Induction of Logic Programs by
Example-Guided Unfolding

Henrik Bostrom and Peter Idestam-Almquist
Dept. of Computer and Systems Sciences
Stockholm University and Royal Institute of Technology
Electrum 230, 164 40 Kista, Sweden
{henke,pi}@dsv.su.se

Abstract

Resolution has been used as a specialisation operator in several ap-
proaches to top-down induction of logic programs. This operator allows
the overly general hypothesis to be used as a declarative bias that restricts
not only what predicate symbols can be used in produced hypotheses, but
also how the predicates can be invoked. The two main strategies for top-
down induction of logic programs, Covering and Divide-and-Conquer, are
formalised using resolution as a specialisation operator, resulting in two
strategies for performing example-guided unfolding. These strategies are
compared both theoretically and experimentally. It is shown that the
computational cost grows quadratically in the size of the example set for
Covering, while it grows linearly for Divide-and-Conquer. This is also
demonstrated by experiments, in which the amount of work performed
by Covering is up to 30 times the amount of work performed by Divide-
and-Conquer. The theoretical analysis shows that the hypothesis space is
larger for Covering, and thus more compact hypotheses may be found by
this technique than by Divide-and-Conquer. However, it is shown that for
each non-recursive hypothesis that can be produced by Covering, there
is an equivalent hypothesis (w.r.t. the background predicates) that can
be produced by Divide-and-Conquer. A major draw-back of Divide-and-
Conquer, in contrast to Covering, is that it is not applicable to learning
recursive definitions.

1 Introduction

The search for a single clause in an inductive hypothesis can be performed either
bottom-up (i.e. from an overly specific clause to a more general) or top-down
(i.e. from an overly general clause to a more specific). In this work we study the
induction of definite programs consisting of multiple clauses, where each clause
is searched for top-down. This problem can be formulated in the following way:

Given: a definite program O (overly general hypothesis), a definite program
B (background predicates) and two finite sets of ground atoms E' and E~
(positive and negative examples).

Find!: a definite program H, called a valid hypothesis, such that M (H U B) C
M(OUB),EfY CM(HUB) and M(HUB)NE~ = .

In this work we assume that all positive and negative examples are ground
instances of the same atom, whose predicate symbol is referred to as the target
predicate, and that all clauses in O, and only those, define the target predicate.
Furthermore, we assume the clauses in O and B to be non-recursive w.r.t. the
target predicate (i.e. no instance of the target predicate is allowed in the body
of a clause). It should be noted that this assumption does not prevent recur-
sive predicates from being used in the definition of the target predicate. The
motivation for assuming the target predicate to be non-recursive in the overly
general hypothesis is given in section 3.3.

Two specialisation operators that are commonly used when searching top-
down for a single clause are literal addition (used in e.g. [25, 24, 22]) and res-
olution (used in e.g. [1, 12, 22]). By literal addition, a clause is specialised by
adding a literal to the body, where the literal usually is restricted to be an
instance of a background predicate. Various restrictions are normally also put
on the variables in the literals (e.g. at least one of the variables should appear
previously in the clause [24]). By resolution, a clause is specialised by resolving
upon a literal in the body using one of the background clauses. In the resolution-
based approaches, the clauses in the overly general hypothesis can be viewed as
a declarative bias that restricts not only what predicate symbols can be used
in learned clauses, but also how the predicates can be invoked. It should be
noted that for each clause obtained by resolution there is an equivalent? clause
(w.r.t. the background predicates) that can be obtained by literal addition® (not
necessarily in one step). On the other hand, it is also possible to define pred-
icates that may introduce any literal, such that for any clause obtainable by
literal addition there is an equivalent clause (w.r.t. the background predicates)

LM (P) denotes the least Herbrand model of P.

2We say that two definite clauses C; and Cs (or hypotheses H; and H>) are equivalent w.r.t.
a definite program B if and only if M({C1}UB) = M({C2}UB) (or M(H1UB) = M(H>UB)).

31t is assumed that =(X,X) is among the background predicates.

obtainable by resolution.*

The two main strategies for top-down induction of logic programs are Cov-
ering and Divide-and-Conquer. Covering, which has been used in e.g. MI1s [25],
FOIL [24], ANA-EBL [12], FOCL [22], GRENDEL [14], FOCL-FRONTIER [21] and
PROGOL [18], constructs a hypothesis by repeatedly specialising an overly gen-
eral clause, on each iteration selecting a specialised clause that covers a subset of
the positive examples and no negative examples, until all positive examples are
covered by the selected clauses. Divide-and-Conquer, which has been used in
e.g. ML-SMART [1], STRUCT [27], IDEL [13] and SPECTRE [7], constructs a hypoth-
esis by dividing an overly general clause into a set of clauses, which correspond
to disjoint subsets of the examples. It then continues recursively with those
clauses for which the corresponding subsets contain both positive and negative
examples. The resulting hypothesis consists of all specialised clauses for which
the corresponding sets contain positive examples only.

In the next section, we formalise the two main strategies for top-down in-
duction of logic programs using resolution as a specialisation operator, resulting
in two strategies for performing example-guided unfolding. In section three, we
analyse these strategies theoretically and compare them with respect to their
computational complexity, the size of their hypothesis spaces and their ability
to produce recursive hypotheses. In section four, we compare the two strategies
empirically w.r.t. efficiency and size and accuracy of the produced hypotheses.
Finally, we give some concluding remarks in section five. The reader is assumed
to be familiar with the standard terminology in logic programming [16].

2 Covering and Divide-and-Conquer

In this section we formalise Covering and Divide-and-Conquer using resolution
as a specialisation operator and illustrate how the techniques work using an
example. We also show under what conditions the techniques produce valid
hypotheses. Finally, we show that one of these conditions can always be fulfilled.

4The following technique (suggested by the first author of this paper) has been proven to
be complete [20]: Let D be a definite clause with variables X1,...,Xn. Let D’ be the clause
obtained by adding to D the goal g([X1, ..., Xnl), where g/1 is defined in the following
way':
g(L).
g(L):- g(IXILD).
for every n-ary predicate symbol p:

g(L):- p(X1, ..., Xn), member(X1,L), ..., member(Xm,L), g(L).
for every n-ary function symbol f:
g(L) : - member(f(X1, ..., Xn),L), member(X1i,L), ..., member(Xn,L), g(L).

Now any clause that is subsumed by D can be obtained by starting with D’ and applying
resolution upon the goals g/1 and member /2 (assuming the standard definition of member/2).

2.1 Covering

The Covering principle can be applied using resolution as a specialisation op-
erator in the following way. One of the clauses in the overly general hypothesis
is selected and specialised by resolving upon a literal in the clause until the
selected clause does not cover® any negative examples. This process is iterated
until all positive examples are covered by the selected clauses. This technique
is formalised in Figure 1.

FUNCTION COVERING(O,B,ET,E™)
H:=0
WHILE E* # () DO
C := a clause in O that covers some e € Et w.r.t. B
WHILE C covers an element in E~ w.r.t. B DO
C := a resolvent R of C' and a clause in B, such that R covers
somee € ET wrt. B

H:=HU{C}
Et:=E*\{e€ ET :eis covered by C w.r.t. B}
RETURN H

Figure 1: The Covering algorithm.

Example Assume that we are given the overly general hypothesis:
reward(S,R):- suit(S), rank(R).

and the background predicates in Figure 2, together with the following sets of
positive and negative examples:

Et = { reward(spades,7), reward(clubs,3)}
E~ = { reward(hearts,5), reward(clubs, jack) }

Calling Covering with this input results in the following. Since the clause in
the overly general hypothesis covers negative examples, it is specialised. Choos-
ing the first literal to resolve upon using the second clause defining suit(S)
results in the following clause:

reward(S,R) :- black(S), rank(R).

This clause still covers the second negative example, and is thus specialised.
Choosing the second literal to resolve upon using the first clause defining rank (R)
results in the following clause:

5A clause A < By,..., B, is said to cover an atom A w.r.t. a definite program P if and
only if there is an SLD-refutation of P U {(«+ Bi,...,Bn)0}.

suit(S):- red(S).

suit(S):- black(S).

rank(R) :- num(R).

rank(R):- face(R).

red(hearts).

red(diamonds) .

black(spades) .

black(clubs).

num(1). ... num(10).

face(jack). face(queen). face(king).

Figure 2: Background predicates.

reward(S,R):- black(S), num(R).

This clause does not cover any negative examples and is thus added to the re-
sulting hypothesis. Since the hypothesis now covers all positive examples, the
algorithm terminates. m

Covering produces a valid hypothesis in a finite number of steps when i)
all positive examples are covered by the overly general hypothesis w.r.t. the
background predicates, ii) there is a finite number of SLD-derivations of positive
and negative examples (i.e. the program terminates for all examples) and iii)
there are no positive and negative examples that have the same sequence of
input clauses in their SLD-refutations. This is shown in Appendix A. It should
be noted that this property is not dependent on how the non-deterministic
choices in the algorithm are made. However, these choices are crucial for the
result. Normally, a few number of clauses of high generality are preferred to a
large number of specific clauses, and making the wrong choices may result in a
non-preferred, although valid, hypothesis. Since it is computationally expensive
to find the optimal choices, these are often approximated. In several approaches
this has been done by selecting the refinement that maximises the information
gain [24, 22, 14]:

R,E™T) cov(C, E™)
= (1 cov(R, 1)
cou(R, ET) <0g2 cov(R,E+ UE™) 082 cov(C,Et UE™)

where R is the resolvent of a clause C' and a clause in B and cov(D, E) denotes
the number of elements in a set of examples E that are covered by a clause D.

2.2 Divide-and-Conquer

The Divide-and-Conquer principle can be applied in a logic programming frame-
work using resolution as a specialisation operator in the following way. Each
clause in the overly general hypothesis covers a subset of the positive and neg-
ative examples. If a clause covers positive examples only, then it should be in-
cluded in the resulting hypothesis, and if it covers negative examples only then
it should be excluded. If a clause covers both negative and positive examples,
then it corresponds to a part of the hypothesis that needs to be further divided
into sub-hypotheses. When dividing a hypothesis into a set of sub-hypotheses,
these should be equivalent to the divided hypothesis. This means that a clause
that covers both positive and negative examples should be split into a number
of clauses, that taken together should be equivalent to the clause that is split.
This can be achieved by applying the transformation rule unfolding® [26]. This
technique is formalised in Figure 3.

FUNCTION DAC(C,B,E*,E™)
IF Et = () THEN H := () ELSE
IF E~ =(THEN H := {C} ELSE
Unfold upon a literal in C, giving C4,...,C,
Let Ej' and E; be the set of examples in ET and E~ respectively
that are covered by C; w.rt. B, 1<i<mn
H := DAC(C\,B,E{,E;)U...UDAC(C,,B,E} ,E;)
RETURN H

Figure 3: The Divide-and-Conquer algorithm.

Example Consider again the overly general hypothesis, background predicates
and examples in the previous example. Calling Divide-and-Conquer with this
input results in the following.

Since the clause covers both positive and negative examples, unfolding is
applied. Unfolding upon suit(S) replaces the clause with the following two
clauses:

reward(S,R) :- red(S), rank(R).
reward(S,R) :- black(S), rank(R).

The first clause covers one negative example only, while the second clause
covers two positive examples and one negative example. The algorithm is then
called once with each of these clauses. The empty hypothesis is returned by the
first call since the first clause does not cover any positive examples. The clause
used in the second call is unfolded since it covers both positive and negative

6Unfolding upon a literal L in the body of a clause C in a definite program P, means that
C is replaced with the resolvents of C and each clause in P whose head unifies with L.

examples. Unfolding upon rank(R) replaces the clause with the following two
clauses:

reward(S,R):- black(S), num(R).
reward(S,R):- black(S), face(R).

The first of these clauses covers two positive and no negative examples and is
therefore included in the resulting hypothesis, while the second covers one nega-
tive example only, and is therefore not included. Hence, the resulting hypothesis
is:

reward(S,R) :- black(S), num(R).

Divide-and-Conquer produces a valid hypothesis in a finite number of steps
when i) all positive examples are covered by the overly general hypothesis w.r.t.
the background predicates, ii) there is a finite number of SLD-derivations of
positive and negative examples (i.e. the program terminates for all examples)
and iii) there are no positive and negative examples that have the same sequence
of input clauses in their SLD-refutations. This is shown in Appendix B.

As for Covering, it should be noted that the non-deterministic choices (in
this case of which literals to unfold upon) are crucial for the result when apply-
ing Divide-and-Conquer. Again, the optimal choices can be approximated by
selecting the specialisation that maximises the information gain, as is done in
[27, 12, 7] (cf. D3 [23]). This is equivalent to minimising:

cov(Cy, ET)
2 cov(Cy, EY UE)

cov(C;, E™)
2 cov(Cy, EY UE)

+cov(C;, E7)log

—chov(Ci,EJr)log

i=1

where C1, ..., C), are the resolvents upon one of the literals in the current clause
C, cov(C;, E) denotes the number of elements in E that are covered by C; and
the constant c is 1/cov(C, ET U E™).

Note that this heuristic credits a high coverage of either positive or negative
examples, while the information gain for Covering credits a high coverage of
positive examples only.

It should also be noted that in case of multiple SLD-refutations of some
examples, unfolding is not guaranteed to partition the examples, which means
that the sum of the number of examples covered by each resolvent may be larger
than the number of examples covered by the current clause. In such cases, it
seems more appropriate to count the number of SLD-refutations of positive and
negative examples, rather than just counting the number of covered examples,
as the number of SLD-refutations does not change when unfolding is applied
(shown in [15]).

2.3 Guaranteeing Unique Sequences of Input Clauses

One of the conditions for Covering and Divide-and-Conquer to produce valid
hypotheses is that no positive and negative examples have the same sequence
of input clauses in their SLD-refutations. In this section, we present a transfor-
mation technique, which guarantees that this condition holds.

With no loss of generality, we can assume that all terms in the Herbrand
universe are defined by a predicate term(X).” Then we can rewrite the orig-
inal program by adding to each clause defining the target predicate, a literal
term(X) for each variable X in the head of the clause. Then each example will
have a unique branch in the SLD-tree. For example, assume that the origi-
nal program consists of one clause: p(X), and that the Herbrand universe is
{0,5(0),s(s(0)),...}. Then the program can be written as:

pX):- term(X).
term(0) .
term(s(X)):- term(X).

Whereas in an SLD-tree of the original program the refutations of the two exam-
ples p(0) and p(s(0)) follow identical branches, they follow different branches
in an SLD-tree of the transformed program.

3 Theoretical Analysis

In this section we analyse Covering and Divide-and-Conquer with respect to the
computational complexity, the hypothesis spaces that are explored, the ability
to produce recursive hypotheses and the amount of redundancy in the produced
hypotheses.

3.1 Computational Complexity

Assuming the cost of checking whether a clause covers an example or not to
be constant, we can give upper bounds on the computational complexity of
Covering and Divide-and-Conquer, as described below.

Let [be the maximum length of the SLD-refutations of the positive and
negative examples, m be the maximum number of clauses defining a predicate,
p be the number of positive examples, and n the number of negative examples.
By derivation branch, we mean the sequence of derived clauses® from an overly
general clause to a resolvent that is kept in the produced hypothesis.

The maximum length of a derivation branch is I, and for the ith derived
clause (1 < i < 1), there are in the worst case m(l — i) alternative ways of
applying resolution upon the clause, since there are at most [— ¢ literals in the

7One clause is needed for each constant and function symbol.
8 Derived clause is defined in Appendix C.

body of the ith derived clause. Thus, for each derivation branch the number of
derived clauses that need to be evaluated is bounded by ml?/2.

For Covering, there are in the worst case p different derivation branches
that need to be considered, and for the ith considered branch (1 < i < p), all
negative examples and p — i 4+ 1 positive examples have to be checked for each
evaluated derived clause. Thus, for Covering, the number of times a clause is
checked w.r.t. an example is bounded by (ml?/2)p(n + (p+1)/2 + 1).

In the case when no example has more than one SLD-refutation, each ex-
ample needs at most to be checked w.r.t. one derivation branch in Divide-and-
Conquer, since the sets of examples covered by a set of clauses obtained by
unfolding are mutually exclusive. Since there are ml?/2 derived clauses that
need to be evaluated for each derivation branch, the number of times a clause is
checked w.r.t. an example is bounded by (ml?/2)(n+p). In the case when there
are more than one SLD-refutation for some examples, the number of times a
clause is checked w.r.t. an example is bounded by the same number as for Cov-
ering.

In summary, the computational cost for Covering grows at most quadrati-
cally in the number of (positive) examples, while it grows linearly in the number
of examples for Divide-and-Conquer when each example has at most one SLD-
refutation, and quadratically otherwise.

The above analysis is consistent with the worst-case complexity analysis
of Divide-and-Conquer and Covering in a propositional framework presented
in [11], where the computational cost of Divide-and-Conquer (represented by
Assistant) was shown to grow linearly with the number of examples, while the
cost of Covering (represented by CN2) was shown to grow quadratically. In
section 4.1, we show that any propositional learning problem can be transformed
into a top-down ILP problem for which each example has exactly one SLD-
refutation, thus allowing Divide-and-Conquer to run in linear time.

3.2 The Hypothesis Spaces

Let O be an overly general hypothesis and B be background predicates. The
hypothesis space for Covering is:

Heowp ={H:HC {Cox...xC,:Co€O0andCy,...,C, € B, where n > 0}}°
The hypothesis space for Divide-and-Conquer is:

Haae ={H : H C H' \ B, where H' is obtainable from O U B by a number of
applications of unfolding upon clauses that are not in B}.

Note that Hgee C Heov, wWhich follows from the fact that each set of clauses
obtained by unfolding can be obtained by resolution and that there are pro-

9C x D denotes a resolvent of C' and D upon a literal in the body of C. Note that C x D
is in general not unique.

grams that can be produced by adding resolvents that cannot be produced by
unfolding. For example, consider the overly general hypothesis:

p(X):- q(X), r(X).
and the background predicates:

q(X):- s(X).
r(X):- t(X).

Then the following hypothesis is in H.qy, but not in Hgqc:

pX):- s(X), r(X).
p(X):- qX), t(X).

However, for each (non-recursive) hypothesis that can be produced by Cov-
ering, Divide-and-Conquer can produce a hypothesis that is equivalent w.r.t.
the background predicates. This is shown in Appendix C.

3.3 Recursive Hypotheses

As was stated in section 1, the target predicate is assumed to be non-recursive.
The reason for this is that Divide-and-Conquer does not work properly when
specialising clauses that define recursive predicates. This because decisions re-
garding one part of the hypothesis may affect the coverage of other parts, and
thus such decisions cannot be made independently as is done in Divide-and-
Conquer. In [27], this problem is approached by assuming that the definition
of the target predicate will be equivalent (w.r.t. the background predicates) to
the set of positive examples (as is done in FOIL [24]) and hence the coverage of
different parts of the hypothesis can be determined independently. However, in
many cases this assumption leads to non-valid hypotheses being produced.
Another approach to this problem is to transform the overly general hypoth-
esis into a non-recursive definition, as proposed in [7]: Let T' be the recursive
target predicate and O be the clauses defining 7. Then introduce a new predi-
cate T' by adding a clause T" < T, where the arguments of 7" are all variables
in T (i.e. definition [26]). Unfold upon T in the clause, and replace each instance
T6 in the bodies of the clauses defining T and T” (directly or indirectly) with
T'¢ (i.e. folding [26]). Then a non-recursive definition of T has been obtained,
such that 70 € M (O U B) if and only if T8 € M (O’ U B). For example, let the
recursive target predicate be nat (X), which is defined by the two clauses:

nat (0) .
nat(s(X)):- nat(X).

Then the non-recursive definition will be:

10

nat (0).
nat(s(X)):- nat’ (X).
nat’ (0).
nat’ (s(X)):- nat’ (X).

However, although this transformation allows Divide-and-Conquer to be ap-
plied, it prevents recursive hypotheses from being found. For example, assume
the following positive and negative examples to be given:

Et ={nat(s(0)), nat(s(s(s(0)))), nat(s(s(s(s(s(0))))N}
E~ ={nat(0), nat(s(s(0))), nat(s(s(s(s(0))))) }

Then the hypothesis produced by Divide-and-Conquer, after having applied the
above transformation, will exclude the negative examples only (i.e. a maximally
general specialization is obtained):

nat(s(0)).

nat(s(s(s(0)))).
nat(s(s(s(s(s(X)))))):- nat’(X).
nat’ (0).

nat’ (s(X)):- nat’ (X).

It should be noted that although Divide-and-Conquer cannot be used to
produce recursive hypotheses, it does not mean that such cannot be found by
applying unfolding and clause removal. On the contrary, a technique for achiev-
ing this is presented in [4].

Covering, on the other hand, can be extended to deal with recursive predi-
cates (c.f. [6]). Instead of searching for a clause that together with background
predicates covers some positive examples and no negative examples, a clause can
be searched for that together with the clauses found so far and the background
predicates covers some not yet covered positive examples without covering any
negative examples, and that allows for the remaining positive examples to be
covered without covering any negative examples.

3.4 Redundancy

When using Covering, the number of SLD-refutations of the positive examples
is not necessarily the same for the resulting hypothesis as for the overly general
hypothesis, i.e. the amount of redundancy may increase or decrease. On the
other hand, when using Divide-and-Conquer, the number of SLD-refutations of
the positive examples is the same for both the overly general and the resulting
hypothesis. This follows from the fact that the number of SLD-refutations does
not increase when unfolding is applied (proven in [15]). In order to allow for
reduction of the amount of redundancy when using Divide-and-Conquer, only a
minor change to the algorithm is needed: instead of placing a positive example

11

in all subsets that correspond to clauses that cover the example, the example
can be placed in one such subset.

4 Empirical Evaluation

In this section we empirically evaluate the performance of Covering and Divide-
and-Conquer. We first present four domains that are used in the experiments
and then present the experimental setting and results.

4.1 Domains

Two domains are taken from the UCI repository of machine learning databases
and domain theories: King+Rook versus King+Pawn on a7 and Tic-Tac-Toe.
The third domain, which considers natural language parsing using a definite
clause grammar, is taken from [8], while the fourth domain King-Rook-King-
Illegal [19] is one of the most frequently used ILP benchmark domains.

The example sets in the UCI repository are represented by attribute-value
vectors, and have to be transformed into atoms in order to be used together
with the algorithms. The number of examples is 3196 in the first domain (of
which 52.2% are positive) and 958 in the second domain (of which 65.3% are
positive).

Since the algorithms also require overly general hypotheses as input, such
are constructed for the two first domains in the following way (cf. [12]). A new
target predicate is defined with as many arguments as the number of attributes,
and for each attribute a new background predicate is defined to determine the
possible values of the attribute. This technique is illustrated by the following
overly general hypothesis and background predicate for determining win for x
in the Tic-Tac-Toe domain:

win_for_x(S1,52,53,54,55,56,57,58,59) : -
square(S1), square(S2), square(S3),
square(S4), square(S5), square(S6),
square(S7), square(S8), square(S9).

square(x) .

square (o).

square(b) .

An alternative formulation of the Tic-Tac-Toe domain is used as well, where a
new intermediate background predicate is introduced. In the alternative formu-
lation, the definition of the predicate square(S) is changed into the following;:

square(x).
square(S):- o_or_b(S).
o_or_b(o).
o_or_b(b).

12

The hypothesis is that the new intermediate predicate will reduce the number of
clauses in the resulting definition, and hence increase the accuracy. The reason
for this is that it does not matter in the correct definition of the target predicate
whether a square has the value o or b.

The set of positive examples in the third domain consists of all sentences
of up to seven words that can be generated by the grammar in [8, p 455], i.e.
565 sentences. The set of negative examples is generated by randomly selecting
one word in each correct sentence and replacing it by a randomly selected word
that leads to an incorrect sentence. Thus the number of negative examples is
also 565. Two versions of an overly general hypothesis are used for this domain.
The first version is shown below:

sentence([every|X],Y):- s(X,Y).
sentence([a|X],Y):- s(X,Y).
Ss(X,X) .

s([every|X],Y):- s(X,Y).
s([alX],) :- s(X,Y).

where the definition of the background predicate s(X,Y) is the same as
for sentence(X,Y), but with s substituted for sentence and with one ex-
tra clause: s(X,X). By referring to the background predicate s(X,Y) instead
of sentence(X,Y), the problem with recursive overly general hypotheses is
avoided, as discussed in section 3.3.

The second version introduces intermediate predicates in the definitions of
sentence(X,Y) and s(X,Y), that group words into classes in the following
way'0:

sentence(X,Y) :- determiner(X,Z), s(Z,Y).
sentence(X,Y):- noun(X,Z), s(Z,Y).

determiner ([every|X],X).
determiner ([a|X],X).

The hypothesis is, like for the Tic-Tac-Toe domain, that the intermediate pred-
icates will improve the accuracy of the resulting hypotheses.

The number of examples in the King-Rook-King-Illegal domain is 1000, of
which 65.8% are negative. The following overly general hypothesis was used in
the experiments:

10The word classes are taken from [8].

13

illegal(A,B,C,D,E,F):-
comp(A,B), comp(A,C), ..., comp(E,F),
adj_or_not(A,B), adj_or_not(A,C), ..., adj_or_not(E,F).

comp(A,A).
comp(A,B):- A < B.
comp(A,B):- A > B.

adj_or_not(A,B):- adj(A,B).
adj_or_not(A,B):- \+ adj(A,B).

adj(0,0).

adj(7,7).
adj(0,1).

adj(6,7).
adj(7,6).

adj(1,0).

4.2 Experimental Setting

Covering and Divide-and-Conquer are compared in the four domains using the
information gain heuristics that were mentioned in section 2. In addition, we
include results from using two state-of-the-art ILP systems: Progol 4.2 [18] and
FOIL 6.4 [24].1

An experiment is performed with each domain, in which the entire example
set is randomly split into two halves, where one half is used for training and
the other for testing. The number of examples in the training sets that are
given as input to the algorithms are varied, representing 1%, 5%, 10%, 25%
and 50% of the entire example set, where the last subset corresponds to the
entire set of training examples and a greater subset always includes a smaller.
The same training and test sets are used for all algorithms. Each experiment
is iterated 50 times and the mean accuracy on the test examples is presented
below, as well as the mean number of clauses in the produced hypotheses. In
addition, the amount of work performed by Divide-and-Conquer and Covering
is presented, measured as the number of times it is checked whether a clause

1 The default parameter settings were used in both systems except for that in FOIL the
variable depth (d) was set to 7 (necessary in the DCG domain) and negated literals were
disallowed (n), and in Progol, which was used in the last three experiments only, the variable
depth parameter (i) was set to 7, 1 and 1 respectively and the maximum clause length (c)
was set to 7, 9 and 2.

14

covers an example or not.'2

4.3 Experimental Results
4.3.1 King-Rook vs. King-Pawn

The use of Progol in the King-Rook versus King-Pawn domain was prevented
by the large number of identical arguments in the examples (in several cases
more than twenty), leading to a combinatorial explosion when investigating all
possible ways in which an example can be subsumed.'® In Figure 4, 5 and
6, the results from this domain for the three other systems are presented. It
can be seen that Divide-and-Conquer produces more accurate, but less compact,
hypotheses than Covering for all sizes of the training set. Furthermore, Covering
checks more examples than Divide-and-Conquer for all sizes of the training
sets. When the size of the training set is 50%, the number of checks made by
Covering is about 3.2 times as many as the number of checks made by Divide-
and-Conquer. The mean learning time for Divide-and-Conquer at that point is
444.1 s, for Covering 1613.8 s and for FOIL only 26.4 s.

100
95 | B
90 B
S et g
8
80 B
<
75 Divide-and-Conquer —=—
ering ——|
FOIL ——
70 B

65
0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Figure 4: Accuracy for the KR vs. KP domain.

12The reason for using this measure of efficiency and not e.g. cpu seconds, is that this
measure is implementation independent. Nevertheless, for some cases we also present the
learning time for all four systems. Divide-and-Conquer and Covering were implemented in
SICStus Prolog 3 #5 and all four systems executed on a SUN SparcStation 5.

130ne way of avoiding this problem could be to unflatten each positive example by adding
an equality to the body for each argument, but Progol 4.2 has problems detecting whether
such an unflattened clause is covered or not.

15

16

14

10

No. of clauses

Divide-and-Conquer —=—
a4 Covering —-—
FOIL ——

2
0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Figure 5: No. of clauses for the KR vs. KP domain.

1.6e+06

1.4e+06

1.2e+06

1e+06

hecks

> 800000

No. of

600000

400000

200000 [Covering —-—

Divide-and-Conquer -=—|

0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Figure 6: No. of checks for the KR vs. KP domain.

16

4.3.2 Definite Clause Grammar

FOIL requires that all background predicates are defined as ground unit clauses.
In this domain, which considers sentences of up to seven words, and where
there are 11 different words, a correct definition of the background predicate
components/3, whose intensional definition is components([X|L],X,L), would
require more than 20 million facts, and the same number of facts would be
needed to define the word classes, giving over 40 million facts in total. In order
to make it possible to run FOIL in this domain, the above definitions were
reduced to consider only lists of words that appear in the entire set of examples
and suffixes of these lists (this resulted in a definition of components/3 with
2660 facts, and the same number of facts for the word classes). However, it
should be noted that this solution is not possible in realistic situations as we
will not know what sequences of words will appear in unseen examples.

In Figure 7 and 8 the predictive accuracy and size of the produced hypotheses
is shown with and without word classes (the use of word classes is indicated by
a w in the figures). When no word classes are used, Covering and Divide-and-
Conquer produce identical hypotheses, which is shown by the dotted curves for
these algorithms. The reason for this is that there is no choice of what literal to
resolve upon (since there is only one body-literal in each overly general clause)
and no example has more than one SLD-refutation. This experiment also shows
that the amount of background knowledge can be far more important than what
strategy is used.

100
95 7
9 |
Divide-and-Conguer (W) -=—
85 Covering (W) ~—|
FOIL (W) —~—
< 8} Progol) |
g Divide-and-Conquer, Covering ——
FOIL —o—
gt -
=1
8
< 70+ |
o L)/ /7 |
55¢ |
ya—
50 N . ‘ ‘ :

5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Figure 7: Accuracy for the DCG domain.

17

250 J

8

o

No. of clauses
5
o
T
.

Progol -*--|
_.--~-"Divide-and-Conquer, Covering -----
Progol (w) —*—]
Covering (w) —=—
Divide-and-Conquer (w) -=—|
FOIL (w) ——]
FOIL -o-—

8

50

Size of training set (%)

Figure 8: No. of clauses for the DCG domain.

In Figure 9, it can be seen that Covering checks more examples than Divide-
and-Conquer for all sizes of the training sets and for both overly general hy-
potheses. When the size of the training set is 50%, the number of checks made
by Covering without word classes is about 30 times as many as the number of
checks made by Divide-and-Conquer. The mean learning time without word
classes for Divide-and-Conquer at that point is 3.7 s, for Covering 86.8 s, for
FOIL 19.7 s and for Progol 165.4 s. The mean learning time with word classes
for Divide-and-Conquer at the same point is 14.5 s, for Covering 50.1 s, for
FOIL 23.2 s and for Progol 1632.4 s.

700000
600000 - 1
500000 - 1
(%]
§ 400000 - 1
=
(=)
s
d Covering -+--
Covering (w) —-—
200000 F Divide-and-Conquer (w) —-=—
,—“/ Divide-and-Conquer -&--
100000

Size of training set (%)

Figure 9: No. of checks for the DCG domain.

18

4.3.3 Tic-Tac-Toe

In Figure 10, 11 and 12, the results from the Tic-Tac-Toe domain are presented.
The curves labeled Covering (i) and Divide-and-Conquer (i) represent the ac-
curacy of the hypotheses produced by Divide-and-Conquer and Covering with
the intermediate predicate, while the other curves are obtained whithout the
intermediate predicate.!* It can be seen that Covering produces more accu-
rate and compact hypotheses than Divide-and-Conquer both with and without
intermediate predicates.

The amount of work performed by Covering is more than what is performed
by Divide-and-Conquer for all sizes of the training sets and for both overly
general hypotheses, as shown in Figure 12. When the size of the training set
is 50%, the mean learning time for Divide-and-Conquer with and without the
intermediate predicate is 16.9 s and 9.2 s respectively, for Covering 42.1 s and
34.4 s, for FOIL (without the intermediate predicate) 1.9 s and for Progol 561.0
S.

100

Accuracy (%)
~
o
T

Covering (i) —-—
Covering -+--|

Progol ——]
50 | Divide-and-Conquer (i) =—
Divide-and-Conquer -&--|

0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Figure 10: Accuracy for the Tic-Tac-Toe domain.

14The intermediate predicate was not given to FOIL and Progol as they could only per-
form worse by considering this predicate, since it will not help them in focusing on squares
containing x (in contrast to the resolution-based approaches).

19

70

60 -

50 -

No. of clauses

ivide-and-Conquer -2--—
Divide-and-Conquer (i) —=—
Covering -+--|
Progol ——]|
Covering (i) —=—|
FOIL .|

o

Figure 11:

180000

5 10 15 20 25 30 35 40 45 50

Size of training set (%)

No. of clauses for the Tic-Tac-Toe domain.

160000

140000

120000

No. of checks
=
:
T

Covering -
Covering (i) =—
Divide-and-Conquer -&--
Divide-and-Conquer (i) -=—

Figure 12:

Size of training set (%)

No. of checks for the Tic-Tac-Toe domain.

4.3.4 King-Rook-King-Illegal

In Figure 13, 14 and 15, the results from the King-Rook-King-Illegal domain
are presented. It can be seen that w.r.t. accuracy and size, all three approaches
based on covering (Progol, FOIL and the resolution-based approach Covering)

outperform the divide-and-conquer approach.

20

Accuracy (%)

70

Progol —+—|
FOIL ——
Covering —-—|

65 - Divide-and-Conquer =—

0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Figure 13: Accuracy for the King-Rook-King-Illegal domain.

20

18

16

14

12

10 -

No. of clauses

4+ Divide-and-Conquer —=—
Progol ——]
Covering ——|

FOIL ——

0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)
Figure 14: No. of clauses for the King-Rook-King-Illegal domain.

The amount of work performed by Covering is more than what is performed
by Divide-and-Conquer for all sizes of the training sets, as shown in Figure 15.
When the size of the training set is 50%, the number of checks made by Covering
without intermediate predicates is about 1.85 times as many as the number of
checks made by Divide-and-Conquer. The mean learning time for Divide-and-
Conquer at that point is 234.8 s, for Covering 441.5 s, for FOIL 2.2 s and for
Progol 242.3 s.

21

250000

200000
£ 150000
8
<
o
k]
[}
Z 100000 [
50000 [B
Covering ——|
Divide-and-Conquer —=—
.

0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Figure 15: No. of checks for the King-Rook-King-Illegal domain.

4.3.5 Summary of experimental results

In summary, the hypotheses produced by Divide-and-Conquer were more accu-
rate than the hypotheses produced by Covering in the two first domains, while
they were less accurate in the two last domains. The results in the two first do-
mains illustrate that it can be beneficial to focus on discriminating positive from
negative examples, which is done by Divide-and-Conquer, rather than focusing
on a high coverage of positive examples, which is done by Covering. The differ-
ence in accuracy in the two last domains can be explained by the fact that the
number of clauses in the correct hypothesis within the hypothesis space for Cov-
ering is much less than the number of clauses in the correct hypothesis within
the hypothesis space for Divide-and-Conquer (e.g. for the Tic-Tac-Toe domain
these numbers are 8 and 126 respectively), and these numbers give lower-bounds
for the number of positive examples needed for producing correct hypotheses.

In all domains, hypotheses were found with a smaller amount of work when
using Divide-and-Conquer compared to when using Covering.

5 Concluding Remarks

We have formalised Covering and Divide-and-Conquer when applied to top-
down induction of logic programs using resolution as a specialisation operator,
resulting in two strategies for example-guided unfolding. It should be noted that
in contrast to earlier approaches to example-guided unfolding (e.g. [9, 2, 10, 3]),
the presented techniques only maintain partial correctness, as the purpose is to
cover a set of positive examples and exclude a set of negative examples.

The main difference between the two strategies is that Covering applies

22

unfolding to the same overly general hypothesis repeatedly, while Divide-and-
Conquer only uses the same hypothesis once. We have shown that the com-
putational cost grows at most quadratically in the size of the example set for
Covering, while it grows linearly for Divide-and-Conquer (when each example
has at most one SLD-refutation). This was also demonstrated by the experi-
ments, in which the amount of work performed by Covering was up to 30 times
the amount of work performed by Divide-and-Conquer. The hypothesis space
is larger for Covering, and thus more compact hypotheses may be found by this
technique than by Divide-and-Conquer. However, we have shown that for each
hypothesis that can be produced by Covering, there is an equivalent hypoth-
esis (w.r.t. the background predicates) that can be produced by Divide-and-
Conquer. A major draw-back of Divide-and-Conquer, in contrast to Covering,
is that it is not applicable to learning recursive definitions.

The termination conditions for Covering and Divide-and-Conquer could be
relaxed by slightly altering the algorithms. Instead of requiring that no positive
and negative examples have the same sequence of input clauses in their SLD-
refutations, it is enough to require that for each positive example there is one
SLD-refutation with a unique sequence of input clauses. This alteration would
lead to that some hypotheses can be found that are not found by the algorithms
in their current formulations.

Instead of using resolution as a specialisation operator, literal addition could
have been used in the formalisations and the experiments. In the Covering algo-
rithm, a clause would then be specialised by adding a literal (as in [24]) rather
than resolving upon a literal in the body. In the Divide-and-Conquer algorithm,
there are two alternatives to replacing a clause by all resolvents upon a literal:
either the clause is replaced by all clauses obtainable by adding a literal, or as
in [27], by two clauses, where one is obtained by adding a new literal and the
other is obtained by adding the negation of the literal (or a complementary lit-
eral). All results in the theoretical analysis would still be valid, since the former
alternative corresponds to having a highly redundant overly general hypothesis,
while the latter corresponds to having an overly general hypothesis for which
each example has at most one SLD-refutation. In the light of the theoretical
analysis, the second alternative seems to be superior. However, as was pointed
out earlier, by using resolution instead of literal addition, explicit control of the
possible specialisations is obtained, where the overly general hypothesis is used
as a declarative bias that not only limits what predicate symbols are used, but
also how they are invoked.

Acknowledgements

This work has been supported by the Swedish Research Council for Engineering
Sciences (TFR) and the European Community ESPRIT IV LTR project no.
20237 (Inductive Logic Programming IT).

23

Appendix A

In this section, it is shown that Covering produces a valid hypothesis in a finite
number of steps when all positive examples are covered by the overly general
hypothesis w.r.t. the background predicates, there is a finite number of SLD-
derivations of positive and negative examples (i.e. the program terminates for
all examples) and there are no positive and negative examples that have the
same sequence of input clauses in their SLD-refutations.

Theorem 1 Let ET and E~ be two finite sets of ground atoms and P = OUB
be a definite program (overly general program), such that the number of SLD-
derivations of PU{« e} are finite for alle € EYUE™, and there is no et € E*
and e~ € E~, such that the same sequence of input clauses is used both in an
SLD-refutation of PU {«+ et} and in an SLD-refutation of PU{<+ e~ }. Then
after a finite number of steps, Covering outputs a definite program H, such that
M(HUB)CM(OUB), EYCM(HUB) and M(HUB)NE™ =0.

Proof Since the number of examples in E* is finite, it suffices to show that
the inner while-loop in Covering finds a clause in a finite number of steps that
covers at least one positive example and no negative examples. This can be
shown by induction on the length I of the longest SLD-refutation of {C'} U B
and {« e'}, for some covered et € ET, where C is the clause selected before
the inner while-loop is entered.

Base case: 1=1. Then C is a clause such that C' x {« et} = O, for some
et € ET,and C = C; x ... x Cp, where each C; is a variant of a clause in
P (1 < i < n). Then there is an SLD-refutation of P U {+ e"} with in-

put clauses Ci,...,Cp, since C; X ... x Cp x {+ et} = O. Assume that
there is some e~ € E;, such that C' x {<- e} = O. Then it follows that
there is an SLD-refutation of P U {<+ e~ }, with input clauses Ci,...,C,, since

Cy x...x Oy x {+ e~} = 0. This contradicts the assumption that no e™ € E*
and e~ € E~ have the same sequence of input clauses in their SLD-refutations.
Thus M({C}UB)NE~ =.

Induction step: Assume the longest SLD-refutation of {C}UBU{+ e™} for some
et € ET tobel+1. If M({C}UB)NE~ = { then the inner while-loop terminates
and H = H U {C}. Otherwise, the inner while-loop is entered with a resolvent
C' of C. Since the length of the longest SLD-refutation of {C'} U BU {+ e*},
for some et € E7T, is [, the inner while-loop terminates, with a selected clause
C such that M({C} UB)NE*" # () and M({C}UB) N E~ = 0, according to
the induction hypothesis.

Let H = {C},...,Cy}. Since the target predicate is non-recursive, M(H U
B) = M({{C;}uUuB)U...U M({C,} U B). Hence, E¥*" C M(H U B) and

24

M(HUB)NE~ = 0. Since the clauses in H are resolvents of clauses in O U B,
it follows that M(H U B) C M(O U B).

Appendix B

In this section, it is shown that Divide-and-Conquer produces a valid hypothesis
in a finite number of steps when all positive examples are covered by the overly
general hypothesis w.r.t. the background predicates, there is a finite number of
SLD-derivations of positive and negative examples (i.e. the program terminates
for all examples) and there is no positive and negative examples that have the
same sequence of input clauses in their SLD-refutations.

Theorem 2 Let ET and E~ be two finite sets of ground atoms and P = OUB
be a definite program (overly general program), such that the number of SLD-
derivations of PU{< e} are finite for alle € EYUE™, and there is no et € ET
and e~ € E~, such that the same sequence of input clauses is used both in an
SLD-refutation of P U {«+ e*} and in an SLD-refutation of P U {< e~ }. Let
O==0C,...,Ch and Ef and E;, 1 < i < n, be all ezamples in E* and E~
respectively that are covered by C;. Then for each Ci,Ej' and E;7,1<i<n,
Divide-and-Congquer outputs after a finite number of steps a definite program H;,
such that M(H;UB) C M(OUB), E7 C M(H;UB) and M(H;UB)NE; = 0.

Proof When E;" = (), the theorem trivially holds. In the other case, the the-
orem can be proved by induction on the length [of the longest SLD-refutation
of {C;} U B and {« e*}, for some e* € E;".

Base case: 1=1. Then C; is a clause such that C; x {«+- eT} = O, for some
et € Et, and C; = Dy X ... x Dy, where each D; is a variant of a clause
in P (1 <j <m). Then there is an SLD-refutation of P U {«+ e'} with in-

put clauses D1,..., Dy, since Dy X ... X D, x { eT} = O. Assume that
there is some e~ € E;, such that C; x {<- e} = O. Then it follows that
there is an SLD-refutation of PU{<+ e~ }, with input clauses Dy, ..., Dy, since

Dy x...x Dy, x{« e~} = 0. This contradicts the assumption that no et € E*
and e~ € E~ have the same sequence of input clauses in their SLD-refutations.
Thus E; = (), and Divide-and-Conquer outputs H; = {C;}.

Induction step: Assume the longest SLD-refutation of {C;} UB and an example
in E” to be [+ 1. If E; = (), Divide-and-Conquer terminates and outputs
H; = {C;}. Otherwise, Divide-and-Conquer is called once for each resolvent
Dj, 1< j <m, of C; obtained by unfolding, with the sets of examples Fj'" and

F;. Since the length of the longest SLD-refutation of {D;} U B U {« f*},

25

1 < j < m, where fT € F*, is [, the jth call to Divide-and-Conquer re-
sults in I, after a finite number of steps according to the induction hypoth-
esis, where F;” C M(I; U B) and M(I; U B) N F; = (. Then Divide-and-
Conquer outputs H; = I; U...UI,,. Since the target predicate is non-recursive
M{H;}UB) = M{L}UB)U...UM({I,}UB). Hence E;" C M(H; U B)
and M(H; UB)N E; = (. Since the clauses in H; are resolvents of clauses in
O U B, it follows that M (H; UB) C M (O U B).

Appendix C

In this section, it is shown that for each non-recursive hypothesis that can be
produced by Covering, there is an equivalent hypothesis (w.r.t. the background
predicates) that can be produced by Divide-and-Conquer.

Let C' = (Ag < Ai1,...,Ap) and D = (By « Bi,. .., Bp) be definite clauses.
Then we write C' X, D to denote the resolvent (Ag < A1,...,Ap—1,B1,...,
By, Apt1,Am)8 of C and D where 0 is an mgu of {A,,By}. The following
lemma follows from the Switching Lemma in SLD-resolution [16, p 50].

Lemma 3 LetC = (Lo < L1,..., Ly, ..., Lp,...,Ly), D = (Ag < A1,..., Ay),
and E = (By « By,...,B,) be definite clauses. Then (C X, D) X,, E and
(C Xm E) Xpyr—1 D are variants.

Let C be a definite clause, and P a definite program. Then the unfolding of
C w.r.t. P upon the nth body literal of C is the set of clauses {C' x, D : D € P}.
A proof of the following lemma can be found in [26, p 131].

Lemma 4 Let C be a definite clause, P a definite program, and U an unfolding
of C w.r.t. P. Then M(PU{C})=M(PUU).

Before stating the theorem we need to introduce some terminology.

Let O be a set of definite clauses, and P a definite program. Then a derived
clause w.r.t. O and P is recursively defined as follows:
a) if C' € O then C is a derived clause w.r.t. O and P, and
b) if D is a derived clause w.r.t. O and P, and E € P, then D X E is a derived
clause w.r.t. O and P.

Let O be a set of clauses, and P a definite program. Then the depth of a
literal in a derived clause w.r.t. O and P is recursively defined as follows:
a) if C' € O then the depth of the literals in C is 0, and
b)if D = (Ag + Ay,...,An, ..., An) is a derived clause w.r.t. O and P, the
depth of An is d, and (AO — Al,. . .,An_l,Bl,. . .,Bp,An+1,. . ,Am)0 is a
resolvent of D and some clause in P, then the depth of the literals B16,..., Byf
isd+1.

26

Let O be a set of definite clauses, and P a definite program. Then a derived
clause (Lo < L1,...,Ly) wrt. O and P is a d-depth derived clause w.r.t. O
and P if and only if all the literals Ly, ..., L,, are of depth d.

Let O be a set of clauses, P a definite program, R a set of derived clauses
w.r.t. O and P, and the maximal depth of a literal in a clause in R is < d. Then
a d-depth unfolding set of R w.r.t. P is a set of clauses obtained from R by
repeatedly replacing each clause C' € R with the unfolding of C w.r.t. P upon
a body literal of C' with a depth < d, until all clauses in R are d-depth derived
clauses w.r.t. O and P.

Theorem 5 Let O be a set of definite clauses, P a definite program, R a set of
derived clauses w.r.t. O and P, and d the mazimal depth of a literal in a clause
in R. Then for every d-depth unfolding set U of O there exists an S C U such
that M(PUS) = M(PUR).

Proof By Lemma 3, the order of the applications of unfolding is insignificant.
Thus, all d-depth unfolding sets of O w.r.t. P are equivalent (up to variable
renaming). Let Ugr be a d-depth unfolding set of R w.r.t. P. Then we have
Ur CU. By Lemma 4, M(PUO) = M(PUU) and M(PUR) = M(PUUg).
Consequently, there exists a subset S = Ug of U such that M(PUS) = M(PU
R). m

References

[1] Bergadano F. and Giordana A., “A Knowledge Intensive Approach to Con-
cept Induction”, Proceedings of the Fifth International Conference on Ma-
chine Learning, Morgan Kaufmann, CA (1988) 305-317

[2] Bostrom H., “Eliminating Redundancy in Explanation-Based Learning”,
Machine Learning: Proc. of the 9th International Conference, Morgan Kauf-
mann, CA (1992) 37-42

[3] Bostrom H., “Improving Example-Guided Unfolding”, Proc. of the European
Conference on Machine Learning, Springer-Verlag (1993) 124-135

[4] Bostrom H., “Specialization of Recursive Predicates”, Proceedings of the
Eighth European Conference on Machine Learning, Springer-Verlag (1995)
92-106

[5] Bostrom H., “Covering vs. Divide-and-Conquer for Top-Down Induction of
Logic Programs”, Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, Morgan Kaufmann (1995) 1194-1200

[6] Bostrom H., “Theory-Guided Induction of Logic Programs by Inference of
Regular Languages”, Proc. of the 13th International Conference on Machine
Learning, Morgan Kaufmann (1996) 46-53

27

[7] Bostrom H. and Idestam-Almquist P., “Specialization of Logic Programs
by Pruning SLD-Trees”, Proceedings of the 4th International Workshop on
Inductive Logic Programming, volume 237 of GMD-Studien, Gesellschaft fiir
Mathematik und Datenverarbeitung MBH (1994) 31-48

[8] Bratko I., Prolog Programming for Artificial Intelligence, (2nd edition),
Addison-Wesley (1990)

[9] Bruynooghe M., De Raedt L. and De Schreye D., “Explanation Based Pro-
gram Transformation”, Proc. of the Eleventh International Joint Conference
on Artificial Intelligence, Morgan Kaufmann (1989) 407-412

[10] Clark P. and Holte R., “Lazy Partial Evaluation: An Integration of
Explanation-Based Generalization and Partial Evaluation”, Machine Learn-
ing: Proc. of the 9th International Conference, Morgan Kaufmann, CA (1992)
82-91

[11] Clark P. and Niblett T., “The CN2 Induction Algorithm”, Machine Learn-
ing 3 (1989) 261-283

[12] Cohen W. W., “The Generality of Overgenerality”, Machine Learning: Pro-
ceedings of the FEighth International Workshop, Morgan Kaufmann (1991)
490-494

[13] Cohen W. W., “A Decision Tree Approach to Theory Specialization”, un-
published manuscript (1991)

[14] Cohen W. W., “Compiling Prior Knowledge Into an Explicit Bias”, Ma-
chine Learning: Proceedings of the Ninth International Workshop, Morgan
Kaufmann (1992) 102-110

[15] Kanamori T. and Kawamura T., “Preservation of Stronger Equivalence in
Unfold/Fold Logic Program Transformation (II)”, ICOT Technical Report
TR-403, Japan (1988)

[16] Lloyd J. W., Foundations of Logic Programming, (2nd edition), Springer-
Verlag (1987)

[17] Michalski R. S., “Pattern Recognition as Rule-Guided Inductive Inference”,
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 2 (1980)
349-361

[18] Muggleton S., “Inverse entailment and Progol”, New Generation Comput-
ing 13 (1995) 245286

[19] Muggleton S., Bain M., Hayes-Michie J. and Michie D., “An experimen-
tal comparison of human and machine learning formalisms”. Proceedings of

the Sixth International Workshop on Machine Learning, Morgan Kaufmann
(1989) 113-118

28

[20] Nienhuys-Cheng S.-H. and de Wolf R., personal communication (1995)

[21] Pazzani M. and Brunk C., “Finding Accurate Frontiers: A Knowledge-
Intensive Approach to Relational Learning”, Proceedings of the Eleventh Na-
tional Conference on Artificial Intelligence, Morgan Kaufmann (1993) 328-
334

[22] Pazzani M., Brunk C. and Silverstein G., “A Knowledge-Intensive Ap-
proach to Learning Relational Concepts”, Machine Learning: Proceedings of
the Eighth International Workshop, Morgan Kaufmann (1991) 432-436

[23] Quinlan J. R., “Induction of Decision Trees”, Machine Learning 1(1986)
81-106

[24] Quinlan J. R., “Learning Logical Definitions from Relations”, Machine
Learning 5 (1990) 239-266

[25] Shapiro E. Y., Algorithmic Program Debugging, MIT Press (1983)

[26] Tamaki H. and Sato T., “Unfold/Fold Transformations of Logic Programs”,
Proceedings of the Second International Logic Programming Conference, Up-
psala University, Uppsala, Sweden (1984) 127-138

[27] Watanabe L. and Rendell L., “Learning Structural Decision Trees from
Examples”, Proceedings of the Twelvth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann (1991) 770-776

29

