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Abstract. Dimensionality reduction can often improve the performance
of the k-nearest neighbor classifier (kNN) for high-dimensional data sets,
such as microarrays. The effect of the choice of dimensionality reduction
method on the predictive performance of kNN for classifying microarray
data is an open issue, and four common dimensionality reduction meth-
ods, Principal Component Analysis (PCA), Random Projection (RP),
Partial Least Squares (PLS) and Information Gain(IG), are compared on
eight microarray data sets. It is observed that all dimensionality reduc-
tion methods result in more accurate classifiers than what is obtained
from using the raw attributes. Furthermore, it is observed that both
PCA and PLS reach their best accuracies with fewer components than
the other two methods, and that RP needs far more components than
the others to outperform kNN on the non-reduced dataset. None of the
dimensionality reduction methods can be concluded to generally outper-
form the others, although PLS is shown to be superior on all four binary
classification tasks, but the main conclusion from the study is that the
choice of dimensionality reduction method can be of major importance
when classifying microarrays using kNN.

1 Introduction

Microarray gene-expression technology has spread across the research commu-
nity with immense speed during the last decade [I]. Being able to effectively
learn from data generated through this technology is important for many rea-
sons, including allowing for early accurate diagnoses which might lead to proper
choice of treatments and therapies [23]. On the other hand, this type of high-
dimensional data, often involving thousands of attributes, creates challenges for
many learning algorithms, including the well-known k-nearest neighbor classifier
(KNN) [4].
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The kNN has a very simple strategy as a learner: instead of generating an ex-
plicit model, it keeps all training instances. A classification is made by measuring
the distances from the test instance to all training instances, most commonly using
the Euclidean distance. Finally, the majority class among the k nearest instances
is assigned to the test instance. This simple form of kNN can however be both inef-
ficient and ineffective for high-dimensional data sets due to presence of irrelevant
and redundant attributes. Therefore the classification accuracy of kNN often de-
creases with an increase in dimensionality. One possible remedy to this problem
that earlier has shown to be successful is to use dimensionality reduction [5].

The kNN has earlier been demonstrated to allow for successful classification
of microarrays [2] and it has also been shown that dimensionality reduction can
further improve the performance of kNN for this task [5]. However, it is an open
question if the choice of dimensionality reduction technique has any impact in
the performance, and for this purpose, four commonly employed dimensionality
reduction methods are compared in this study when used in conjunction with
kNN for microarray classification.

The organization of the paper is as follows. In the next section, we briefly
present the four dimensionality reduction methods used in the study. In section 3,
details of the experimental setup are provided, and the results of the comparison
on eight microarray data sets are given. Finally, we give some concluding remarks
and outline directions for future work.

2 Dimensionality Reduction

2.1 Principal Component Analysis (PCA)

PCA uses a linear transformation to obtain a simplified data set retaining the
characteristics of the original data set.

Assume that the original matrix contains d dimensions and n observations
and that one wants to reduce the matrix into a k£ dimensional subspace. This
transformation can be given by [6]:

Y =ETX (1)

where Fgxj is the projection matrix containing k eigen vectors corresponding
to the k highest eigen values, and X, is the mean centered data matrix.

2.2 Random Projection (RP)

By RP, the original data set is transformed into a lower dimensional subspace
by using a random matrix [78].

Assume that one wants to reduce the d dimensional data set into a k dimensional
set where the number of instances are n. The transformation is then given by:

Y =RX (2)

where Rjxq is the random matrix and Xy, is the original data matrix. The
original idea behind the RP is based on the Johnson-Lindenstrauss lemma (JL)
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[9] which states that n points can be projected from R — RF while preserving
the Euclidean distance between the points within an arbitrarily small factor. For
more details on the method, see [§].

This random matrix can be created in several ways and the one we have used
is introduced by Achlioptas [I0], by which the random matrix is generated as
follows.

++/3 with P, = é;
rij = 0 with P. = £; (3)
—V/3 with P, = %.

2.3 Partial Least Squares (PLS)

PLS was originally developed within the social sciences and has later been used
extensively in chemometrics as a regression method [I1]. It seeks for a linear com-
bination of attributes whose correlation with the class attribute is maximized.
In PLS regression the task is to build a linear model, Y = BX + E, where B
is the matrix of regression coefficients and E' is the matrix of error coefficients.
In PLS, this is done via the factor score matrix Y = WX with an appropri-
ate weight matrix W. Then it considers the linear model, Y = QY + E, where
@ is the matrix of regression coefficients for Y. Computation of @ will yield
Y = BX + E, where B = W Q. However, we are interested in dimensionality
reduction using PLS and used the SIMPLS algorithm [T2/13]. In SIMPLS, the
weights are calculated by maximizing the covariance of the score vectors y, and
Jo where a = 1,..., A (where A is the selected numbers of PLS components)
under some conditions. For more details of the method and its use, see [12[14]

2.4 Information Gain (IG)

Information Gain (IG) can be used to measure the information content in a
feature [15], and is commonly used for decision tree induction. Maximizing IG
is equivalent to minimizing:

where K is the number of classes, V' is the number of values of the attribute,
N is the total number of examples, n; is the number of examples having the
ith value of the attribute and n;; is the number of examples in the latter group
belonging to the jth class.

3 Empirical Study

3.1 Data Sets
The following eight microrarray data sets are used in this study:

— Colon Tumor [16], which consists of 40 tumor and 22 normal colon samples.
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— Leukemia [I7], which contains 72 samples of two types of leukemia: 25 acute
myeloid leukemia (AML) and 47 acute lymphoblastic leukemia (ALL).

— Central Nervous System [I8], which consists of 60 patient samples of sur-
vivors (39) and failures (21) after treatment of the medulloblastomas tumor
(This is data set C from [18]).

— SRBCT [3], which contains four diagnostic categories of small, round blue-
cell tumors as neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin
lymphoma (NHL) and the Ewing family of tumors (EWS).

— Lymphoma [I9], which contains 42 samples of diffuse large B-cell lymphoma
(DLBCL), 9 follicular lymphoma (FL) and 11 chronic lymphocytic leukemia
(CLL).

— Brain [I8] contains 42 patient samples of five different brain tumor types:
medulloblastomas (10), malignant gliomas (10), AT/RTs (10), PNETSs (8)
and normal cerebella (4). (This is the data set A from [I8].)

— NCI60 [20], which contains eight different tumor types. These are breast,
central nervous system, colon, leukemia, melanoma, non-small cel lung car-
cinoma, ovarian and renal tumors.

— Prostate [2], which consists of 52 prostate tumor and 50 normal specimens.

The first three data sets come from Kent Ridge Bio-medical Data Set
Repository[2]] and the remaining five from [22]. The data sets are summarized
in Table[dl

Table 1. Description of data

Data set Attributes Instances # of Classes
Colon Tumor 2000 62 2
Leukemia 7129 38 2
Central Nervous 7129 60 2
SRBCT 2308 63 4
Lymphoma 4026 62 3
Brain 5597 42 5
NCI60 5244 61 8
Prostate 6033 102 2

3.2 Experimental Setup

We have used Matlab to transform raw attributes to both PLS and PCA com-
ponents. The PCA transformation is performed using the Matlab’s Statistics
Toolbox whereas the PLS transformation is performed using the BDK-SOMPLS
toolbox[2324], which uses the SIMPLS algorithm. The WEKA data mining
toolkit [I5] is used for the RP and IG methods, as well as for the actual nearest
neighbor classification.

Both PLS and IG are supervised methods which use class information for their
transformations. Therefore, to generate the PLS components for test sets, the
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Fig. 1. Predictive performance with the change of numbers of dimensions using PCA,
PLS, RP and IG with Nearest Neighbor (IB1) for Colon Tumor, Brain, NCI60, Prostate,
Leukemia and Lymphoma data sets
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weight matrix generated for the training set has to be used. For IG, attributes
in the training set are ranked based on the information content in a decreasing
manner and the same attributes are selected for the test set. As earlier explained,
attributes generated using RP are of a random nature since a random matrix
is used for the transformation. For this reason, we have averaged results of RP
from 30 runs to reduce the variance.

The optimal number of neighbors (i.e., k) could be specific to different data
sets and dimensionality reduction methods. Therefore, we have investigated the
effect of different values of k, namely 1, 3, 5, 7 and 9.

Stratified 10-fold cross validation [I5] is employed to obtain measures of ac-
curacy, which has been chosen as the performance measure in this study.

3.3 Experimental Results

The results are summarized in Fig. [l and Fig. Bl It can be observed that both
PLS and PCA obtain their best classification accuracies with relatively few di-
mensions, while more dimensions are required for IG and many more for RP.

None of the methods turns out as a clear winner, except perhaps PLS on
the binary classification tasks. However, all methods outperform not using di-
mensionality reduction, and the difference in performance between the best and
worst method can vary greatly for a particular dataset, leading to the conclusion
that the choice of dimensionality reduction to be used in conjunction with kNN
for microarray classification can be of major importance.

In most of the cases, simply setting k& = 1 gives the best result. However, for IG
it seems that one should consider choosing higher values for k£ which improves the
classification accuracy by at least 1% for 5 out of 8 datasets. For PCA, the choice
of a higher k value yields at least a 1% improvement for 3 out of 8 data sets whereas
for PLS, an improvement of at least 1% is obtained for 4 out of 8 datasets.
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Fig. 2. Predictive performance with the change of numbers of dimensions using PCA,
PLS, RP and IG with Nearest Neighbor (IB1) for Central Nervous and SRBCT data
sets
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Fig. 3. Predictive accuracy with different k values for nearest neighbor classifier for
Brain dataset

Table 2. Order of k values w.r.t averaged accuracy

Decreasing order of accuracy

1G PCA PLS
ColonTumor 7,5,9,3,1 5,9,7,3,1 7,9,5,3,1
Leukemia 1,3,5,7,9 1,3,5,7,9 3,1,5,7,9
CentralNervous 7,9,5,1,3 3,7,9,5,1 9,7,5,3,1
SRBCT 3,5,1,7,91,9,3,7,5 9,7,5,3,1
Lymphoma 5,9,1,7,56 1,3,5,7,9 1,3,5,7,9
Brain 3,1,5,7,9 1,3,5,7,9 1,3,5,7,9
NCI60 9,7,1,5,3 1,3,5,7,9 1,3,5,7,9
Prostate 3,7,9,5,1 9,5,7,3 9,3,1,7,5

4 Concluding Remarks

Four dimensionality reduction methods are compared for classifying microarrays
with the nearest neighbor classifier. Experiments with eight microarray datasets
show that dimensionality reduction indeed is effective for nearest neighbor clas-
sification.
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However, none of the methods used in the study consistently gives the best
accuracy on all data sets. Generally, both PCA and PLS results in the high-
est accuracy for few dimensions whereas RP and IG require more dimensions.
Compared to the other three methods, PCA is shown to be more sensitive to
the choice of dimensionality, and typically gives poor results in higher dimen-
sions. It can be observed that PLS outperforms the other methods for binary
classification problems (Colon, Leukemia, Central Nervous and Prostate).

We have also investigated the accuracy of kNN for different values of k. Gen-
erally, k=1 seems to be the best choice for PCA and PLS, while higher values
are required for IG.

There are a number of issues that need further exploration. First, additional
binary microarray classification tasks could be investigated to test the finding
that PLS appears to be superior in these cases. Second, further characterizations
of the situations in which the different dimensionality reduction methods are
successful could be identified. Furthermore, the possibility of combining several
reduced features sets generated by different reduction methods could also be
investigated.
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