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ABSTRACT 

Process and casting data from different sources have been 

collected and merged for the purpose of predicting, and 

determining what factors affect, the quality of cast products in a 

foundry. One problem is that the measurements cannot be directly 

aligned, since they are collected at different points in time, and 

instead they have to be approximated for specific time points, 

hence introducing uncertainty. An approach for addressing this 

problem is investigated, where uncertain numeric feature values 

are represented by intervals and random forests are extended to 

handle such intervals. A preliminary experiment shows that the 

suggested way of forming the intervals, together with the 

extension of random forests, results in higher predictive 

performance compared to using single (expected) values for the 

uncertain features together with standard random forests. 

1. INTRODUCTION 
Data mining techniques have become standard tools to develop 

predictive and descriptive models in situations where one wants to 

exploit data collected from earlier observations in order to 

optimize future decision making [8]. One of the key 

characteristics of data mining is that it can be used for analyzing 

data that has been collected during the normal operations of a 

process, i.e., data does not have to be specifically collected for 

this purpose [8]. 

However, one drawback of having collected data without analysis 

in mind is that the data may not be optimal for the intended 

purpose. The collected data can for instance lack measurements 

on individual object level, i.e., information is instead represented 

on batch level. This is typical for the application area considered 

in this study, which has been done in cooperation with Volvo 

Powertrain in Skövde, Sweden, a supplier of power train parts, 

such as cylinder blocks, gear boxes and drive shafts, to the 

business areas within the Volvo Group. In this study, we focus on 

the process line of cylinder heads that are casted in the foundry. In 

particular, we study how to derive a classification model for the 

quality of cast cylinder heads by analyzing process and casting 

data.  

Not only is the classification model of interest for making 

predictions, but also for identifying variables affecting the quality. 

In this application, different types of data are stored in different 

databases, and one major difficulty is to merge process data, 

which is on individual product level, with casting data, which is 

on a batch level, hence introducing uncertainty regarding 

measurements for the individual products.  

In the next section, we describe the application in more detail, 

including the data sources considered. In section three, we point 

out sources of uncertainty in the merged data and discuss 

approaches to dealing with these. In section four, we present a 

preliminary experiment that has been conducted. Finally, in 

section five, we give some concluding remarks and point out 

directions for future research. 

2. CASE STUDY DESCRIPTION 
The considered cylinder head process line at Volvo Powertrain 

consists of three sub-lines with two different marriage points. A 

marriage point is where two sub-lines intersect and parts from 

each line are assembled.   

2.1 Explanation of the Casting Process Line 
The casting process can be divided into five main actions; pattern 

making, core making, molding, melting and cleaning.  

The pattern is a model of the cylinder head which is used for the 

form shooting. The form is produced by packing molding sand 

under great pressure and the result is an inverse image of the final 

product. It consists of one collecting form (bottom half), where 

the cores are placed, and one covering form (top half).  

A cylinder head is not a solid product; i.e., it has interior cavity. 

To achieve the cavities in the cylinder head, inner parts, called 

cores, must be added to the form. After the shooting of the cores, 

these are glued together with the collecting form at the first 

marriage point. The void space between the form and the cores is 

what the final product develops into.  

The assembling of the cores and the form is part of the molding 

process. This involves preparation of the forms in order for these 

to get ready for the melted material. The last step in the molding 

process is to put the covering form on top of the collecting form 

before the melt is poured into the assembled final form. This is the 

second marriage point in the cylinder head process line. 

The melting process takes places at another area in the foundry, 

since it supplies several different lines with melted metal, not only 

the cylinder head line. The melted metal is prepared during the 

melting process to obtain the appropriate characteristics of the 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

U'09, June 28, 2009, Paris, France. 

Copyright 2009 ACM 978-1-60558-675-5...$5.00. 



melt. Such preparations involve temperature regulations and 

addition of the proper amount of chemicals. The melted metal is 

then transported to the casting area where the metal is poured into 

the form. The casting area can hold 24 forms and these are 

divided into 12 chills where each chill has two bins. A chill holds 

the form when the melt is poured into it and supports the 

solidification of the melted metal. 

Cleaning is the final step in the casting process and is done when 

the melted material has been cooled down sufficiently enough. 

This step refers to sand removal; the casted product is separated 

from the form and the sand is removed. If the product passes a 

quality control, it is transported to the next line where the cylinder 

head is welded; i.e., to improve the surface of the cylinder head.  

2.2 Complexity of the Casting Process 
The casting process is complex with multivariate interactions of 

known but also unidentified factors which makes it practically 

impossible for humans to grasp, as it has been observed that 

humans are normally not able to simultaneously analyze situations 

involving more than three variables effectively and this becomes 

even more difficult when the data are corrupted by noise and 

uncertainty [7]. The current way of analyzing the casting process 

is done in a one-variable-at-a-time manner. Due to the complex 

relationships, there is a requirement for a more sophisticated way 

of analyzing data from such processes and it is believed that data 

mining can achieve this in a useful way. 

2.3 Data Used in an Initial Experiment  
In a first experiment, process data and quality data was collected 

from the processing line before casting of cylinder heads, see 

Figure 1. The process and quality data is stored on individual 

product level, i.e., there are corresponding process values for each 

cast cylinder head and its final quality outcome. The process data 

consists of about 100 variables, such as pressure, time taken 

between two process steps, weight, what casting chill was used 

and used fixture, i.e., a tool which holds the form during the 

process line.  

The casted product fails the quality inspection if some fault can be 

found on the product. Each rejected product is given one of about 

50 rejection codes, but in this study all rejection codes are treated 

identically; i.e., the quality data is transformed into binary data 

(discard or no-discard). 

 

Figure 1. The data mining process in the initial study. 

A predictive data mining model was built using the Rule 

Discovery System (RDS) [6]. In addition to generating predictive 

models, e.g., random forests, this software provides some insight 

into what factors are of importance by presenting the variable 

importance of each independent variable, i.e., how much the 

variable, relative to all other variables, contributes to reducing the 

error of the dependent variable. 

Some of the process variables or settings were strongly believed 

to have some impact on the quality of the resulting product, i.e., 

the cylinder head, but this could not be confirmed by the analysis. 

It was concluded that the use of process data only is not sufficient 

to get a good and accurate model. It was decided that the process 

dataset should be extended with chemical and thermal analysis 

data. 

2.4 Casting Analysis Data 
In retrospect, one may consider the idea of predicting the quality 

based only on data originating from the pre-processes of the mold 

before the casting to be rather naïve. The casting process is very 

complex, and the melt itself can be expected to have an even 

greater impact on the quality of the cylinder heads than the 

subsequent process. As a next step, it is inevitable to also include 

data from the casting process, as depicted in Figure 2. 

 

Figure 2. Extended data mining process. 

The casting process starts with melting down raw material in a 

melting oven. The melt is then transported to a buffer oven, where 

the composition of the melt is controlled; the melted material is 

prepared by e.g., regulating the temperature and adding chemicals. 

The melt is transferred to a final oven, the casting oven, and a 

casting analysis is conducted when this oven is refilled with a new 

melt. One refill of this oven contains melt sufficient for casting of 

eight cylinder heads. 

2.4.1 Chemical analysis data 
Analysis of the chemical compound of a melt is undertaken at 

every second or third refill of the casting oven. This would imply 

that one chemical analysis can be linked to 16-24 cylinder heads. 

For a cylinder head that is cast in a near time to the analysis, this 

measurement will most likely be close to what would be obtained 

at time of casting, but the deviations are most likely larger for 

cylinder heads that are cast later. 

The chemical analysis measures the substance levels of 18 

different chemicals, including carbon, manganese, sulfur and 

nickel. According to human expertise, the chemical compound of 

the melt is expected to have a great impact on the final product 
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quality, but the relationships between substance levels and quality 

of casting are far from clear.  

2.4.2 Thermal analysis data 
A sample of molten material is collected and analyzed from a 

material structure point of view.  The thermal analysis data 

contains measurements of the cooling of the molten material. The 

various events that arise during the cooling process are considered 

to play a major role in the quality of the final cylinder head. The 

cooling curve represents the change in temperature over time and 

its first and second derivatives can also be used to gain 

information of the thermal conditions in the melt.  

One such measurement is the recalescence, which is a temporary 

increase in heat during the cooling process and this may provide a 

lot of information about the inoculation of the iron. The 

inoculation of the molten material is used in order to get a desired 

crystal structure, and is accomplished by adding substances in the 

melt to ease the manifestation of a uniform crystal structure. 

Thermal analysis is supposed to be conducted each time the 

casting oven is refilled and therefore 8 cylinder heads can be 

connected to each thermal analysis. 

3. UNCERTAINTY IN THE DATA 
In many real-world datasets, the problem of handling uncertain 

data arises, such as missing values, noise, etc. In this section, we 

first show how combining data from different data sources can 

further promote uncertainty, e.g., as discussed in [3], and we then 

present different approaches for addressing this problem. 

3.1 Merging Process and Casting Data 
The process data contains some missing data, but this is not of 

great concern in this study, since RDS, similar to many other 

systems, including e.g. C4.5 [5], can directly handle this type of 

data. All data in the process database can furthermore be 

connected to one specific cylinder head. 

As mentioned in section 2.4.1 and 2.4.2, the casting analyses are 

planned for being taken at regular occasions, but in reality they 

are less frequent. One chemical analysis can therefore be linked to 

up to approximately 30 cylinder heads and the number of cylinder 

heads connected to each thermal analysis is approximately 19 on 

average. An illustration of this is shown in Table 1, where the first 

and second columns correspond to a product ID of the cylinder 

head and time of casting, respectively. To each of these product 

IDs, there are about 100 associated process parameters, as 

described in section 2.3. The last two columns show time points 

when chemical and thermal data is collected, and as can be seen, 

there is a lack of measurements between consecutive analyses of 

chemical and thermal data.  

3.2 Different Approaches 
The process data can be used with no further preparation, but the 

missing chemical and thermal data need to be taken special care 

of. In addition to the straightforward, but not very productive, 

alternative of treating these data as missing, which hardly would 

result in that any chemical and thermal data for the cylinder heads 

are provided, there are a number of additional strategies for 

handling the uncertain data, which are described in this section. 

 

 

Table 1. A sample of the frequency of the casting analysis.  

Product ID 
Process  

data 

Chemical  

data 

Thermal  

data 

84001 19:40   

84002 19:52 19:43  

84003 19:53   

84004 19:57   

84005 19:58   

84006 20:02   

84007 20:02   

84008 20:07   

84009 20:08   

84010 20:12   

84011 20:13   

84012 20:18   

84013 20:19   

84014 21:04  20:43 

84015 21:04   

84016 21:09   

84017 21:10   

84018 21:14   

84019 21:15   

84020 21:19 21:18  

84021 21:19   

84022 21:23   

84023 21:24   

84024 21:29  21:26 

84025 21:30   

 

3.2.1 Use identical data for several products 
One way of handling the missing data is to use the last 

measurements for all subsequent products until a new analysis is 

conducted. 

This will result in a data set that typically has unique values for 

the process data, but in which the chemical and thermal data will 

be identical for several products. The benefit of this method is that 

the standard data mining methods can be applied directly on the 

resulting dataset. The disadvantage is that a product cast shortly 

after the analysis will have identical values to products cast much 

later. For example; product 84002 and 84019 in Table 1 will have 

identical chemical values, but the time span between them is 83 

minutes, and the chemical substances have most likely changed 

during this time period, in particular the carbon content. 

 



3.2.2 Interval-based data 
Another approach would be to use intervals representing the 

uncertainty of a measurement, i.e., the true value is expected to 

reside within the interval. When forming intervals around the 

most recent chemical or thermal estimate, it appears natural that 

these should be narrower for products that have been casted close 

in time to the measurement, compared to products that have been 

casted long after, i.e., the uncertainty is expected to increase with 

time. When extending the process measurements, which are 

represented by exact numbers, with chemical and thermal data 

represented by intervals, two main issues arise. The first concerns 

how to form the intervals. There are several possible alternatives 

for this. One approach is to try to model the error of estimated 

parameters as a function of time. This requires that a suitable 

model class is chosen, e.g., linear function, and that its parameters 

can be determined using available training data.  

The second issue concerns the inability of most current data 

mining systems to handle interval data. For this study, the Rule 

Discovery System (RDS) [6] has been extended to handle 

intervals for numeric features, in the following way. 

Each numeric feature value for an example is represented by a 

pair Value/Error, where Value is the expected (most likely) value 

of the feature for the example according to some measurement, 

and Error denotes the size of the interval surrounding the 

expected value, where Lower=Value-Error/2 and 

Upper=Value+Error/2 are the lower and upper bounds of the 

value, i.e., the true value is expected (to some suitable degree of 

confidence) to appear in this interval. 

The Rule Discovery System may generate decision trees [5], as 

well as ensembles of such trees (or random forests [1]), from both 

numeric and nominal features, for both classification and 

regression. Missing values are handled by distributing fractional 

examples over multiple nodes, as originally suggested in [5], with 

the weight of each fraction corresponding to the relative 

frequency of examples with a known particular value. Standard 

numeric features are discretized during tree growth, as proposed 

in [2].  

However, instead of just using the expected value for choosing a 

single child node to place an example in when growing a tree, 

three approaches to utilizing the intervals are considered. 

 The first two approaches distribute fractions of an example over 

multiple child nodes, similar to when having missing values, but 

where the weight of each fraction is determined in the following 

way. For a split of a node into two children Left and Right using 

the conditions Variable Threshold and Variable>Threshold 

respectively, and an example with associated values Lower and 

Upper, the fraction of the example going into Left is one if 

Upper Threshold, while the fraction of the example going into 

Right is one if Lower>Threshold, and otherwise the fraction of the 

example going into Left is F = (Threshold-Lower)/(Upper-Lower) 

and the fraction going into Right is 1-F. This assumes that the 

probability of the true value is uniformly distributed over the 

entire interval. For example, if the conditions V 12 and V>12 are 

associated with the left and right child respectively, then an 

example having the value V=14 with error 8, will be distributed 

such that (12-10)/(18-10) = 0.25 of the weight falls into the left 

child and 0.75 of the weight falls into the right. The difference 

between the two first approaches concerns the forming of 

thresholds for conditions involving numerical features, i.e., 

Variable Threshold or Variable>Threshold. At each node, when 

a numeric feature is to be discretized according to the method 

proposed in [2], the first approach considers only the expected 

value, i.e., Value above, of each training example. The second 

approach instead samples a value from the interval for each 

training example. For example, assume we are given the following 

sequence of triples, where each triple (V,E,C) represents an 

example having the value V with error E on a feature and class 

label C: 

(6,4,+), (8,6,+), (10,4,-), (12,4,-) 

The first approach, which only considers the expected values, will 

in this case only result in one possible threshold, i.e., 9, separating 

differently labeled examples according to the method in [2]. The 

second approach, which randomly assigns values from the 

intervals, may in this case not only find a single threshold, but 

several. For example, if the random assignments from the above 

intervals are 7, 11, 9 and 13 respectively, then there are three 

thresholds separating differently labeled examples: 8, 10 and 12.  

The third approach to handling the intervals does not consider 

distributing fractions of examples over multiple nodes, other than 

for completely missing feature values, but instead randomly 

selects a value from each interval for each example, prior to 

growing a tree. Hence, during tree construction, no particular care 

is taken to uncertain feature values, and the standard discretization 

technique is employed.  When generating a forest of trees, a new 

assignment of values from the intervals is made for each tree in 

the forest. 

4. PRELIMINARY EXPERIMENT 
We first describe the experimental setup and then present results 

from a comparison of the approaches for handling uncertain data 

as described in the previous section. 

4.1 Experimental Setup 
A dataset consisting of 13497 examples was assembled, where 

each example (cylinder head) was represented using 60 features, 

of which 19 correspond to process parameters, 22 concern 

chemical analysis measurements and 19 concern thermal analysis 

measurements. 

Each interval of a numeric feature value was represented by a term 

Value/Error, using the most recent measurement value as Value, 

while Error was computed as a function of time between the most 

recent measure and the casting time ti for product i and the 

standard deviation sd for each thermal and chemical variable, as 

shown in eq. 1. 

sd
e

Error
bta i1

1
 (1) 

The constants a and b in the error function were chosen so that 

ea·ti+b becomes very large for ti close to zero and is close to 0 for 

the maximum value of ti. To achieve this, the value of b should be 

sufficiently large when ti is close to zero and a· ti+b small enough 

(less than zero) for large ti. In this experiment, the constants were 

chosen to be a = -1 and b = 8. By using this formula, the length 

of the interval becomes narrower for products that have been cast 

more recent to the measuring time, while the width increases for 

products cast longer after. Error is close to zero for products cast 

close to the measurement and up to one standard deviation for 

products that have been cast long after. 



The classification task in the experiment is binary with the two 

classes discard and no-discard. The class frequencies are highly 

imbalanced, with less than 5% belonging to the former class, 

making it difficult to obtain a higher accuracy than the default 

classifier, i.e., classifying everything as no-discard. We hence 

decided to use as evaluation criterion the area under the ROC 

curve (AUC), i.e., the probability that an example belonging to a 

class is ranked as being more likely belonging to the class than an 

example not belonging to the class [4].  

In the experiment, stratified 10-fold cross validation was 

employed to estimate the AUC. Four versions of a random forest 

with 100 trees was generated with the Rule Discovery System: the 

first ignoring the intervals and only considering the expected 

values, hence effectively implementing the first strategy described 

in section 3.2.1, while the three other versions employ the three 

different approaches to utilize intervals as described in section 

3.2.2. Exactly the same training and test data, as well as random 

seeds for (bootstrap) selection of examples and features were used 

for all versions. 

4.2 Experimental Results 
The approach that considers only the expected values for the 

uncertain features obtained an AUC of 62.1. The three approaches 

that utilize the intervals obtained a higher AUC, ranging from 

62.8 for the first of these (distributing fractions of examples and 

using expected values to form thresholds), through 63.0 for the 

second (distributing fractions of examples and using random 

assignments to form thresholds) to 63.9 for the third (random 

assignments prior to tree growth). This shows that some 

performance improvement may indeed be obtained by the 

suggested way of representing uncertain feature values by 

intervals, and approximating the error as a function of time since 

measurement, compared to using only the expected value.   

5. CONCLUDING REMARKS 
We have investigated approaches for merging uncertain chemical 

and thermal analysis data with process data in order to obtain 

predictive models for quality of cast cylinder heads. A 

straightforward approach of representing uncertain feature values 

by intervals, and approximating the error as an exponential 

function of time that has passed since the measurement, was 

shown to give some performance improvement with respect to 

area under ROC curve, when used together with random forests 

extended with the ability to handle interval-based data, compared 

to using the last measurement only of the uncertain features. 

Three different ways of extending random forests to utilize 

intervals for uncertain numeric features were investigated. For the 

current dataset, it turned out to be beneficial to randomly assign 

values from the intervals before growing each tree in a forest, 

rather than distributing fractions of examples during tree growth. 

Future work includes investigating whether this finding also holds 

for other datasets. Another direction for future work is to relax the 

assumption that the probability of the true feature value is 

uniformly distributed within an interval, and extend the methods 

to handle also non-uniform, e.g., normal, distributions. 

The result of using only one quite straightforward approach of 

approximating the size of the error has been presented here. There 

are obviously many other potential ways of doing this. In 

particular can the choice of the constants a and b in eq. 1 be 

altered so that time will have a somewhat different impact on the 

observations. Keeping the scaling factor in the error function 

within the range of [0, 1] will not affect the maximum interval 

length. Hence, changing the number of standard deviations in the 

error function is yet another option, although it will not change 

the interrelationship among the observations, but only the interval 

length. 

Besides the alternative choices of the parameters a, b and number 

of standard deviations, future work also includes investigating 

how to select a proper error function for each uncertain variable. 

Different error functions and parameter settings might be 

appropriate for different chemical and thermal variables. 
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