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Abstract – Dimensionality reduction has been demon-
strated to improve the performance of the k-nearest neigh-
bor (kNN) classifier for high-dimensional data sets, such as
microarrays. However, the effectiveness of different dimen-
sionality reduction methods varies, and it has been shown
that no single method constantly outperforms the others. In
contrast to using a single method, two approaches to fusing
the result of applying dimensionality reduction methods are
investigated: feature fusion and classifier fusion. It is shown
that by fusing the output of multiple dimensionality reduc-
tion techniques, either by fusing the reduced features or by
fusing the output of the resulting classifiers, both higher ac-
curacy and higher robustness towards the choice of number
of dimensions is obtained.
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1 Introduction
There is a strong need for accurate methods for analyzing
microarray gene-expression data sets, since early accurate
diagnoses based on these analyses may lead to proper
choice of treatments and therapies [1, 2, 3]. However, the
nature of these data sets (i.e., thousands of attributes with
small number of instances) is a challenge for many learning
algorithms, including the well-known k-nearest neighbor
(kNN) classifier [4].

The kNN has a very simple strategy as a learner: instead
of generating an explicit model, it keeps all training in-
stances. Classification is made by measuring the distances
from the test instance to all training instances, most com-
monly using the Euclidean distance. Finally, the majority
class among thek nearest instances is assigned to the test
instance. This simple form of kNN can however be both
inefficient and ineffective for high-dimensional data setsdue
to presence of irrelevant and redundant attributes. Therefore,
the classification accuracy of kNN often decreases with
an increase in dimensionality. One possible remedy to
this problem that earlier has shown to be successful is to

use dimensionality reduction, i.e., projecting the original
feature set into a smaller number of features [5].

The use of kNN has earlier been demonstrated to allow
for successful classification of microarrays [2] and it has
also been shown that dimensionality reduction can further
improve the performance of kNN for this task [5]. However,
different dimensionality reduction methods may have
different effects on the performance of the kNN classifier,
and it has been shown that no single method always outper-
forms the others when used for microarray classification
[6]. As an alternative to choosing a single method, we
will in this study consider the idea of applying a set of
dimensionality reduction methods and fusing the output
of these. Two fusion approaches are investigated: feature
fusion, i.e., combining the reduced subset of features before
learning with kNN, and classifier fusion, i.e., combining the
individual kNN classifiers built from each feature reduction
method.

The organization of the paper is as follows. In the next
section, we briefly present three dimensionality reduction
methods that will be considered in the investigation together
with the approaches for combining (or fusing) the output of
these. In section 3, details of the experimental setup are pro-
vided, and the results of the comparison on eight microarray
data sets are given. Finally, we give some concluding re-
marks and outline directions for future work in section 4.

2 Dimensionality reduction
2.1 Principal Component Analysis (PCA)
PCA uses a linear transformation to obtain a simplified data
set retaining the characteristics of the original data set.

Assume that the original matrix containso dimensions
andn observations and that one wants to reduce the matrix
into ad dimensional subspace. Following [7], this transfor-
mation can be defined by:

Y = ET X (1)



whereEo×d is the projection matrix containingd eigen vec-
tors corresponding to thed highest eigen values, andXo×n

is the mean centered data matrix.

2.2 Partial Least Squares (PLS)
PLS was originally developed within the social sciences
and has later been used extensively in chemometrics as a
regression method [8]. It seeks for a linear combination
of attributes whose correlation with the class attribute is
maximum.

In PLS regression, the task is to build a linear model,
Ȳ = BX + E, whereB is the matrix of regression coef-
ficients andE is the matrix of error coefficients. In PLS,
this is done via the factor score matrixY = WX with an
appropriate weight matrixW . Then it considers the linear
model,Ȳ = QY +E, whereQ is the matrix of regression co-
efficients forY . Computation ofQ will yield Ȳ = BX +E,
whereB = WQ. However, we are interested in dimension-
ality reduction using PLS and used the SIMPLS algorithm
[9, 10]. In SIMPLS, the weights are calculated by maxi-
mizing the covariance of the score vectorsya andȳa where
a = 1, . . . , d (whered is the selected number of PLS com-
ponents) under some conditions. For more details of the
method and its use, see [9, 11].

2.3 Information Gain (IG)
Information Gain (IG) can be used to measure the informa-
tion content in a feature [12], and is commonly used for de-
cision tree induction. Maximizing IG is equivalent to mini-
mizing:
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whereC is the number of classes,V is the number of values
of the attribute,N is the total number of examples,ni is the
number of examples having theith value of the attribute and
nij is the number of examples in the latter group belonging
to thejth class.

When it comes to feature reduction with IG, all features
are ranked according to decreasing information gain, and
the firstd features are selected.

It is also necessary to consider how discretization of
numerical features is to be done. Since such features are
present in all the considered data sets, they have to be
converted to categorical features in order to allow for the
use of the above calculation of IG. We used the WEKA’s
default configuration, i.e., Fayyad & Irani’s Minimum
Description Length (MDL) [13] method, for discretization.

2.4 Feature fusion (FF)
Feature fusion concerns how to generate and select a sin-
gle set of features for a set of objects to which several sets
of features are associated [14]. In this study, we use a sin-
gle data source together with different dimensionality reduc-
tion methods which allows us to perform feature fusion by
concatenating features generated by the different methods.
High-dimensionality is not a problem here since each trans-
formed data set is small compared to the original size of the
data. Therefore, a straightforward method of choosing an
equal number of features from each reduced set is consid-
ered. The selected total number of dimensions are fromd
= 3 to 99. For eachd, the firstd/3 reduced dimensions are
chosen from the output of PLS, PCA and IG respectively.

2.5 Classifier fusion (CF)
The focus of classifier fusion is either on generating a struc-
ture representing a set of combined classifiers or on com-
bining classifier outputs [15]. We have considered the latter
approach, i.e., combining nearest neighbor predictions with
PLS, PCA and IG using unweighted voting. For multi-class
problems, ties are resolved by randomly selecting one of the
predictions.

3 Empirical study
3.1 Data sets
The following eight microarray data sets are used in this
study:

• Central Nervous System [16], which consists of 60 pa-
tient samples of survivors (39) and failures (21) after
treatment of the medulloblastomas tumor (data set C
from [16]).

• Colon Tumor [17], which consists of 40 tumor and 22
normal colon samples.

• Leukemia [18], which contains 72 samples of two types
of leukemia: 25 acute myeloid leukemia (AML) and 47
acute lymphoblastic leukemia (ALL).

• Prostate [2], which consists of 52 prostate tumor and
50 normal specimens.

• Brain [16] contains 42 patient samples of five different
brain tumor types: medulloblastomas (10), malignant
gliomas (10), AT/RTs (10), PNETs (8) and normal cere-
bella (4) (data set A from [16]).

• Lymphoma [19], which contains 42 samples of dif-
fuse large B-cell lymphoma (DLBCL), 9 follicular
lymphoma (FL) and 11 chronic lymphocytic leukemia
(CLL).

• NCI60 [20], which contains eight different tumor
types. These are breast, central nervous system, colon,
leukemia, melanoma, non-small cell lung carcinoma,
ovarian and renal tumors.



Table 1: Description of data

Data set Attributes Instances # of Classes

Central Nervous 7129 60 2
Colon Tumor 2000 62 2
Leukemia 7129 38 2
Prostate 6033 102 2
Brain 5597 42 5
Lymphoma 4026 62 3
NCI60 5244 61 8
SRBCT 2308 63 4

• SRBCT [3], which contains four diagnostic categories
of small, round blue-cell tumors as neuroblastoma
(NB), rhabdomyosarcoma (RMS), non-Hodgkin lym-
phoma (NHL) and the Ewing family of tumors (EWS).

The first three data sets come from Kent Ridge Bio-
medical Data Set Repository [21] and the remaining five
from the supplementary materials in [22]. The data sets are
summarized in Table 1.

3.2 Experimental setup
We have used Matlab to transform raw attributes to both
PLS and PCA components. The PCA transformation is per-
formed using the Matlab’s Statistics Toolbox whereas the
PLS transformation is performed using the BDK-SOMPLS
toolbox [23, 24], which uses the SIMPLS algorithm. The
WEKA data mining toolkit [12] is used for the IG method,
as well as for the nearest neighbor classification.

Both PLS and IG are supervised methods which use
class information for their transformations. Therefore, to
generate the PLS components for a test set, for which the
class labels are unknown, the weight matrix generated for
the training set has to be used. For IG, attributes in the
training set is ranked based on the information gain in a
decreasing manner and the same attributes are selected
for the test set. The numbers of selected dimensions were
varied from one to approximately the number of examples
in the current data set for all three methods.

Stratified 10-fold cross validation [12] is employed to ob-
tain measures of accuracy, which has been chosen as the
performance indicator in this study.

3.3 Experimental results
The results of using the original features, the three di-
mensionality reduction methods, the feature fusion and
classifier fusion methods are shown in Fig. 1 and Fig. 2.
Table 2 summarizes the highest classification accuracies of
individual reduction and fusion methods comparing their
accuracy to raw features. The numbers inside the brackets
denote the minimum number of dimensions required to
reach a particular accuracy.

It can be observed in the Fig. 1 and Fig. 2 that both
PLS and PCA obtain their best classification accuracies

with relatively few dimensions, while more dimensions
are required for IG. None of the single methods turns out
as a clear winner, except for perhaps PLS on the binary
classification tasks. However, all three methods outperform
not using dimensionality reduction, and the difference in
performance between the best and worst method can vary
greatly for a particular data set, leading to the conclusion
that the choice of dimensionality reduction to be used in
conjunction with kNN for microarray classification can
be of major importance, but also that no single method is
suitable for all cases.

As shown in Table 2, the feature fusion method often per-
forms well compared to each individual method, giving the
overall best results in 7 out of 8 cases. Furthermore, the
accuracy varies to a much less extent with the number of
dimensions compared to the other methods, hence showing
that using the combined features reduces sensitivity to the
choice of the number of dimensions. In addition, the classi-
fier fusion method also performs on par with or better than
the individual dimensionality reduction methods in 6 out of
8 cases, reaching the overall best accuracy in 3 cases. It
should also be noted that classifier fusion yields the best ac-
curacy with fewer dimensions compared to the feature fu-
sion method. For example, the FF method reaches the high-
est classification accuracy with 60 dimensions for the Cen-
tral Nervous data set, whereas the CF method reaches its
highest level using only 11 features.

4 Concluding remarks
Three dimensionality reduction methods were investigated
in conjunction with the kNN classifier and two approaches
to fusing the result of multiple dimensionality reduction
methods were considered: feature fusion and classifier
fusion. An experiment with eight microarray data sets
shows that dimensionality reduction indeed is effective for
nearest neighbor classification and that fusing the output of
these methods can further improve the classification accu-
racy compared to the individual dimensionality reduction
methods.

It is also observed that PCA and PLS are best when
choosing few dimensions and they even sometimes outper-
form the fusion methods. However, if one compares the
best classification accuracies between individual methods
and fusion methods, the feature fusion method obtain the
best classification accuracy in 7 out of 8 cases. In addition,
classifier fusion obtains the best accuracy in relatively
few number of dimensions compared to feature fusion
which on the other hand is even more robust to changes in
number of dimensions. Therefore, it can be concluded that
choosing any of the fusion approaches should be preferred
to choosing any of the single dimensionality reduction
methods, since the former can be expected to lead to higher
classification accuracy and robustness with respect to the
choice of number of dimensions.



Table 2: Results on best classification accuracies

Data set Raw PCA PLS IG FF CF

Central Nervous 56.67 70.00(31)73.33(26) 68.33(18) 73.33(60) 71.67(11)
Colon Tumor 77.42 84.05(10) 88.81(4) 84.52(14) 87.14(21) 87.38(7)
Leukemia 89.47 95.00(10) 95.00(5) 96.67(32)100.00(33) 97.50(4)
Prostate 85.29 86.27(25) 92.36(15) 93.27(11)95.18(87) 95.09(50)
Brain 76.19 86.00(4) 79.00(23) 81.00(34) 88.00(96) 86.00(4)
Lymphoma 98.39 100.00(2) 100.00(5) 100.00(15) 100.00(6) 100.00(2)
NCI60 68.85 80.24(6) 78.57(11) 68.81(24) 80.24(51) 80.24(6)
SRBCT 87.30 96.67(10) 100.00(4) 100.00(10) 100.00(12) 100.00(4)

Figure 1: Predictive performance with the change of numbersof dimensions using PCA, PLS, IG, Feature fusion (FF) and
Classifier fusion (CF) with Nearest Neighbor for two class microarray data sets.



Figure 2: Predictive performance with the change of numbersof dimensions using PCA, PLS, IG, Feature fusion (FF) and
Classifier fusion (CF) with Nearest Neighbor for multi classmicroarray data sets.

There are a number of issues that need further exploration.
First, fusion of classifiers from additional dimensionality re-
duction methods could be investigated, e.g., Random Projec-
tion [6]. Second, selecting different number of dimensions
for different dimensionality reduction methods when fusing
classifiers of features, could be investigated as an alternative
strategy. Finally, more sophisticated voting strategies could
be considered, see e.g., [25].
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