
Extending Nearest Neighbor Classification with Spheres of Confidence

Ulf Johansson

1
, Henrik Boström

2
, Rikard König

1

1School of Business and Informatics, University of Borås, Sweden
2School of Humanities and Informatics, University of Skövde, Sweden

ulf.johansson@hb.se, henrik.bostrom@his.se, rikard.konig@hb.se

Abstract

The standard kNN algorithm suffers from two major
drawbacks: sensitivity to the parameter value k, i.e., the
number of neighbors, and the use of k as a global constant
that is independent of the particular region in which the
example to be classified falls. Methods using weighted
voting schemes only partly alleviate these problems, since
they still involve choosing a fixed k. In this paper, a novel
instance-based learner is introduced that does not require k
as a parameter, but instead employs a flexible strategy for
determining the number of neighbors to consider for the
specific example to be classified, hence using a local instead
of global k. A number of variants of the algorithm are
evaluated on 18 datasets from the UCI repository. The novel
algorithm in its basic form is shown to significantly
outperform standard kNN with respect to accuracy, and an
adapted version of the algorithm is shown to be clearly
ahead with respect to the area under ROC curve. Similar to
standard kNN, the novel algorithm still allows for various
extensions, such as weighted voting and axes scaling.

Introduction

A data miner performing predictive classification has many
different techniques to choose from. Most approaches
consist of a two-step process: first an inductive step, where
a model is constructed from data, and then a second,
deductive, step where the model is applied to test instances.

An alternative approach is, however, to omit the model
building and directly classify novel instances based on
available training instances. Such approaches are named
lazy learners or instance based learners. The most
common lazy approach is nearest neighbor classification.
Given an instance to classify, the algorithm first finds the
majority class Cm among the k closest (according to some
distance measure) data points in the training set. The new
instance is then classified as belonging to class Cm. The
value k is a parameter, and the entire technique is known as
k-Nearest Neighbor (kNN) classification.

kNN, in contrast to techniques like neural networks and
decision trees, performs classification based on local

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

information rather than using a global model covering the
entire input space. kNN can, in theory, produce arbitrary
shaped decision boundaries, while decision trees and rule-
based learner are constrained to rectilinear decision
boundaries.

All in all, kNN is a simple and frequently used
technique, especially for classification problems. In spite
of its simplicity, kNN often performs quite well. One
purpose of using kNN is to get an idea of the classification
rate that should, at the very least, be achieved by more
powerful methods like neural networks or ensemble
techniques; see e.g. (Bishop, 1995).

kNN does, however, suffer from two major drawbacks.
First of all, the parameter k is extremely important. If k is
too small, the algorithm becomes very susceptible to noise.
If k is too large, a test instance may be misclassified based
on training instances quite far away. Needless to say, there
is no “golden” k, performing well on a majority of
problems, although most data mining tools use a default
value of k=10. The second drawback is slightly more
subtle. Even for a single problem, the optimal value for k
may vary depending on the particular region in which an
example to be classified falls. For example, a 7-4 result for
k=11, where the seven closest instances vote for a specific
class, should intuitively be a very strong support for that
class, in contrast to what is provided by a class probability
estimate based only on the relative frequency of that class
among all votes. A related consequence of how kNN
operates, is that the only way of increasing the confidence
in the class probability estimates obtained by votes from
nearest neighbors is by increasing k. As a result, the
increased confidence often comes at the cost of a decreased
predictive performance, following from the sub-optimal
choice of k.

More sophisticated kNN algorithms have partly
addressed these issues by using voting scheme where each
vote is weighted with the distance to the test instance; see
e.g. (Zavrel, 1997). However, it should be noted that again
the classifications still involve a fixed number of votes, and
although several of these methods are less sensitive to the
actual choice of k compared to standard kNN, the choice
can still be of major importance. One straightforward way
of finding out which k to use, is by means of cross-
validation on the training data, which however involves a

significant computational cost. Furthermore, weighted
voting methods are still restricted to using a global k, i.e.,
for the entire dataset, rather than a local k that is tailored
for each instance to classify.

In this paper, we introduce a novel instance-based
learner that does not require the number of neighbors as a
parameter, but instead employs a flexible strategy for how
many neighbors to consider for a specific example that
falls into a particular region (hence it uses a local instead
of a global k). In this study, we investigate how the novel
algorithm, in its basic form, compares to standard kNN. It
should be noted, though, that the suggested algorithm can
easily be extended with more elaborate strategies like
distance-weighted voting or axes scaling based on attribute
importance, that are not considered in this study.

Method

In this section we first introduce the BuLL (Bubble Lazy
Learner) algorithm. In the second part, we describe the
details regarding the experiments conducted.

The basic idea of BuLL is to first create spheres
(“bubbles”) of confidence around each training instance.
When later classifying a novel (test) instance, all spheres of
confidence covering the test instance are considered.
Exactly how the spheres are constructed, and how they are
combined when classifying a test instance, varies slightly
between the different versions described below.

When constructing a sphere of confidence around a
training instance (the center instance) in the basic version,
all instances are first ordered based on their proximity to
the center instance. The radius of the sphere of confidence
is then set to the distance to the last instance before the first
conflicting instance. A conflicting instance in this context
is simply an instance with a different classification than the
current instance. This approach creates the largest possible
sphere containing only instances classified identically to
the center instance. It should be noted that, in this version,
the spheres of confidence may very well contain several
instances classified identically to the center instance, but
no conflicting instances. Typically, spheres in “easy”
regions of the input space, will be large and contain many
instances, while spheres in harder regions would be smaller
and even overlapping with spheres centered around
instances with another classification.

When classifying a test instance, the basic version
(called sphere aggregation) counts only the class labels of
each sphere covering the example, and assigns the most
frequent class to the test example; i.e. this method does not
consider the number of instances covered by each sphere.

The overall aim of the BuLL algorithm is to produce an
instance-based learner, not suffering from the two major
drawbacks of standard kNN, as described in the
introduction. Clearly, the number of spheres participating
in a BuLL classification will depend on both the
distribution and the density of instances around the test
instance. We argue that this is an obvious advantage
compared to the use of a predefined, global, parameter like

k in kNN. In addition, BuLL offers a potentially more
informative decision than kNN. A kNN decision will
always consist of a fixed number of votes (e.g. 11) while a
BuLL decision, in principle, could be based on any number
of votes. Voting results from both kNN and BuLL could
straightforwardly be used to produce a class probability
distribution for each instance. This would permit the
examples to be ranked according to the probability of
belonging to a certain class; i.e. allowing the method to be
evaluated using OC-analysis. In addition, the number of
votes (i.e. the number of covering spheres) also gives a
clear indication of whether the test instance is in a dense or
sparse part of the input space, something that probably
should influence the reliability of the classification.
Specifically, a test instance might occasionally fall outside
all existing spheres of confidence; a clear indication that
this is in a part of the input space not well covered by the
BuLL model. Exactly how this should be handled if a
classification is needed must be determined when
implementing the algorithm; the point is that this
information is provided by BuLL. In the current study,
BuLL uses a standard kNN with k=5 to break a tie, when
necessary to get a prediction for a specific instance.

In this study, we consider several slightly different
versions of the basic algorithm described above. In
particular, two alternative ways of constructing the
spheres, together with one slightly more sophisticated
combination strategy are outlined below.

When eager construction is used, the radius of a sphere
of confidence can be greater than the distance to the closest
conflicting instance. More specifically, the idea is to
incrementally increase the radius to the next conflicting
instance, as long as the resulting distribution of positive
and negative instances is improved. Since the first sphere,
containing only positive examples, would have an
unbeatable proportion of 100% positive instances, the
algorithm uses the so called Laplace estimate for the
comparison of distributions.

The main reason for using a Laplace estimate in general
is that the basic (maximum-likelihood) estimate does not
consider the number of training instances supporting a
specific decision, just the proportions. Intuitively, a
decision based on many training instances is a better
estimator of class membership probabilities. With this in
mind, the Laplace estimator calculates the estimated
probability as:

1
class A

k
p

N C

+

=

+

 (1)

where k is the number of training instances belonging to
class A, N is the total number of training instances involved
in the decision and C is the number of classes. Specifically,
the Laplace estimate does not assign a zero probability to a
class even if it is not supported at all. It should be noted
that the Laplace estimator in fact introduces a prior
uniform probability for each class; i.e. when k=N=0, the
probability for each class is 1/C.

The Laplace estimate has previously been used for,
among other things, producing probability estimation trees
(Provost & Domingos, 2003) from decision trees like
CART (Breiman et al., 1984), and C4.5/C5.0 (Quinlan,
1993). When applying the Laplace estimate to a decision
tree, the calculation is performed in the specific leaf
reached by the test instance; i.e. k is the number of training
instances supporting class A and N is the total number of
training instances reaching that leaf.

When using eager construction, BuLL employs the
Laplace estimate in a similar way. Here, however, k is the
number of instances supporting the center class and N is
the total number of instances in the sphere under
consideration. Consequently, BuLL increases the sphere
until another extension would decrease the Laplace
estimate. For an illustrative example see Figure 1 below. In
the figure, x and O represents instances classified as two
different classes. The three instances closest to the center
instance, X, would produce the first Laplace estimate of
5/6 for a sphere covering these four instances. The second
possible sphere, covering 15 instances, has a Laplace
estimate of 15/17 which is slightly higher. The third sphere
considered, however, has a lower Laplace estimate of
17/20; so the resulting radius is the distance to the
fourteenth x, which is shown in bold below.

Xxxx Oxxxxxxxxxx Oxx O

Figure 1: Eager construction

The third construction strategy, called total, works
similarly to eager, but considers all possible spheres
centered at the current instance, with radius equal to the
distance to conflicting instances. The sphere chosen is the
sphere with the highest Laplace estimate.

As mentioned above, sphere aggregation considers only
one class count for each of the covering spheres when
classifying a test instance. Instance aggregation, on the
other hand, uses the total number of instances covered by
the spheres covering the test instance. More specifically,
the class probability distributions from all covering spheres
are averaged; i.e. the “vote” of each covering sphere is the
Laplace estimate for that sphere.

Datasets and preprocessing

The 18 datasets used in this study are all from the UCI
Repository (Blake and Merz, 1998). It should be noted that
only binary (two-class) classification problems are used.
When preprocessing, all attributes were linearly
normalized to the interval [0, 1]. Missing values were, for
all numerical attributes, handled by replacing the missing
value with the mean value of that attribute. For nominal
attributes, missing values were replaced with a new,
specific value.

Clearly, it is very important how distance is measured
when using instance-based learners. In this study, standard
Euclidean distance between instance vectors is used. It
should be noted, however, that for nominal attributes the

distance is either 0 or 1; i.e. the distance is 0 if the values
are identical and 1 otherwise.

Since nominal and ordered categorical attributes are
handled differently, an effort was made to identify the
character of each attribute in the datasets. Table 1 below
summarizes the dataset characteristics. Ins is the number of
instances. Con is the number of continuous input variables,
Bin is the number of binary input variables, Ord is the
number of ordered input variables and Nom is the number
of nominal input variables.

Dataset Ins Con Bin Ord Nom

Liver disorders (BLD) 345 6 0 0 0

Breast cancer (BC) 286 0 3 1 5

Cleveland heart disease (Cleve) 303 6 3 0 4

Crx 690 6 4 0 5

German (Germ) 1000 7 2 8 3

Heart disease Statlog (Heart) 270 6 3 0 4

Hepati 155 6 13 0 0

Horse colic (Horse) 368 7 2 5 8

Hypothyroid (Hypo) 3163 7 18 0 0

Iono 351 34 0 0 0

Labor 57 8 3 5 0

Diabetes (PID) 768 8 0 0 0

Sick 2800 7 21 0 0

Sonar 208 60 0 0 0

Spambase (Spam) 4601 57 0 0 0

Tic-Tac-Toe (TTT) 958 0 0 0 9

Votes 435 0 16 0 0

Wisconsin breast cancer (WBC) 699 9 0 0 0

Table 1: Datasets

Experiments

In the experiments, both accuracy and area under the ROC
curve (AUC) are used for evaluation. While accuracy is
based only on the final classification, AUC measures the
ability to rank instances according to how likely they are to
belong to a certain class; see e.g. (Fawcett, 2001). AUC
can be interpreted as the probability of ranking a true
positive instance ahead of a false positive; see (Bradley,
1997).

For actual experimentation, standard 10-fold cross-
validation is used. The reported accuracies are therefore
averaged over the ten folds. Following the standard
procedure for AUC evaluation, only one ROC curve based
on all test set instances from each fold is produced per
dataset. In the first experiment, the basic version of BuLL
(i.e. using original construction and sphere aggregation) is
compared to standard kNN, with k values of 5, 11 and 17.
The second experiment evaluates the different versions of
BuLL.

Results

Table 2 below shows the accuracy results for Experiment
1.

kNN5 kNN11 kNN17 BuLL

Acc. R Acc. R Acc. R Acc. R

BLD 0.6000 4 0.6324 1 0.6265 3 0.6324 1

BC 0.7286 3 0.7250 4 0.7357 2 0.7500 1

Cleve 0.8033 4 0.8267 2 0.8267 2 0.8400 1

Crx 0.8638 1 0.8638 2 0.8638 2 0.8623 4

Germ 0.7130 4 0.7290 3 0.7310 2 0.7370 1

Heart 0.8148 4 0.8296 1 0.8185 3 0.8185 2

Hepati 0.8533 1 0.8467 3 0.8267 4 0.8533 1

Horse 0.8222 4 0.8333 1 0.8306 2 0.8306 2

Hypo 0.9737 2 0.9728 3 0.9699 4 0.9756 1

Iono 0.8486 2 0.8400 3 0.8371 4 0.8800 1

Labor 0.9000 1 0.8600 3 0.7800 4 0.9000 1

PID 0.7474 3 0.7434 4 0.7500 2 0.7605 1

Sick 0.9600 2 0.9575 3 0.9518 4 0.9611 1

Sonar 0.8350 2 0.7150 3 0.6800 4 0.8450 1

Spam 0.8848 2 0.8809 3 0.8770 4 0.9083 1

TTT 0.9147 4 0.9663 2 0.9821 1 0.9516 3

Votes 0.9256 2 0.9256 2 0.9186 4 0.9349 1

WBC 0.9710 1 0.9652 4 0.9681 3 0.9696 2

Mean

rank
2.56 2.61 3.00 1.44

Table 2: Experiment 1 - Accuracy results. R is ranks.

First of all, it is interesting to note that all three versions of
kNN obtain quite similar results overall. On single
datasets, however, it is sometimes clearly better to use k=5
and sometimes clearly better to use k=11 or k=17. This
demonstrates not only that the k parameter value is very
important for kNN, but also that no specific value is better
on all datasets.

In this experiment, BuLL clearly outperforms all kNN
variants, winning 13 of 18 datasets. To determine if BuLL
performance is significantly better than the kNNs, we use
the statistical tests suggested by Demšar (2006) for
comparing one classifier against several others over a
number of datasets; i.e. a Friedman test (Friedman, 1937),
followed by a Bonferroni-Dunn post-hoc test (Dunn,
1961). With four classifiers and 18 datasets the critical
distance (for α=0.05) is 1.03, so based on these tests,
BuLL significantly outperformed all three kNN variants.

Table 3 below shows the AUC results. Using average
ranks, the only statistically significant difference is that
kNN5 is outperformed by all three competitors. This is not
very surprising since the mere five votes will only be able
to produce five different probability distributions; i.e.
many instances will have equal rank, making the ROC
curve too simple.

kNN5 kNN11 kNN17 BuLL

AUC R AUC R AUC R AUC R

BLD 0.6365 3 0.6511 2 0.6698 1 0.6179 4

BC 0.6345 4 0.6611 2 0.6489 3 0.6856 1

Cleve 0.8667 4 0.8969 2 0.9016 1 0.8869 3

Crx 0.9082 4 0.9109 1 0.9108 2 0.9107 3

Germ 0.7176 4 0.7502 2 0.7509 1 0.7314 3

Heart 0.8756 4 0.8880 2 0.8946 1 0.8803 3

Hepati 0.8479 4 0.8562 2 0.8678 1 0.8481 3

Horse 0.8547 4 0.8685 2 0.8653 3 0.8712 1

Hypo 0.8758 4 0.8957 3 0.9094 2 0.9222 1

Iono 0.9214 4 0.9323 3 0.9341 2 0.9771 1

Labor 0.9342 4 0.9708 1 0.9533 2 0.9500 3

PID 0.7869 4 0.8011 2 0.8056 1 0.7966 3

Sick 0.8939 4 0.9153 3 0.9225 1 0.9191 2

Sonar 0.9204 2 0.8537 3 0.7978 4 0.9402 1

Spam 0.9348 4 0.9426 3 0.9428 2 0.9524 1

TTT 0.9679 4 0.9974 2 0.9997 1 0.9869 3

Votes 0.9684 4 0.9703 3 0.9722 2 0.9783 1

WBC 0.9881 4 0.9913 2 0.9917 1 0.9890 3

Mean

rank
3.83 2.22 1.72 2.22

Table 3: Experiment 1 - AUC results. R is ranks.

Figures 2 to 4 below show ROC curves obtained by kNN5,
kNN17 and BuLL on the Iono dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iono kNN5 ROC, area=0.92145, std = 0.018279

1 − Specificity

S
e

n
s
it
iv

it
y

Figure 2: ROC curve kNN5 on IONO. AUC=0.9214

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iono kNN17 ROC, area=0.93408, std = 0.015475

1 − Specificity

S
e
n
s
it
iv

it
y

Figure 3: ROC curve kNN17 on IONO. AUC=0.9341

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iono BuLL ROC, area=0.97715, std = 0.010017

1 − Specificity

S
e

n
s
it
iv

it
y

Figure 4: ROC curve BuLL on IONO. AUC=0.9757

Although the average rank is a little lower for kNN17,
BuLL still wins 7 of 18 datasets. When comparing BuLL
only to kNN11, BuLL wins 8 of 18 datasets. The fact that
BuLL is unable to keep the edge when considering AUC
instead of accuracy is clearly interesting. With this in
mind, one key priority becomes to produce a BuLL variant
performing better when using AUC for evaluation.

The overall result from Experiment 1 is nevertheless that
BuLL significantly outperforms the kNN variants
regarding accuracy, while the results regarding AUC are
inconclusive between BuLL, kNN11 and kNN17.

For Experiment 2, we, due to the limited space available,
elect to present only obtained ranks and pair-wise
comparisons. Table 4 below shows all six BuLL variants,
evaluated against each other and the three kNN algorithms.
The BuLL variants are describes as X/Y, where X is the
construction strategy (Original, Eager or All) and Y is the
combination strategy (Spheres or Instances).

 kNN BuLL

 5 11 17 O/S O/I E/S E/I A/S A/I

BLD 8 3 5 4 6 1 2 8 7

BC 4 5 3 1 5 2 7 9 8

Cleve 8 5 5 1 4 7 1 9 1

Crx 3 3 3 6 7 1 2 9 8

Germ 7 6 4 2 1 3 5 8 8

Heart 7 1 5 2 8 6 2 9 2

Hepati 3 4 7 1 1 5 5 8 8

Horse 7 3 4 5 1 6 2 9 8

Hypo 3 4 5 2 1 6 7 8 8

Iono 5 6 7 3 3 1 2 9 8

Labor 3 8 9 3 3 3 3 1 1

PID 5 7 3 1 2 4 6 8 8

Sick 2 3 6 1 4 5 7 9 8

Sonar 6 8 9 2 6 1 2 5 2

Spam 7 8 9 4 5 3 6 1 1

TTT 4 2 1 3 8 5 7 6 9

Votes 4 4 7 2 1 3 6 9 8

WBC 3 8 6 4 2 1 4 9 7

Mean

Rank
4.9 4.9 5.4 2.6 3.8 3.5 4.2 7.4 6.1

Table 4: Experiment 2 - Ranks accuracy

The original BuLL variant is still clearly the most accurate.
In addition, all BuLL variants, except the two using All
construction have lower average ranks than all three kNNs.
A deepened analysis showed that BuLL A/S and BuLL A/I,
for some datasets, classified all instances as belonging to
the majority class. In other words, the algorithm, when
allowed to optimize class distributions in the spheres,
produced a set of spheres classifying every test instance
identically. Table 5 below shows pair-wise comparisons.
The values tabulated are wins for the row technique against
the column technique. Using 18 datasets, a sign-test
(α=0.05) requires 13 wins for statistical significance.
Statistically significant number of wins are underlined.

kNN BuLL

 5 11 17 O/S O/I E/S E/I A/S A/I

kNN5 - 11 9 2 6 4 8 14 12

kNN11 7 - 12 5 5 7 7 15 13

kNN17 8 7 - 3 5 6 6 15 13

BuLL O/S 15 13 15 - 11 11 11 16 14

BuLL O/I 12 12 13 6 - 8 10 14 13

BuLL E/S 13 11 12 6 9 - 14 16 14

BuLL E/I 9 11 12 6 7 4 - 15 14

BuLL A/S 3 3 3 2 4 2 3 - 4

BuLL A/I 6 5 5 3 5 4 3 14 -

Table 5: Experiment 2 - Pairwise comparisons accuracy

As seen in Table 5, BuLL O/I and BuLL E/S are both very
close to significantly outperforming all three kNNs.
Another interesting observation is that BuLL E/S actually
is significantly more accurate than BuLL E/I. This,
together with the results obtained by BuLL O/S, indicates
that the simpler combination strategy of using just the
spheres and not the instances, appears to be better when
targeting accuracy. Table 6 below shows the ranks
obtained using AUC.

 kNN BuLL

 5 11 17 O/S O/I E/S E/I A/S A/I

BLD 5 3 1 7 6 4 2 9 8

BC 8 6 7 1 2 4 5 9 3

Cleve 9 4 3 6 8 5 7 2 1

Crx 7 3 4 5 9 1 6 8 2

Germ 9 3 2 6 8 4 5 7 1

Heart 7 4 2 5 8 6 9 1 3

Hepati 8 5 3 7 9 4 6 2 1

Horse 8 4 5 3 9 2 6 7 1

Hypo 9 8 3 1 6 2 5 7 4

Iono 9 8 7 1 6 2 5 2 4

Labor 9 2 7 8 1 5 4 6 3

PID 8 4 2 5 6 3 1 9 7

Sick 9 5 2 4 8 6 7 3 1

Sonar 5 8 9 4 3 2 6 7 1

Spam 7 6 5 2 4 3 1 8 9

TTT 7 2 1 5 8 9 6 3 4

Votes 9 7 5 2 3 1 6 3 8

WBC 9 4 2 7 6 8 3 5 1

Mean

Rank
7.9 4.8 3.9 4.4 6.1 3.9 5.0 5.4 3.4

Table 6: Experiment 2 - Ranks AUC

Somewhat surprising, the best mean rank is obtained by
BuLL A/I. So, although this variant performed poorly
when classifying, it is evidently able to rank the instances
based on how likely they are to belong to a certain class.
This may appear to be an anomaly, but some preliminary
follow-up experiments showed that it would probably be
possible to obtain much better classification accuracy, just
by using a variable threshold. The two algorithms with the
best performance overall are BuLL O/S and BuLL E/S.
Bull E/S actually has the second best mean rank in both the
accuracy and the AUC evaluation. Table 7 below show the
pair-wise AUC comparisons. Leaving kNN5 out, there are
very few statistically significant differences. It should,
nevertheless, be noted that BuLL A/I wins at least 11 of 18
datasets against all competitors.

kNN BuLL

 5 11 17 O/S O/I E/S E/I A/S A/I

kNN5 - 1 1 1 6 1 2 6 2

kNN11 17 - 5 10 11 8 9 10 6

kNN17 17 13 - 11 12 9 12 11 7

BuLL O/S 17 8 7 - 14 8 11 11 7

BuLL O/I 12 7 6 4 - 4 5 7 6

BuLL E/S 17 10 9 10 14 - 12 11 7

BuLL E/I 16 9 6 7 13 6 - 11 4

BuLL A/S 12 8 7 7 10 6 7 - 5

BuLL A/I 16 12 11 11 12 11 14 13 -

Table 7: Experiment 2 - Pairwise comparisons AUC

Conclusions

We have in this paper suggested a novel instance based
learner called BuLL. BuLL is primarily designed to avoid
the dependence of the parameter value k in standard kNN,
but also to be able to produce accurate probability
distributions, based on local information.

The experimentation showed that the basic version of
BuLL was significantly more accurate than standard kNN.
When using accuracy for evaluation, all versions of BuLL
not using the All combination strategy, have a positive
won-loss record against all kNN variants.

When using AUC instead of accuracy for evaluation, the
results are inconclusive. Still, most BuLL variants
outperform kNN even regarding AUC. The best BuLL
approach is in fact very close to having significantly higher
AUC than all kNN variants. Finally, an interesting
observation is that the approach having the second worst
accuracy, actually obtained the highest AUC.

Discussion and future work

First of all it should be noted that BuLL in this paper was
only compared to standard kNN, instead of the more
sophisticated versions available. The reason for this is that
improvements like weighted voting and axes-scaling based
on attribute importance are equally applicable to BuLL.
Having said that, one priority is to determine whether these

modifications in fact are beneficial for BuLL. There are
also, however, other possible modifications, specific to
BuLL, that should be explored. One example is to
investigate the use of a variable threshold when performing
classification. Another option is to introduce more
sophisticated voting schemes based on, for instance, each
training instance ranking all test instances after how likely
they are to belong to a certain class.

Acknowledgement
This work was supported by the Information Fusion
Research Program (University of Skövde, Sweden) in
partnership with the Swedish Knowledge Foundation under
grant 2003/0104. URL: http://www.infofusion.se.

References

C. Bishop, 1995. Neural Networks for Pattern Recognition,
Oxford University Press.

C. L. Blake and C. J. Merz, 1998. UCI Repository of
machine learning databases. University of California,
Department of Information and Computer Science.

A. Bradley, 1997. The use of the area under the roc curve
in the evaluation of machine learning algorithms. Pattern
Recognition, 30(6):1145-1159.

L. Breiman, 1996. Bagging predictors. Machine Learning,
24(2), pp. 123-140.

L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone,
1984. Classification and Regression Trees, Wadsworth
International Group.

J. Demšar, 2006. Statistical Comparisons of Classifiers
over Multiple Data Sets, Journal of Machine Learning
Research, 7:1–30.

O. J. Dunn, 1961. Multiple comparisons among means,
Journal of the American Statistical Association, 56:52-64.

T. Fawcett, 2001. Using rule sets to maximize roc
performance, 15

th
 International Conference on Machine

Learning, pp. 445-453.

M. Friedman, 1937. The use of ranks to avoid the
assumption of normality implicit in the analysis of
variance, Journal of American Statistical Association,
32:675-701.

F. Provost and P. Domingos, 2003. Tree induction for
probability-based ranking, Machine Learning, Vol. 52:199-
215.

J. R. Quinlan, 1993. C4.5: Programs for Machine
Learning, Morgan Kaufmann.

J. Zavrel, 1997. An empirical re-examination of weighted
voting for k-nn, 7th

 Belgian-Dutch Conference on Machine
Learning, pp. 139-148.

