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Abstract

The computational cost of using nearest neighbor clas-
sification often prevents the method from being applied in
practice when dealing with high-dimensional data, such as
images and micro arrays. One possible solution to this
problem is to reduce the dimensionality of the data, ideally
without loosing predictive performance. Two different di-
mensionality reduction methods, principle component anal-
ysis (PCA) and random projection (RP), are investigated
for this purpose and compared w.r.t. the performance of
the resulting nearest neighbor classifier on five image data
sets and five micro array data sets. The experiment results
demonstrate that PCA outperforms RP for all data sets used
in this study. However, the experiments also show that PCA
is more sensitive to the choice of the number of reduced
dimensions. After reaching a peak, the accuracy degrades
with the number of dimensions for PCA, while the accuracy
for RP increases with the number of dimensions. The ex-
periments also show that the use of PCA and RP may even
outperform using the non-reduced feature set (in 9 respec-
tively 6 cases out of 10), hence not only resulting in more
efficient, but also more effective, nearest neighbor classifi-
cation.

1. Introduction

With the development of technology, large volumes of
high-dimensional data become rapidly available and easily
accessible for the data mining community. Such data in-
clude high resolution images, text documents, gene expres-
sions data and so on. However, high dimensional data put
demands on the learning algorithm both in terms of effi-
ciency and effectiveness. The curse of dimensionality is a
well known phenomenon that occurs when the generation of

a predictive model is mislead by an overwhelming number
of features to choose between, e.g., when deciding what fea-
ture to use in a node of a decision tree [17]. Some learning
methods are less sensitive to this problem since they do not
rely on choosing a subset of the features, but instead base
the classification on all available features. Nearest neighbor
classifiers belong to this category of methods [17]. How-
ever, although increasing the number of dimensions does
not typically have a detrimental effect on predictive perfor-
mance, the computational cost may be prohibitively large,
effectively preventing the method from being used in many
cases with high-dimensional data.

In this work, we consider two methods for dimensional-
ity reduction, principal component analysis (PCA) and ran-
dom projection (RP) [4, 6, 7, 11]. We investigate which of
these is most suited for being used in conjunction with near-
est neighbor classification when dealing with two types of
high-dimensional data: images and micro arrays.

In the next section, we provide a brief description of
PCA and RP and compare them w.r.t. computational com-
plexity. In section three, we discuss related work on these
two methods. In section four, we present results from apply-
ing the methods in conjunction with nearest neighbor clas-
sification on five image data sets and five microarray data
sets. Finally, we give concluding remarks and point out di-
rections for future work.

2. Dimensionality Reduction Methods

Principal component analysis (PCA) and random projec-
tion (RP) are two dimensionality reduction methods that
have been used successfully in conjunction with learning
methods [4,7]. PCA is the most well-known and popular of
the above two, whereas RP is more recently gaining popu-
larity [4, 6, 7, 11], not least by being much more efficient.



Principal component analysis (PCA)

PCA is a technique which uses a linear transformation to
form a simplified data set retaining the characteristics of the
original data set.

Assume that original matrix contains d dimensions and n
observations and it is required to reduce the dimensionality
into a k dimensional subspace then its transformation can
be given by

Y = ET X (1)

Here Ed×k is the projection matrix which contains k
eigen vectors corresponding to k highest eigen values, and
where Xd×n is mean centered data matrix.

Random Projection (RP)

Random projection is based on matrix manipulation which
uses a random matrix to project the original data set into
low dimensional subspace [4, 7].

Assume that it is required to reduce the d dimensional
data set into k dimensional set where number of instances
are n,

Y = R X (2)

Here Rk×d is the random matrix and Xd×n is the orig-
inal data matrix. The idea underlying random projection
originates from the Johnson-Lindenstrauss lemma (JL) [5].
It states that n points could be projected from Rd → Rk

while preserving the Euclidean distance between points
within an arbitrarily small factor. For the theoretical effec-
tiveness of random projection method, see [7].

Several algorithms have been proposed to generate ran-
dom projections with the same properties as JL, and the al-
gorithms introduced by Achlioptas [1] have received signif-
icant attention [4,7]. According to Achlioptas, the elements
of the random vector R can be constructed in the following
way:
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An analysis of the computational complexity of ran-
dom projection shows that it is very efficient compared to
principal component analysis. Random projection requires
only O(dkn), whereas principal component analysis needs
O(d2n) + O(d3) [4].

3. Related work

Fradkin and Madigan [7] have compared PCA and RP
with decision trees(C4.5), k-nearest-neighbor method with
k=1 and k=5 and support vector machines for supervised
learning. In their study, PCA outperformed RP, but it
was also realized that there was a significant computational
overhead of using PCA compared using RP.

Bingham and Mannila [4] have also compared RP with
several other dimensionality reduction methods such as
PCA, singular value decomposition (SVD), Latent seman-
tic indexing (LSI) and Discrete cosine transform (DCT) for
image and text data. The criteria chosen for the comparison
was the amount of distortion caused by the method used on
the original data and computational complexity. They also
extended their experiments to determine the effects on noisy
images and noiseless images. It was found that RP not sen-
sitive to impulse noise and the amount of distortion caused
by RP is quite the same as PCA. They have not considered
above methods in supervised learning. However, they have
pointed out the use of above methods in supervised learning
with nearest neighbor.

Fern and Brodley [6] have used random projections for
unsupervised learning. They have experimented with us-
ing RP for clustering of high dimensional data using mul-
tiple random projections with ensemble methods. Further-
more, they also compared their approach with single ran-
dom projections and PCA for EM clustering. The use of
multiple random projections based ensemble method out-
performs PCA (forming better clusters) for all three data
sets used in the study.

Kaski [11] used RP in the WEBSOM system for doc-
ument clustering. RP was compared to PCA for reducing
the dimensionality of the data in order to construct Self-
Organized Maps. They conclude that their results using RP
is as good as use of PCA. It was also found that level of
saturation in RP is higher than that of PCA.

4. Empirical study

4.1. Data sets

Five image data sets and five micro array data sets are
considered in this study, representing two types of high-
dimensionality classification tasks.

The image data sets consist of two medical image data
sets (IRMA [12], MIAS [13]), two object recognition data
sets (COIL-100 [14], ZuBuD [9]) and a texture analysis data
set (Outex - TC 00013 [15]). The IRMA (Image Retrieval
and Medical Application) data set contains radiography im-
ages of 57 classes, where the quality of the images varies
significantly. The COIL-100 (Columbia university image
library) data set consists of images of 100 objects, while



Table 1. Description of data.
Data set Instances Attributes # of Classes

IRMA 9000 1024 57
COIL100 7200 1024 100
ZuBuD 1005 1024 201
MIAS 322 1024 7
Outex 680 1024 68
Colon Tumor 62 2000 2
Leukemia 38 7129 2
Central Nervous 60 7129 2
Srbct 63 2308 4
Lymphoma 62 4026 3

ZuBuD (Zurich Building Image Database) contains images
of 201 buildings in Zurich city. MIAS (The Mammogra-
phy Image Analysis Society) mini mammography database
contains mammography images of 7 categories and finally
Outex (University of Oulu Texture Database) image data set
contains images of 68 general textures. The five micro ar-
ray data sets are: Leukemia [8], Colon Tumor [3], Central
Nervous [16], Srbct (small, round, blue, cell tumors) [10]
and Lymphoma [2].

4.2. Experimental setup

For all image data sets, colour images have been con-
verted into gray scale images and then resized into 32 × 32
pixel sized images, and where the brightness values are the
only considered features. Therefore, all image data sets
contain 1024 attributes. The number of instances and at-
tributes for all data sets are shown in Table 1.

MATLAB R© has been used to transform the original
matrices into projected matrices using PCA, through the
singular value decomposition (SVD) implementation of
PCA. The Waikato Environment for Knowledge Analysis
(WEKA) [17] has been used for RP (as described in 4) as
well as for the nearest neighbor classifier. The accuracies
were estimated using ten fold cross validation, and the re-
sults for RP is the average from 30 runs to account for its
random nature.

4.3. Experimental results

The accuracies of using a nearest neighbor classifier on
data reduced by PCA and RP, as well as without dimension-
ality reduction, are shown in Fig. 1 for various number of
dimensions.

The experimental results show that reducing the dimen-
sionality using PCA results higher accuracy for most of the
data sets. In Table 2, it can be seen that only a few principal
components is required for achieving the highest accuracy.
However, RP typically requires a larger number of dimen-
sions compared to PCA to obtain a high accuracy.

Table 2. Highest prediction accuracy ob-
tained by nearest neighbor classifier with di-
mensionality reduction methods (no. of di-
mensions in parentheses).

Data set RP PCA Original

IRMA 67.01 (250) 75.30 (40) 68.29
COIL100 98.79 (250) 98.90 (30) 98.92
ZuBuD 54.01 (250) 69.46 (20) 59.80
MIAS 44.05 (5) 53.76 (250) 43.17
Outex 21.04 (15) 29.12 (10) 19.85
Colon Tumor 80.22 (150,200) 83.05 (10) 77.42
Leukemia 91.32 (150) 92.83 (10) 89.47
Central Nervous 58.22 (150) 66.33 (50) 56.67
Srbct 93.23 (200) 96.45 (10) 87.30
Lymphoma 97.80 (250) 99.86 (20) 98.38

Classification accuracy using PCA typically has its peak
for a small number of dimensions, after which the accu-
racy degrades. In contrast to this, the accuracy of RP gener-
ally increases with the number of dimensions. Hence, this
shows that PCA is more sensitive to the choice of the num-
ber of reduced dimensions than RP. However, for all the data
sets used in this study, the maximum accuracy obtained by
using PCA is higher than the maximum accuracy obtained
by using RP. This means that one can expect PCA to be
more effective than RP if the number of dimensions is care-
fully chosen. The experiments also show that the use of
PCA and RP may even outperform using the non-reduced
feature set (in 9 respectively 6 cases out of 10).

The time required for performing a prediction is sig-
nificantly reduced when using dimensionality reduction
method as shown in Table 3. In table 3 shows the time re-
quired to test instances on training data with the change of
dimensions. In summary, a significant speedup in classifi-
cation time can be achieved when using PCA and RP, which
often also lead to more accurate predictions.

5. Concluding remarks

We have compared using PCA and RP for reducing di-
mensionality of data to be used by a nearest neighbor clas-
sifier. Results on five image data sets and five micro array
data sets show that PCA is more effective for severe dimen-
sionality reduction, while RP is more suitable when keep-
ing a high number of dimensions (although a high number
is not always optimal w.r.t. accuracy). We observed that
the use of PCA resulted in the highest accuracy for 9 of
the 10 data sets. For several data sets, we noticed that both
PCA and RP outperform using all features for classification.
This shows that the use of PCA and RP, may not only lead
to more efficient, but also more effective, nearest neighbor
classification.
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Figure 1. Comparison of the accuracies between Original, PCA and RP based attributes.



Table 3. Average time needed to test on training data (in seconds).

IRMA COIL-100 ZuBuD MIAS Outex Colon Leukemia Cen. Ner. Srbct Lymphoma

5 71 46 0.93 0.11 0.44 0.01 0.01 0.01 0.02 0.02
10 137 87 1.76 0.20 0.81 0.02 0.01 0.01 0.01 0.01
15 207 129 2.57 0.27 1.17 0.03 0.01 0.02 0.02 0.02
20 278 172 3.39 0.37 1.56 0.02 0.02 0.02 0.02 0.02
25 344 216 4.20 0.45 1.94 0.02 0.01 0.02 0.02 0.02
30 404 258 5.01 0.53 2.31 0.02 0.01 0.03 0.03 0.03
35 478 339 5.84 0.61 2.69 0.03 0.01 0.03 0.03 0.03
40 541 344 6.65 0.70 3.08 0.03 0.01 0.03 0.04 0.04
45 609 388 7.44 0.78 3.57 0.03 0.01 0.03 0.03 0.04
50 676 433 8.25 0.87 3.86 0.04 0.01 0.03 0.04 0.04
60 809 517 9.91 1.05 4.55 0.04 0.02 0.04 0.04 0.04
70 941 617 11.57 1.23 5.44 0.05 0.02 0.05 0.05 0.05
80 1073 698 13.20 1.38 6.48 0.05 0.03 0.06 0.06 0.06
90 1206 770 14.82 1.56 6.79 0.06 0.03 0.06 0.06 0.07

100 1429 855 16.63 1.76 7.59 0.06 0.03 0.06 0.08 0.07
150 1998 1275 24.60 2.55 11.36 0.07 0.04 0.10 0.11 0.10
200 3279 1698 32.87 3.45 15.02 0.10 0.05 0.14 0.13 0.14
250 3354 2175 41.47 4.33 18.75 0.14 0.07 0.16 0.17 0.17

All 13399 8618 168.23 18.87 96.13 1.29 1.77 5.02 1.51 2.81

One direction for future work is to consider other types
of high-dimensional data to gain a further understanding of
the type of data for which each of the two dimensionality
reduction techniques is best suited.
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