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ABSTRACT 

In this work, we investigate ways of extracting 

information from simulations, in particular from 

simulation-based multi-objective optimisation, in 

order to acquire information that can support 

human decision makers that aim for optimising 

manufacturing processes. 

Applying data mining for analyzing data generated 

using simulation is a fairly unexplored area. With 

the observation that the obtained solutions from a 

simulation-based multi-objective optimisation are 

all optimal (or close to the optimal Pareto front) so 

that they are bound to follow and exhibit certain 

relationships among variables vis-à-vis objectives, 

it is argued that using data mining to discover these 

relationships could be a promising procedure. The 

aim of this paper is to provide the empirical results 

from two simulation case studies to support such a 

hypothesis. 

RELATED WORK  

Data mining is a technique which has been used in 

both private and public sectors and clearly with 

different objectives. Companies within banking, 

insurance and retailing use data mining to reduce 

cost, detect frauds and to advertise in more effective 

ways. Homeland security is yet another application 

area of growing interest, in which data mining also 

has been used.  

One of the first uses of artificial intelligence in 

manufacturing applications was accomplished in 

the 1980’s according to (Kusiak 2006). In the 

beginning of the 1990’s, the use of data mining 

techniques was introduced for production, 

something which has been growing since then. A 

comprehensive review of papers considering data 

mining applications within manufacturing is 

presented in (Kusiak 2006). Manufacturing 

operations, fault detection, design engineering and 

decision support systems have been in focus as 

research topics, but there is still an enormous 

potential for further research in other application 

areas, such as maintenance, layout design, resource 

planning and shop floor control.  

The combination of multi-objective optimisation 

solutions and data mining techniques is a fairly 

unexplored area. Therefore the literature reveals 

quite few reports. (Chiba et al. 2006) and (Jeong et 

al. 2005) apply the use of analysis of variance 

(ANOVA) and Self-Organizing Maps (SOM) in the 

design process for aerodynamic optimisations 

problems. It is found that the ANOVA obtains the 

quantitative correlation between objective function 

and design variable. The result from SOM is 

qualitative and subjective and can be used for 

understanding of the design variable influence. 

Furthermore, SOM explains the trade-off between 

the competing objectives.  

DATA MINING  

Data mining is an automated or semi-automated 

technique used to discover and interpret hidden 

relationships, patterns or trends in large data 

sources. A blend of concepts and algorithms from 

machine learning, statistics, artificial intelligence, 

and data management are borrowed to the field of 

data mining. 

Figure 1 shows the data mining process as an 

iterative procedure (Fayyad et al. 1996). The 

process can be divided into three parts: 

selection/pre-processing, mining and presentation.  

 

 

Figure 1: Data Mining Process 
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The first step involves gathering, organising and 

cleaning data before it can be used. The mining 

process  involves choosing appropriate method(s) to 

be used for searching patterns in data. The final step 

is about how to present the results of the prior 

processes in a suitable way. After evaluation of the 

presented results, the entire process, or parts of it, 

may be re-iterated.  

Data mining is a rapidly expanding field with 

growing interests and importance. Simulation based 

optimisation is certainly an application area where 

the use of this technology can provide a significant 

advantage.  

Predictive and Descriptive Data Mining 

Data mining techniques have become standard tools 

to develop predictive and descriptive models in 

situations where one wants to exploit data collected 

from earlier observations in order optimise future 

decision making (Witten and Miller 2005). In the 

case of predictive modelling, one typically tries to 

estimate the expected value of a particular variable 

(called the dependent variable), given the values of 

a set of other (independent) variables. In the case of 

a nominal dependent variable (i.e., the possible 

values are not given any particular order), the 

prediction task is usually referred to as 

classification, while the corresponding task when 

having a numerical dependent variable is referred to 

as regression. One usually wants the model to be as 

correct as possible when evaluated on independent 

test data, and several suggestions for how to 

measure this have been proposed. For classification, 

such measures include accuracy, i.e., the percentage 

of correctly classified test examples, and the area 

under the ROC curve (AUC), i.e., the probability 

that a test example belonging to a class is ranked as 

being more likely belonging to the class than a test 

example not belonging to the class (Provost et al. 

1998). Besides the ability to make correct 

predictions, one is also often interested in obtaining 

a comprehensible (descriptive) model, so that the 

reasons behind a particular classification can be 

understood, and also that one may gain insights into 

what factors are important for the classification in 

general. Examples of such comprehensible models 

are decision trees and rules, e.g. (Quinlan 1993), 

while examples of models not belonging to this 

group, often called black-box, or opaque, models, 

include artificial neural networks and support 

vector machines; see e.g. (Hastie et al. 2001). 

Decision Trees and Ensembles 

Techniques for generating decision trees are 

perhaps among the most well-known methods for 

predictive data mining. Early systems for 

generating decision trees include CART (Breiman 

et al. 1984) and ID3 (Quinlan 1986), the latter 

being followed by the later versions C4.5 (Quinlan 

1993) and C5.0 (Quinlan 1997). The basic strategy 

that is employed when generating decision trees is 

called recursive partitioning, or divide-and-conquer. 

It works by partitioning the examples by choosing a 

set of conditions on an independent variable (e.g., 

the variable has a value less than a particular 

threshold, or a value greater or equal to this 

threshold), and the choice is usually made such that 

the error on the dependent variable is minimised 

within each group. The process continues 

recursively with each subgroup until certain 

conditions are met, such as that the error cannot be 

further reduced (e.g., all examples in a group 

belong to the same class). The resulting decision 

tree is a graph that contains one node for each 

subgroup considered, where the node corresponding 

to the initial set of examples is called the root, and 

for all nodes there is an edge to each subgroup 

generated from it, labelled with the chosen 

condition for that subgroup. 

Decision trees have many attractive features, such 

as allowing for human interpretation and hence 

making it possible for a decision maker to gain 

insights into what factors are important for 

particular classifications. However, recent research 

has shown that significant improvements in 

predictive performance can be achieved by 

generating large sets of models, or ensembles, 

which are used to form a collective vote on the 

value for the dependent variable (Bauer and Kohavi 

1999). It can be shown that as long as each single 

model performs better than random, and the models 

make independent errors, the resulting error can in 

theory be made arbitrarily small by increasing the 

size of the ensemble. However, in practice it is not 

possible to completely fulfil these conditions, but 

several methods have been proposed that try to 

approximate independence, and still maintain 

sufficient accuracy of each model, by introducing 

randomness in the process of selecting examples 

and conditions when building each individual 

model. One popular method of introducing 

randomness in the selection of training examples is 

bootstrap aggregating, or bagging, as introduced by 

(Breiman 1996). It works by randomly selecting n 

examples with replacement from the initial set of n 

examples, leading to that some examples are 

duplicated while others are excluded. Typically a 

large number (at least 25-50) of such sets are 

sampled from which each individual model is 

generated. Yet another popular method of 

introducing randomness when generating decision 

trees is to consider only a small subset of all 

available independent variables at each node when 

forming the tree. When combined with bagging, the 

resulting models are referred to as random forests 

(Breiman 2001), and these are widely considered to 

be among the most competitive and robust of 

current methods for predictive data mining. The 



drawback of ensemble models are however that 

they can no longer be easily interpreted and hence 

provide less guidance into how classifications are 

made. 

The Rule Discovery System™ (RDS) addresses this 

problem by providing some insight into what 

factors are of importance in an ensemble of 

decision trees by presenting the variable importance 

of each independent variable, i.e., how much the 

variable, relative to all other variables, contributes 

to reducing the squared error of the dependent 

variable. 

TWO DATA MINING APPLICATIONS 

The use of data mining in manufacturing 

applications can have different aims and purposes. 

In this paper a specific approach is presented: data 

mining for identifying patterns in data sets 

generated by multi-objective optimisation. The first 

data set handles a buffer allocation problem and the 

second is for identifying dispatching rules setting in 

a production line. The data mining software used is 

RDS for both studies. 

Buffer Allocation 

The simulation model used for this study was 

developed by a simulation optimisation system 

called FACTS Analyser (Ng et al. 2007). The 

model of the production line consists of 5 stations 

and 5 buffers and is controlled by a Critical Work-

In-Process (CWIP) strategy. A Pareto Front was 

found after 40 generations of multi-objective 

optimisation (MOO) with MA-NSGA-II.  

There is a constraint for each individual buffer size 

(0 ≤ Buffer Size ≤ 50) and no constraint on the total 

buffer size. The CWIP level varies between [0-100] 

in terms of percent. For the MOO the objectives are 

to minimise lead time (LT) and maximise 

throughput (TP).  

The data set in RDS™ consists of 6 input variables 

(Buffer capacity 1-5 and CWIP) and two output 

variables, LT and TP. For each generation there are 

200 observations and in this study the set for 

generation 39 (G39) is explored. As validation 

method 10-fold cross validation is used. 

Since the data mining software make predictions 

with one output variable at time, LT and TP have to 

be studied separately. The algorithms used in these 

experiments are trees and ensembles of trees. Trees 

are useful for interpretation of the important input 

variables and the benefits of an ensemble of trees 

are that you receive a model with higher correlation 

and lower error rate. 

Results for the buffer allocation case 

The optimal solution data set for G39 is as close as 

possible to an optimal Pareto front. In order to find 

the key information in the data set the importance 

score and the decision tree has to be examined. The 

importance score plot enlightens the variables that 

are most informative, i.e. contribute to the model 

primarily. On the other hand, the decision tree can 

be used to illuminate more detailed information 

about the settings of the variables.  

The importance score for G39 can be found in 

Figure 2. It reveals that for both LT and TP the 

most informative variables are buffer capacity 1 and 

2 (B1, B2), where B1 is dominating.  

 

 

Figure 2: Importance Score for G39 (a) LT, (b) TP 

Figure 3 and 4 show the decision tree with TP and 

LT as output variable where the detailed 

information can be found. 

 

 

Figure 3: Decision Tree with TP as Output Variable 

 
 

Figure 4: Decision Tree with LT as Output Variable 



To get an acceptable TP in this production line the 

buffer capacity for B1 must be greater than 6. In 

order to receive as high TP as possible the capacity 

in this buffer should be greater than 12. 

It is desirable to have as low LT as possible and 

Figure 4 reveals the settings in order to accomplish 

this. Notable is that the buffer capacity for buffer 1 

is the main divider and if the capacity is less than 

16 the lead time will be satisfying.  

The capacity of the first buffer has the most impact 

on the throughput and the lead time in this study. 

The conclusion of this is that the station after the 

first buffer is the bottleneck in this production line. 

Letting the capacity for buffer 1 vary between 12 

and 16 will result in low lead time and 

simultaneously provide the highest throughput. 

Dispatching rules in a production line 

The aim of this experiment is to understand how 

dispatching rules affect the outcome of a production 

line. The result of a multi-objective optimisation 

study is used to discover patterns in dispatching 

rule settings in order to maximise throughput (TP) 

and minimise all delayed products, i.e. the total 

tardiness (TT). 

Input to the data mining experiment is output from 

a Discrete Event Simulation (DES) model. This 

simulation model is a representation of the H-

factory at Volvo Cars in Skövde. The H-factory is 

committed to camshaft processing and 15 variants 

are handled on the production line. The H-factory 

consists of thirteen different groups of operations 

with one to seven machines in each group. All 

machines within a group of operations have the 

same capability and in front of every group of 

machines is a buffer. 

When a product enters to a buffer it checks if a 

machine is free, if so the product is directly moved 

there. But, if there is not a machine available then 

the product is placed on a free spot in the buffer. 

The buffer is checked every time a machine has 

finished a product. If there is only one product 

there; move that one to the machine. The 

dispatching rules are considered each time there is 

more than one product in the buffer. The product to 

pick is dependent on the current dispatching rule 

assigned to that specific buffer. 

There are eight different dispatching rules: shortest 

processing time (SPT), longest processing time 

(LPT), earliest due date (EDD), total working 

remaining (TWR), least work remaining (LWKR), 

most work remaining (MWKR), minimum slack 

time (MST) and operation due date (OPNDD). 

There are 13 groups of operations and 8 dispatching 

rules. Due to the great number of different 

dispatching rule settings, simulation based 

optimisation (SBO) is used to generate an optimal 

configuration of the production line. The 

optimisation objective parameters are TP and TT. 

The output of the simulation based optimisation is 

the dispatching rules used for each operation with 

its resulting TP and TT. The number of different 

settings is 8
13

, approximately 5.5·10
11

. The 

optimisation generates about 400 solutions which 

are all non-dominated and on the Pareto front. 

These are used in the post processing step for 

investigation of better understanding of the 

solutions. 

Results for the dispatching rules case 

The data set with 13 input variables (applied 

dispatching rule for each buffer) and the output 

variables are TP and TT was used to generate 

decision trees. These are simple to interpret and 

they have therefore high usefulness. 

It can easily be seen in Figure 5 that the 

bottlenecks, i.e. the most important variables, are 

op20 and op90. This is true for both TP and TT as 

output variables. In order to generate a small and 

more interpretable model all other input variables 

are excluded and new models are built. 

 

Figure 5: Important Variables in the H-factory. 

The decision tree from which detailed information 

can be found is shown in Figure 6.  

 

 

Figure 6: The Tree Structure for Maximising TP. 

The information which can be extracted from the 

tree structure is that for a higher average TP use 

dispatching rule SPT in op20 and use any of the 

others but MWKR for the buffer before op90. 

The experiment for the TT is performed in a similar 

way. As an initial study all input variables are used 

to identify the variables with most importance and 

the most important variables were identified to be 



op20 and op90. Its tree structure can be seen in 

Figure 7. 

 

Figure 7: The Tree Structure for Minimising TT. 

In contrast to the TP experiment the TT case focus 

on discovering the settings for a low prediction 

values. Letting the most severe bottleneck have a 

dispatching rule that is not LPT and the second one 

having any but MWKR will result in a low TT. 

Combining the results will lead the decision maker 

to draw the conclusions that the dispatching rule for 

the most influencing buffer before op20 should be 

shortest processing time (SPT) and for op90 most 

work remaining (MWKR) should be chosen. The 

11 other buffers are not significantly influencing 

the total tardiness or throughput. 

SUMMARY AND FUTURE WORK 

In this work, we have shown how information can 

be extracted from simulation data by means of data 

mining, providing support for a human operator 

aiming for optimising manufacturing processes. For 

example, the operator may learn how various 

process parameters affect different optimisation 

criteria.  

One main question for future research concerns 

how to most effectively exploit the information that 

has been acquired by analysing simulation data, 

with other sources of information in actual decision 

situations. Another question for future work is to 

determine whether data mining can outperform 

various experimental design methods. While these 

methods, ranging from orthogonal arrays to 

stratified Latin Hypercube design, can be used to 

explore the input variables space uniformly and 

effectively for generating the required data sets, it is 

questioned whether these techniques are sufficient 

enough to unravel the relationships between input 

decision variables and the output parameters, which 

is an important purpose of many data mining 

processes. 
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