this context 
is simply an instance with a different classification than the 
current instance. This approach creates the largest possible 
sphere containing only instances classified identically to 
the center instance. It should be noted that, in this version, 
the spheres of confidence may very well contain several 
instances classified identically to the center instance, but 
no conflicting instances. Typically, spheres in “easy” 
regions of the input space, will be large and contain many 
instances, while spheres in harder regions would be smaller 
and even overlapping with spheres centered around 
instances with another classification.  

When classifying a test instance, the basic version 
(called sphere aggregation) counts only the class labels of 
each sphere covering the example, and assigns the most 
frequent class to the test example; i.e. this method does not 
consider the number of instances covered by each sphere. 

The overall aim of the BuLL algorithm is to produce an 
instance-based learner, not suffering from the two major 
drawbacks of standard kNN, as described in the 
introduction. Clearly, the number of spheres participating 
in a BuLL classification will depend on both the 
distribution and the density of instances around the test 
instance. We argue that this is an obvious advantage 
compared to the use of a predefined, global, parameter like 

k in kNN. In addition, BuLL offers a potentially more 
informative decision than kNN. A kNN decision will 
always consist of a fixed number of votes (e.g. 11) while a 
BuLL decision, in principle, could be based on any number 
of votes. Voting results from both kNN and BuLL could 
straightforwardly be used to produce a class probability 
distribution for each instance. This would permit the 
examples to be ranked according to the probability of 
belonging to a certain class; i.e. allowing the method to be 
evaluated using OC-analysis. In addition, the number of 
votes (i.e. the number of covering spheres) also gives a 
clear indication of whether the test instance is in a dense or 
sparse part of the input space, something that probably 
should influence the reliability of the classification. 
Specifically, a test instance might occasionally fall outside 
all existing spheres of confidence; a clear indication that 
this is in a part of the input space not well covered by the 
BuLL model. Exactly how this should be handled if a 
classification is needed must be determined when 
implementing the algorithm; the point is that this 
information is provided by BuLL. In the current study, 
BuLL uses a standard kNN with k=5 to break a tie, when 
necessary to get a prediction for a specific instance. 

In this study, we consider several slightly different 
versions of the basic algorithm described above. In 
particular, two alternative ways of constructing the 
spheres, together with one slightly more sophisticated 
combination strategy are outlined below. 

When eager construction is used, the radius of a sphere 
of confidence can be greater than the distance to the closest 
conflicting instance. More specifically, the idea is to 
incrementally increase the radius to the next conflicting 
instance, as long as the resulting distribution of positive 
and negative instances is improved. Since the first sphere, 
containing only positive examples, would have an 
unbeatable proportion of 100% positive instances, the 
algorithm uses the so called Laplace estimate for the 
comparison of distributions.  

The main reason for using a Laplace estimate in general 
is that the basic (maximum-likelihood) estimate does not 
consider the number of training instances supporting a 
specific decision, just the proportions. Intuitively, a 
decision based on many training instances is a better 
estimator of class membership probabilities. With this in 
mind, the Laplace estimator calculates the estimated 
probability as: 
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where k is the number of training instances belonging to 
class A, N is the total number of training instances involved 
in the decision and C is the number of classes. Specifically, 
the Laplace estimate does not assign a zero probability to a 
class even if it is not supported at all. It should be noted 
that the Laplace estimator in fact introduces a prior 
uniform probability for each class; i.e. when k=N=0, the 
probability for each class is 1/C.  



The Laplace estimate has previously been used for, 
among other things, producing probability estimation trees 
(Provost & Domingos, 2003) from decision trees like 
CART (Breiman et al., 1984), and C4.5/C5.0 (Quinlan, 
1993). When applying the Laplace estimate to a decision 
tree, the calculation is performed in the specific leaf 
reached by the test instance; i.e. k is the number of training 
instances supporting class A and N is the total number of 
training instances reaching that leaf. 

When using eager construction, BuLL employs the 
Laplace estimate in a similar way. Here, however, k is the 
number of instances supporting the center class and N is 
the total number of instances in the sphere under 
consideration. Consequently, BuLL increases the sphere 
until another extension would decrease the Laplace 
estimate. For an illustrative example see Figure 1 below. In 
the figure, x and O represents instances classified as two 
different classes. The three instances closest to the center 
instance, X, would produce the first Laplace estimate of 
5/6 for a sphere covering these four instances. The second 
possible sphere, covering 15 instances, has a Laplace 
estimate of 15/17 which is slightly higher. The third sphere 
considered, however, has a lower Laplace estimate of 
17/20; so the resulting radius is the distance to the 
fourteenth x, which is shown in bold below.  

 
Xxxx Oxxxxxxxxxx Oxx O 

Figure 1: Eager construction  

The third construction strategy, called total, works 
similarly to eager, but considers all possible spheres 
centered at the current instance, with radius equal to the 
distance to conflicting instances. The sphere chosen is the 
sphere with the highest Laplace estimate. 

As mentioned above, sphere aggregation considers only 
one class count for each of the covering spheres when 
classifying a test instance. Instance aggregation, on the 
other hand, uses the total number of instances covered by 
the spheres covering the test instance. More specifically, 
the class probability distributions from all covering spheres 
are averaged; i.e. the “vote” of each covering sphere is the 
Laplace estimate for that sphere.  

Datasets and preprocessing 

The 18 datasets used in this study are all from the UCI 
Repository (Blake and Merz, 1998). It should be noted that 
only binary (two-class) classification problems are used. 
When preprocessing, all attributes were linearly 
normalized to the interval [0, 1]. Missing values were, for 
all numerical attributes, handled by replacing the missing 
value with the mean value of that attribute. For nominal 
attributes, missing values were replaced with a new, 
specific value. 

Clearly, it is very important how distance is measured 
when using instance-based learners. In this study, standard 
Euclidean distance between instance vectors is used. It 
should be noted, however, that for nominal attributes the 

distance is either 0 or 1; i.e. the distance is 0 if the values 
are identical and 1 otherwise. 

Since nominal and ordered categorical attributes are 
handled differently, an effort was made to identify the 
character of each attribute in the datasets. Table 1 below 
summarizes the dataset characteristics. Ins is the number of 
instances. Con is the number of continuous input variables, 
Bin is the number of binary input variables, Ord is the 
number of ordered input variables and Nom is the number 
of nominal input variables. 

 
Dataset Ins Con Bin Ord Nom 

Liver disorders (BLD) 345 6 0 0 0 

Breast cancer (BC) 286 0 3 1 5 

Cleveland heart disease (Cleve) 303 6 3 0 4 

Crx 690 6 4 0 5 

German (Germ) 1000 7 2 8 3 

Heart disease Statlog (Heart) 270 6 3 0 4 

Hepati 155 6 13 0 0 

Horse colic (Horse) 368 7 2 5 8 

Hypothyroid (Hypo) 3163 7 18 0 0 

Iono 351 34 0 0 0 

Labor 57 8 3 5 0 

Diabetes (PID) 768 8 0 0 0 

Sick 2800 7 21 0 0 

Sonar 208 60 0 0 0 

Spambase (Spam) 4601 57 0 0 0 

Tic-Tac-Toe (TTT) 958 0 0 0 9 

Votes 435 0 16 0 0 

Wisconsin breast cancer (WBC) 699 9 0 0 0 

Table 1: Datasets 

Experiments 

In the experiments, both accuracy and area under the ROC 
curve (AUC) are used for evaluation. While accuracy is 
based only on the final classification, AUC measures the 
ability to rank instances according to how likely they are to 
belong to a certain class; see e.g. (Fawcett, 2001). AUC 
can be interpreted as the probability of ranking a true 
positive instance ahead of a false positive; see (Bradley, 
1997).  

For actual experimentation, standard 10-fold cross-
validation is used. The reported accuracies are therefore 
averaged over the ten folds. Following the standard 
procedure for AUC evaluation, only one ROC curve based 
on all test set instances from each fold is produced per 
dataset. In the first experiment, the basic version of BuLL 
(i.e. using original construction and sphere aggregation) is 
compared to standard kNN, with k values of 5, 11 and 17. 
The second experiment evaluates the different versions of 
BuLL. 
 
 
 
 



Results 

Table 2 below shows the accuracy results for Experiment 
1. 
 

kNN5 kNN11 kNN17 BuLL  

Acc. R Acc. R Acc. R Acc. R 

BLD 0.6000 4 0.6324 1 0.6265 3 0.6324 1 

BC 0.7286 3 0.7250 4 0.7357 2 0.7500 1 

Cleve 0.8033 4 0.8267 2 0.8267 2 0.8400 1 

Crx 0.8638 1 0.8638 2 0.8638 2 0.8623 4 

Germ 0.7130 4 0.7290 3 0.7310 2 0.7370 1 

Heart 0.8148 4 0.8296 1 0.8185 3 0.8185 2 

Hepati 0.8533 1 0.8467 3 0.8267 4 0.8533 1 

Horse 0.8222 4 0.8333 1 0.8306 2 0.8306 2 

Hypo 0.9737 2 0.9728 3 0.9699 4 0.9756 1 

Iono 0.8486 2 0.8400 3 0.8371 4 0.8800 1 

Labor 0.9000 1 0.8600 3 0.7800 4 0.9000 1 

PID 0.7474 3 0.7434 4 0.7500 2 0.7605 1 

Sick 0.9600 2 0.9575 3 0.9518 4 0.9611 1 

Sonar 0.8350 2 0.7150 3 0.6800 4 0.8450 1 

Spam 0.8848 2 0.8809 3 0.8770 4 0.9083 1 

TTT 0.9147 4 0.9663 2 0.9821 1 0.9516 3 

Votes 0.9256 2 0.9256 2 0.9186 4 0.9349 1 

WBC 0.9710 1 0.9652 4 0.9681 3 0.9696 2 

Mean  

rank 
2.56 2.61 3.00 1.44 

Table 2: Experiment 1 - Accuracy results. R is ranks. 

First of all, it is interesting to note that all three versions of 
kNN obtain quite similar results overall. On single 
datasets, however, it is sometimes clearly better to use k=5 
and sometimes clearly better to use k=11 or k=17. This 
demonstrates not only that the k parameter value is very 
important for kNN, but also that no specific value is better 
on all datasets.  

In this experiment, BuLL clearly outperforms all kNN 
variants, winning 13 of 18 datasets. To determine if BuLL 
performance is significantly better than the kNNs, we use 
the statistical tests suggested by Demšar (2006) for 
comparing one classifier against several others over a 
number of datasets; i.e. a Friedman test (Friedman, 1937), 
followed by a Bonferroni-Dunn post-hoc test (Dunn, 
1961). With four classifiers and 18 datasets the critical 
distance (for α=0.05) is 1.03, so based on these tests, 
BuLL significantly outperformed all three kNN variants.   

Table 3 below shows the AUC results. Using average 
ranks, the only statistically significant difference is that 
kNN5 is outperformed by all three competitors. This is not 
very surprising since the mere five votes will only be able 
to produce five different probability distributions; i.e. 
many instances will have equal rank, making the ROC 
curve too simple. 
 

kNN5 kNN11 kNN17 BuLL  

AUC R AUC R AUC R AUC R 

BLD 0.6365 3 0.6511 2 0.6698 1 0.6179 4 

BC 0.6345 4 0.6611 2 0.6489 3 0.6856 1 

Cleve 0.8667 4 0.8969 2 0.9016 1 0.8869 3 

Crx 0.9082 4 0.9109 1 0.9108 2 0.9107 3 

Germ 0.7176 4 0.7502 2 0.7509 1 0.7314 3 

Heart 0.8756 4 0.8880 2 0.8946 1 0.8803 3 

Hepati 0.8479 4 0.8562 2 0.8678 1 0.8481 3 

Horse 0.8547 4 0.8685 2 0.8653 3 0.8712 1 

Hypo 0.8758 4 0.8957 3 0.9094 2 0.9222 1 

Iono 0.9214 4 0.9323 3 0.9341 2 0.9771 1 

Labor 0.9342 4 0.9708 1 0.9533 2 0.9500 3 

PID 0.7869 4 0.8011 2 0.8056 1 0.7966 3 

Sick 0.8939 4 0.9153 3 0.9225 1 0.9191 2 

Sonar 0.9204 2 0.8537 3 0.7978 4 0.9402 1 

Spam 0.9348 4 0.9426 3 0.9428 2 0.9524 1 

TTT 0.9679 4 0.9974 2 0.9997 1 0.9869 3 

Votes 0.9684 4 0.9703 3 0.9722 2 0.9783 1 

WBC 0.9881 4 0.9913 2 0.9917 1 0.9890 3 

Mean  

rank 
3.83 2.22 1.72 2.22 

Table 3: Experiment 1 - AUC results. R is ranks. 

Figures 2 to 4 below show ROC curves obtained by kNN5, 
kNN17 and BuLL on the Iono dataset. 
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Figure 2: ROC curve kNN5 on IONO. AUC=0.9214 
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Figure 3: ROC curve kNN17 on IONO. AUC=0.9341 
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Figure 4: ROC curve BuLL on IONO. AUC=0.9757 

Although the average rank is a little lower for kNN17, 
BuLL still wins 7 of 18 datasets. When comparing BuLL 
only to kNN11, BuLL wins 8 of 18 datasets. The fact that 
BuLL is unable to keep the edge when considering AUC 
instead of accuracy is clearly interesting. With this in 
mind, one key priority becomes to produce a BuLL variant 
performing better when using AUC for evaluation.  

The overall result from Experiment 1 is nevertheless that 
BuLL significantly outperforms the kNN variants 
regarding accuracy, while the results regarding AUC are 
inconclusive between BuLL, kNN11 and kNN17.  

For Experiment 2, we, due to the limited space available, 
elect to present only obtained ranks and pair-wise 
comparisons. Table 4 below shows all six BuLL variants, 
evaluated against each other and the three kNN algorithms. 
The BuLL variants are describes as X/Y, where X is the 
construction strategy (Original, Eager or All) and Y is the 
combination strategy (Spheres or Instances). 

 
 kNN BuLL 

 5 11 17 O/S O/I E/S E/I A/S A/I 

BLD 8 3 5 4 6 1 2 8 7 

BC 4 5 3 1 5 2 7 9 8 

Cleve 8 5 5 1 4 7 1 9 1 

Crx 3 3 3 6 7 1 2 9 8 

Germ 7 6 4 2 1 3 5 8 8 

Heart 7 1 5 2 8 6 2 9 2 

Hepati 3 4 7 1 1 5 5 8 8 

Horse 7 3 4 5 1 6 2 9 8 

Hypo 3 4 5 2 1 6 7 8 8 

Iono 5 6 7 3 3 1 2 9 8 

Labor 3 8 9 3 3 3 3 1 1 

PID 5 7 3 1 2 4 6 8 8 

Sick 2 3 6 1 4 5 7 9 8 

Sonar 6 8 9 2 6 1 2 5 2 

Spam 7 8 9 4 5 3 6 1 1 

TTT 4 2 1 3 8 5 7 6 9 

Votes 4 4 7 2 1 3 6 9 8 

WBC 3 8 6 4 2 1 4 9 7 

Mean 

Rank 
4.9 4.9 5.4 2.6 3.8 3.5 4.2 7.4 6.1 

Table 4: Experiment 2 - Ranks accuracy 

The original BuLL variant is still clearly the most accurate. 
In addition, all BuLL variants, except the two using All 
construction have lower average ranks than all three kNNs. 
A deepened analysis showed that BuLL A/S and BuLL A/I, 
for some datasets, classified all instances as belonging to 
the majority class. In other words, the algorithm, when 
allowed to optimize class distributions in the spheres, 
produced a set of spheres classifying every test instance 
identically. Table 5 below shows pair-wise comparisons. 
The values tabulated are wins for the row technique against 
the column technique. Using 18 datasets, a sign-test 
(α=0.05) requires 13 wins for statistical significance. 
Statistically significant number of wins are underlined. 
  

kNN BuLL 

 5 11 17 O/S O/I E/S E/I A/S A/I 

kNN5 - 11 9 2 6 4 8 14 12 

kNN11 7 - 12 5 5 7 7 15 13 

kNN17 8 7 - 3 5 6 6 15 13 

BuLL O/S 15 13 15 - 11 11 11 16 14 

BuLL O/I 12 12 13 6 - 8 10 14 13 

BuLL E/S 13 11 12 6 9 - 14 16 14 

BuLL E/I 9 11 12 6 7 4 - 15 14 

BuLL A/S 3 3 3 2 4 2 3 - 4 

BuLL A/I 6 5 5 3 5 4 3 14 - 

Table 5: Experiment 2 - Pairwise comparisons accuracy 

As seen in Table 5, BuLL O/I and BuLL E/S are both very 
close to significantly outperforming all three kNNs. 
Another interesting observation is that BuLL E/S actually 
is significantly more accurate than BuLL E/I. This, 
together with the results obtained by BuLL O/S, indicates 
that the simpler combination strategy of using just the 
spheres and not the instances, appears to be better when 
targeting accuracy. Table 6 below shows the ranks 
obtained using AUC.  
 
 kNN BuLL 

 5 11 17 O/S O/I E/S E/I A/S A/I 

BLD 5 3 1 7 6 4 2 9 8 

BC 8 6 7 1 2 4 5 9 3 

Cleve 9 4 3 6 8 5 7 2 1 

Crx 7 3 4 5 9 1 6 8 2 

Germ 9 3 2 6 8 4 5 7 1 

Heart 7 4 2 5 8 6 9 1 3 

Hepati 8 5 3 7 9 4 6 2 1 

Horse 8 4 5 3 9 2 6 7 1 

Hypo 9 8 3 1 6 2 5 7 4 

Iono 9 8 7 1 6 2 5 2 4 

Labor 9 2 7 8 1 5 4 6 3 

PID 8 4 2 5 6 3 1 9 7 

Sick 9 5 2 4 8 6 7 3 1 

Sonar 5 8 9 4 3 2 6 7 1 

Spam 7 6 5 2 4 3 1 8 9 

TTT 7 2 1 5 8 9 6 3 4 

Votes 9 7 5 2 3 1 6 3 8 

WBC 9 4 2 7 6 8 3 5 1 

Mean 

Rank 
7.9 4.8 3.9 4.4 6.1 3.9 5.0 5.4 3.4 

Table 6: Experiment 2 - Ranks AUC 



Somewhat surprising, the best mean rank is obtained by 
BuLL A/I. So, although this variant performed poorly 
when classifying, it is evidently able to rank the instances 
based on how likely they are to belong to a certain class. 
This may appear to be an anomaly, but some preliminary 
follow-up experiments showed that it would probably be 
possible to obtain much better classification accuracy, just 
by using a variable threshold. The two algorithms with the 
best performance overall are BuLL O/S and BuLL E/S. 
Bull E/S actually has the second best mean rank in both the 
accuracy and the AUC evaluation. Table 7 below show the 
pair-wise AUC comparisons. Leaving kNN5 out, there are 
very few statistically significant differences. It should, 
nevertheless, be noted that BuLL A/I wins at least 11 of 18 
datasets against all competitors. 
 

kNN BuLL 

 5 11 17 O/S O/I E/S E/I A/S A/I 

kNN5 - 1 1 1 6 1 2 6 2 

kNN11 17 - 5 10 11 8 9 10 6 

kNN17 17 13 - 11 12 9 12 11 7 

BuLL O/S 17 8 7 - 14 8 11 11 7 

BuLL O/I 12 7 6 4 - 4 5 7 6 

BuLL E/S 17 10 9 10 14 - 12 11 7 

BuLL E/I 16 9 6 7 13 6 - 11 4 

BuLL A/S 12 8 7 7 10 6 7 - 5 

BuLL A/I 16 12 11 11 12 11 14 13 - 

Table 7: Experiment 2 - Pairwise comparisons AUC  

Conclusions 

We have in this paper suggested a novel instance based 
learner called BuLL.  BuLL is primarily designed to avoid 
the dependence of the parameter value k in standard kNN, 
but also to be able to produce accurate probability 
distributions, based on local information. 

The experimentation showed that the basic version of 
BuLL was significantly more accurate than standard kNN. 
When using accuracy for evaluation, all versions of BuLL 
not using the All combination strategy, have a positive 
won-loss record against all kNN variants. 

When using AUC instead of accuracy for evaluation, the 
results are inconclusive. Still, most BuLL variants 
outperform kNN even regarding AUC. The best BuLL 
approach is in fact very close to having significantly higher 
AUC than all kNN variants. Finally, an interesting 
observation is that the approach having the second worst 
accuracy, actually obtained the highest AUC. 

Discussion and future work 

First of all it should be noted that BuLL in this paper was 
only compared to standard kNN, instead of the more 
sophisticated versions available. The reason for this is that 
improvements like weighted voting and axes-scaling based 
on attribute importance are equally applicable to BuLL. 
Having said that, one priority is to determine whether these 

modifications in fact are beneficial for BuLL. There are 
also, however, other possible modifications, specific to 
BuLL, that should be explored. One example is to 
investigate the use of a variable threshold when performing 
classification. Another option is to introduce more 
sophisticated voting schemes based on, for instance, each 
training instance ranking all test instances after how likely 
they are to belong to a certain class. 
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