Classifying Uncovered Examples
by Rule Stretching

Martin Eineborg! and Henrik Bostrém®:2

! Machine Learning Group, Department of Computer and Systems Sciences,

Stockholm University/Royal Institute of Technology,
Electrum 230, Stockholm, Sweden,
{eineborg,henke}@dsv.su.se
2 Virtual Genetics Laboratory,

171 77 Stockholm, Sweden

Henrik.Bostrom@vglab.com

Abstract. This paper is concerned with how to classify examples that
are not covered by any rule in an unordered hypothesis. Instead of as-
signing the majority class to the uncovered examples, which is the stan-
dard method, a novel method is presented that minimally generalises the
rules to include the uncovered examples. The new method, called Rule
Stretching, has been evaluated on several domains (using the inductive
logic programming system Virtual Predict for induction of the base hy-
pothesis). The results show a significant improvement over the standard
method.

1 Introduction

One major distinction between methods for induction of classification rules is
whether they treat the hypothesis as an ordered or unordered set of rules. In
the former case, there is no need for resolving classification conflicts among the
rules, since the first applicable rule is used (such an hypothesis is commonly
referred to as a decision list [14]). Furthermore, a decision list always includes
a default rule at the end, which means that any example that may have passed
through the previous rules without being covered will still be assigned a class.
It should be noted that the standard inductive logic programming setting with
two classes (positive and negative examples) and where a hypothesis is searched
for that covers all positive examples but none of the negative, in fact is a special
case of the former case, since it implicitly assumes that any example that is not
covered by the rules should be classified as negative. In the case with unordered
hypotheses, rules need to be generated for all classes and some strategy has to be
adopted for resolving conflicts among the rules (e.g., [4]). Furthermore, it may
very well happen that none of the rules is applicable when trying to classify new
examples. A common strategy for handling such examples is to classify them as
belonging to the majority class (e.g., [7]).

In this paper we present a new method for classifying examples that are not
covered by any of the rules in an (unordered) hypothesis. The method, Rule

Stretching, is applied after the hypothesis has been induced, during the classi-
fication phase. Rule Stretching works by generalising the rules in a hypothesis
to cover the previously uncovered examples. The method is not targeted at any
special inductive logic programming system but is a general method for assigning
classes to uncovered examples.

The paper is organised as follows. In the next section, we present a general
algorithm for Rule Stretching. This algorithm is specialised in Section 3 with
respect to a specific learning paradigm and a system called Virtual Predict,
which is used for induction of base hypotheses. The setup of the experiments
and the results are presented in Section 4. The work presented in this paper has
some ideas in common with Analogical Prediction [10], which are discussed in
Section 5. The paper ends with concluding remarks in Section 6. The reader is
assumed to be familiar with basic concepts of logic programming [8].

2 Rule Stretching

Examples that are not covered by an unordered hypothesis are usually classified
as belonging to a default class (usually the majority class). The work in this
paper is instead based on the idea that unordered rules of an induced hypothesis
can be ’stretched out’ to cover previously uncovered examples. Rule Stretching
is used in the following way:

1. Induce an unordered set of rules using an inductive logic programming sys-
tem

2. Classify new examples using the induced rules

3. Examples that are not covered by any of the rules are given to the Rule
Stretching system for classification

A new, more general, hypothesis that is ensured to cover a previously un-
covered example, can be formed by computing the minimal generalisation of the
example and each rule in the hypothesis. The rules of the new hypothesis has to
be evaluated since, by generalising the rules to cover the example, the accuracy
of the rules may have been changed (important conditions could have been re-
moved by the generalisation making it possible for a rule to cover more examples
of other classes than it did before the generalisation).

An example on how Rule Stretching works is illustrated in Figure 1 where
there are two classes a and b, two rules, R1 and R2, and an uncovered example
denoted ’?’. In the picture to the left, the two rules and their coverage can be
seen as well as the uncovered example. In the picture to the right the two rules
have been generalised so that they cover the unclassified example and the class
of the example can be determined by, for example, selecting the most probable
class for the most accurate rule, which in this case means class a. Note that when
generalising rule R2 it covers not only examples of class b but also two examples
of class a (thus decreasing its accuracy).

A general algorithm for Rule Stretching is presented in Figure 2. The algo-
rithm takes a hypothesis H, background knowledge B, examples E, an uncovered

Fig. 1. Rule Stretching

example e € E such that H A B }~ e, and returns a class label. Three functions
are used by the algorithm: the minimal_ generalisation function, which returns
the minimal generalisation of a rule and an example, the coverage function, which
takes a rule and a set of examples and returns the number of examples of the
different classes it covers, and the classify function, which returns a class label
given a set of pairs of generalised rules and their coverage.

Input: hypothesis H, background knowledge B, examples E, an uncovered example e
Output: a class label ¢

1. H ={r' | r € HAr' = minimal _generalisation(r,e)}
2. V={(r,v) | r € H ANv = coverage(r,E)}
3. c=classify(V)

Fig. 2. Rule Stretching Algorithm (general version)

3 Rule Stretching using Least General Generalisations

The general version of the Rule Stretching algorithm should be specialised with
respect to the theoretical foundation of the inductive logic programming system
that is used. In this study we consider the framework of the system Virtual
Predict, which is described in Section 3.1. A special version of the Rule Stretching
algorithm that takes advantage of the properties of this particular system is given
in Section 3.2.

3.1 Virtual Predict

Virtual Predict [1] is an inductive logic programming system that is a successor of
Spectre 3.0 [2]. The system can be viewed as an upgrade of standard decision tree
and rule induction systems in that it allows for more expressive hypotheses to be

generated and more expressive background knowledge (i.e., logic programs) to be
incorporated in the induction process. The major design goal has been to achieve
this upgrade in a way so that it should still be possible to emulate the standard
techniques with lower expressiveness (but also lower computational cost) within
the system if desired. As a side effect, this has allowed the incorporation of
several recent methods, such as bagging, boosting and randomisation, that have
been developed for standard machine learning techniques into the more powerful
framework of Virtual Predict.

Like its predecessor, Virtual Predict uses resolution as a specialisation op-
erator [3]. This means that each rule generated by the system is the result of
repeatedly applying resolution to some overly general clause. For reasons of effi-
ciency, the system internally represents rules on the same format as it represents
proofs of examples, namely as derivation terms.

A derivation term is a term on the form ¢;(¢1, .. .,), where ¢; is an identifier
of some input clause in the derivation of the rule (or the proof of the example),
and ty,...,t, are derivation terms corresponding to the sub-derivations (or sub-
proofs) for the n literals in the body of the clause ¢;.

For example, given the following overly general theory:

(c1) target(Size,Shape,Weight):-
size(Size), shape(Shape), weight (Weight).
(c2) size(A):- A = small.
(c3) size(A):- A = medium.
(c4) size(A):- A = large.
(cb) shape(A):- regular(4).
(c6) shape(A):- irregular(4).
(c7) regular(A):- A = circular.

(c15) weight(A):- A = low.

the proof of the example target(small,circular,low) would be represented
by the derivation term cl(e2,¢5(c7), c15). The derived rule

target (Size,Shape,Weight) : -
Size = small, regular(Shape), weight(Weight).

is represented by the derivation term c1(¢2,¢5(_),).

It should be noted that a derivation term for a derived rule typically is non-
ground, while a derivation term for a proof of an example always is ground®.
By finding the proofs of all examples in advance of the induction process and
by representing the proofs together with derived rules as derivation terms, the
coverage check of a derived rule and an example is reduced to unification, i.e.
no theorem proving is needed. This has led to an order of magnitude speedup in
Virtual Predict compared to its predecessor.

! It should also be noted that some built-in predicates (such as arithmetic predicates)
need special treatment, but this falls outside the scope of the paper.

3.2 A Specialised Rule Stretching Method

Since Virtual Predict represents the rules of a hypothesis as terms it is possible
to compute the minimal generalisation of a rule and the proof of an example by
computing the least general generalisation [12].

Definition 1. An atom c is a generalisation of atoms a and b if there exists
substitutions 01 and 65 such that c81 = a and cf> = b.

Definition 2. A generalisation ¢ for two atoms a and b is a least general gen-
eralisation (lgg) if for each other generalisation c; of a and b there ezists a
substitution 0; such that ¢ = ¢;0;.

A new more specific version of the general Rule Stretching algorithm, was
formed by replacing the minimal_generalisation function with a function, lgg,
that computes the least general generalisation of a rule and the proof of an exam-
ple. Furthermore, the classify function was replaced with a function, use_ best_ rule,
that given a set of evaluated rules returns the class of the rule that has the high-
est accuracy (with Laplace-correction). The lgg version of the Rule Stretching
algorithm can be seen in Figure 3.

Input: hypothesis H, background knowledge B, examples E, an uncovered example e
Output: a class label ¢

1. H ={r" |re HAr' =lgg(r,e)}
2. V={(r,v) | r € H ANv = coverage(r,E)}
3. ¢ =use_best_rule(V)

Fig. 3. Rule Stretching Algorithm (lgg version)

4 Empirical Evaluation

A number of experiments were conducted in order to find out whether the Rule
Stretching method performs better than choosing the majority class for uncov-
ered examples. In all of the experiments the base hypotheses were induced by
Virtual Predict. In Section 4.1, we describe how Virtual Predict was configured
and the domains used. The experimental results are given in Section 4.2.

4.1 Experimental Setting

There are a number of parameters that can be set when defining learning meth-
ods in Virtual Predict, allowing a very wide range of methods to be defined,
including the emulation of standard techniques, such as decision tree induction
and naive Bayes classification. The parameters include the search strategy to

use (separate-and-conquer or divide-and-conquer), optimisation criterion (e.g.
information gain), probability estimate (e.g. m estimate), whether an ordered
or unordered hypothesis should be induced, inference method (how to apply the
resulting hypothesis), post-pruning (using e.g. an MDL criterion or a prune set)
as well as ensemble learning methods (bagging, boosting, and randomisation).
There are also a number of parameters that have to be set when defining exper-
iments in Virtual Predict, such as what experimental methodology to use (e.g.
n-fold cross validation).

The parameters and their values were in this study set according to Table 1.
A covering (separate and conquer) approach to rule induction was used together
with incremental reduced error pruning [5], by which a generated rule is imme-
diately pruned back to some ancestor in the derivation sequence (the pruning
criterion was in this experiment set to accuracy on the entire training set, but
other options in Virtual Predict include accuracy on a validation set and most
compressive ancestor).

In case an example was covered by more than one rule this conflict was
resolved by computing the most probable class using naive Bayes, by maximising
the following expression:

P'(C|Ri A...ARy) = P(C)P(Ry|C)...P(R,|C) (1)

where C' is a class and R; ... R, are the rules that cover a particular example.
It should be noted that in case a particular example is not covered by any
rule, maximising the above expression leads to assigning the example the most
probable class a priori, which is the standard method for classifying uncovered
examples.

Table 1. Virtual Predict settings

PARAMETER VALUE
STRATEGY Separate and Conquer
OPTIMISATION CRITERION Information Gain
PROBABILITY ESTIMATE M Estimate, with M=2
MEASURE Information Gain
INCREMENTAL REDUCED ERROR PRUNING|Most Accurate on Training Set
INFERENCE METHOD Naive Bayes
EXPERIMENT TYPE 10-Fold Cross Validation

Rule Stretching was tested on the seven problems that can be seen in Table 2
along with some statistics about the number of classes, the distribution of the
classes, the number of examples that were not covered by the base hypothesis,
and the total number of examples in the domain. Four of the domains were col-
lected from the UCI Machine Learning Repository: the Balance Scale Database,
the Car Evaluation Database, the Congressional Voting Records Database, and
the Student Loan Relational Database. The data for the problem of recognising
illegal positions on a chess endgame with a two kings and a rook, KRKI, and the

problem of predicting the secondary structure of proteins (described in [11]) were
available from the web page of the Machine Learning Group at the University
of York. The Alzheimers toxicity domain was available from Oxford University
Computing Laboratory. The domain was described in [6].

In the secondary protein structure domain the hypothesis was restricted
to looking at properties for only three positions at a time (i.e., the predicate
alpha_triplet/3 was used).

Table 2. Domain statistics

DomaiIN CLASSES CLass UNCOVERED ToTAL
Di1STRIBUTION (%)|ExaMPLES (%)|EXAMPLES

BALANCE 3| 7.84; 46.08; 46.08 19.04 625

CAR 4 3.76; 3.99 3.36 1728

22.22; 70.02

HouseE VoOTEs 2 38.62; 61.38 2.53 435

KRKI 2 34.2; 65.8 2.6 1000

ALZHEIMERS TOX. 2 50; 50 6.54 886

SECONDARY PROTEIN

STRUCTURE 2 43.4; 56.6 27.61 1014

STUDENT LOAN 2 35.7; 64.3 5.4 1000

4.2 Experimental Results

Two methods for classifying uncovered examples were compared in the seven do-
mains: selecting the majority class and Rule Stretching. The same base hypothe-
ses were used in conjunction with the two methods, and these were produced by
Virtual Predict using the settings shown in the previous section. In all but one
of the domains, 10-fold cross validation was employed. Due to long computation
time for the secondary protein structure domain only a single run was made,
using a single training and test set.

The null hypothesis was that Rule Stretching is not more accurate than se-
lecting the majority class. The results of using the two methods is shown in
Table 3. One can see that in seven out of seven cases, Rule Stretching results in
more accurate classifications than when assigning uncovered examples the ma-
jority class. The one sided binomial tail probability of this number of successes,
given that the probability of success is 0.5, is approximately 0.0078, which allows
for a rejection of the null hypothesis at the 1% level.

5 Related Work

The idea of including the example to be classified in the formation of the hy-
pothesis is shared with Analogical Prediction [10]. Analogical Prediction uses
background knowledge, training examples, and the example to be classified to

Table 3. Results

DomAIN MAaJORITY CLASS|RULE STRETCHING
BALANCE 76.32% 84.64%
CAR 93.98% 94.16%
House VOTES 94.25% 95.4%
KRKI 97.1% 99.4%
ALZHEIMERS TOX. 88.26% 90.18%
SECONDARY PROTEIN STRUCTURE 57.99% 61.14%
STUDENT LOAN 92.2% 92.7%

form a hypothesis which is used to classify the example. For every new example
that is to be classified, a new hypothesis is formed. This leads to a different
behavior when classifying examples than the normal setting of inductive logic
programming does.

The main difference between Rule Stretching and Analogical Prediction is
that Analogical Prediction forms a new hypothesis for every example that is to
be classified whereas in Rule Stretching a previously induced hypothesis is used
to classify examples that it covers, and rules of the hypothesis are minimally gen-
eralised to cover the remaining examples. This results in that Rule Stretching
only evaluates as many candidate rules as there are rules in the original hypoth-
esis, while Analogical Prediction performs a costly search for each example to
be classified, typically evaluating a large number of candidate rules.

6 Concluding Remarks

A novel method for classifying examples that are not covered by an unordered
hypothesis has been presented. The method, Rule Stretching, is based on the
assumption that a more accurate classification can be made by generalising rules
of a base hypothesis to cover the uncovered examples than using the standard
method of assigning the examples to the majority class. The experiments, in
which the inductive logic programming system Virtual Predict was used for the
induction of a base hypothesis, showed that Rule Stretching performs signifi-
cantly better than the standard method.

There are several directions for future research. One is to alter the least
general generalisation version of the Rule Stretching algorithm, by replacing the
use_ best_rule function with some other, more elaborate, function. For example,
all of the generalised rules could contribute to the decision of the correct class
label to return, by using naive Bayes to find the most probable class given all
of the generalised rules and their coverage. Another alternative is to replace the
classify function with a CN2 type of function [4].

Another interesting direction for future research would be to formulate a
version of Rule Stretching for some other system, such as Progol [9]. Since rules
and examples are not represented as terms in Progol, it is not possible to com-
pute the minimal generalisation by computing the least general generalisation.

Instead, rules in a hypothesis could be stretched out to include uncovered ex-
amples by using relative least general generalisation [13]. However, one major
drawback of using relative least general generalisation (compared to computing
the least general generalisation of a pair of atoms as done in this study) is that
the computational cost is significantly higher.

Yet another direction for future research would be to relax the condition in
Rule Stretching that each rule is generalised minimally. One possibility is to
allow the system to search in the lattice formed by the rule to be stretched and
the most general rule. This would however be significantly more costly than the
current approach. Another possibility would be to let the generalisation process
continue after having classified an uncovered example by computing the mini-
mal generalisations of the generalised hypothesis and a new uncovered example
and stop this process only when the accuracy of the rules in the hypothesis
significantly decreases.

References

1. H. Bostrom. Virtual Predict User Manual. Virtual Genetics Laboratory, 2001.

2. H. Bostrom and L. Asker. Combining divide-and-conquer and separate-and-
conquer for efficient and effective rule induction. In Proceedings of the 9th In-
ternational Workshop on Inductive Logic Programmaing, volume 1634, pages 33—43.
Springer-Verlag, 1999.

3. H. Bostrom and P. Idestam-Almquist. Induction of logic programs by example-
guided unfolding. Journal of Logic Programming, 40(2-3):159-183, 1999.

4. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements.
In Proceedings of the Fifth European Working Session on Learning, pages 151-163,
Berlin, 1991. Springer Verlag.

5. W. W. Cohen. Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning. Morgan Kaufmann, 1995.

6. R.D. King, A.Srinivasan, and M.J.E. Sternberg. Relating chemical activity to
structure: an examination of ilp successes. New Generation Computing, 13(3—
4):411-433, 1995.

7. W. Van Laer, L. De Raedt, and S. Dzeroski. On multi-class problems and dis-

cretization in inductive logic programming. In Proceedings of the 10th International

Symposium on Methodologies for Intelligent Systems. Springer-Verlag, 1997.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

9. S. Muggleton. Inverse entailment and Progol. New Generation Computing Journal,

13:245-286, 1995.

10. S. Muggleton and M. Bain. Analogical prediction. In Proceedings of the 9th Inter-
national Workshop on Inductive Logic Programming, volume 1634, pages 234-244.
Springer-Verlag, 1999.

11. S. Muggleton, R. King, and M. Sternberg. Protein secondary structure prediction
using logic-based machine learning. Protein Engineering, 5:647-657, 1992.

12. G. D. Plotkin. A note on inductive generalisation. Machine Intelligence 5, pages
153-163, 1970.

13. G.D. Plotkin. A further note on inductive generalization. In Machine Intelligence,
volume 6, pages 101-124. Edinburgh University Press, 1971.

14. R.L. Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.

®

