
Induction of Logic Programs by

Example�Guided Unfolding

Henrik Bostr�om and Peter Idestam�Almquist

Dept� of Computer and Systems Sciences

Stockholm University and Royal Institute of Technology

Electrum ���� 	
� �� Kista� Sweden

fhenke�pig�dsv�su�se

Abstract

Resolution has been used as a specialisation operator in several ap�
proaches to top�down induction of logic programs� This operator allows
the overly general hypothesis to be used as a declarative bias that restricts
not only what predicate symbols can be used in produced hypotheses� but
also how the predicates can be invoked� The two main strategies for top�
down induction of logic programs� Covering and Divide�and�Conquer� are
formalised using resolution as a specialisation operator� resulting in two
strategies for performing example�guided unfolding� These strategies are
compared both theoretically and experimentally� It is shown that the
computational cost grows quadratically in the size of the example set for
Covering� while it grows linearly for Divide�and�Conquer� This is also
demonstrated by experiments� in which the amount of work performed
by Covering is up to �� times the amount of work performed by Divide�
and�Conquer� The theoretical analysis shows that the hypothesis space is
larger for Covering� and thus more compact hypotheses may be found by
this technique than by Divide�and�Conquer� However� it is shown that for
each non�recursive hypothesis that can be produced by Covering� there
is an equivalent hypothesis �w�r�t� the background predicates� that can
be produced by Divide�and�Conquer� A major draw�back of Divide�and�
Conquer� in contrast to Covering� is that it is not applicable to learning
recursive de	nitions�
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� Introduction

The search for a single clause in an inductive hypothesis can be performed either
bottom�up �i�e� from an overly speci�c clause to a more general� or top�down
�i�e� from an overly general clause to a more speci�c�� In this work we study the
induction of de�nite programs consisting of multiple clauses� where each clause
is searched for top�down� This problem can be formulated in the following way�

Given� a de�nite program O �overly general hypothesis�� a de�nite program
B �background predicates� and two �nite sets of ground atoms E� and E�

�positive and negative examples��
Find�� a de�nite program H � called a valid hypothesis� such that M�H � B� �
M�O � B�� E� �M�H � B� and M�H � B� � E� 	 ��

In this work we assume that all positive and negative examples are ground
instances of the same atom� whose predicate symbol is referred to as the target
predicate� and that all clauses in O� and only those� de�ne the target predicate�
Furthermore� we assume the clauses in O and B to be non�recursive w�r�t� the
target predicate �i�e� no instance of the target predicate is allowed in the body
of a clause�� It should be noted that this assumption does not prevent recur�
sive predicates from being used in the de�nition of the target predicate� The
motivation for assuming the target predicate to be non�recursive in the overly
general hypothesis is given in section 
�
�

Two specialisation operators that are commonly used when searching top�
down for a single clause are literal addition �used in e�g� ��� ��� ���� and res�
olution �used in e�g� ��� ��� ����� By literal addition� a clause is specialised by
adding a literal to the body� where the literal usually is restricted to be an
instance of a background predicate� Various restrictions are normally also put
on the variables in the literals �e�g� at least one of the variables should appear
previously in the clause ������ By resolution� a clause is specialised by resolving
upon a literal in the body using one of the background clauses� In the resolution�
based approaches� the clauses in the overly general hypothesis can be viewed as
a declarative bias that restricts not only what predicate symbols can be used
in learned clauses� but also how the predicates can be invoked� It should be
noted that for each clause obtained by resolution there is an equivalent� clause
�w�r�t� the background predicates� that can be obtained by literal addition� �not
necessarily in one step�� On the other hand� it is also possible to de�ne pred�
icates that may introduce any literal� such that for any clause obtainable by
literal addition there is an equivalent clause �w�r�t� the background predicates�

�M�P � denotes the least Herbrand model of P �
�We say that two de�nite clauses C� and C� �or hypotheses H� andH�� are equivalent w�r�t�

a de�nite program B if and only ifM�fC�g�B� � M�fC�g�B� �orM�H��B� �M�H��B���
�It is assumed that ��X�X� is among the background predicates�
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obtainable by resolution��

The two main strategies for top�down induction of logic programs are Cov�
ering and Divide�and�Conquer� Covering� which has been used in e�g� mis ����
foil ����� ana�ebl ����� focl ����� grendel ����� focl�frontier ���� and
progol ����� constructs a hypothesis by repeatedly specialising an overly gen�
eral clause� on each iteration selecting a specialised clause that covers a subset of
the positive examples and no negative examples� until all positive examples are
covered by the selected clauses� Divide�and�Conquer� which has been used in
e�g� ml�smart ���� struct ����� idel ��
� and spectre ���� constructs a hypoth�
esis by dividing an overly general clause into a set of clauses� which correspond
to disjoint subsets of the examples� It then continues recursively with those
clauses for which the corresponding subsets contain both positive and negative
examples� The resulting hypothesis consists of all specialised clauses for which
the corresponding sets contain positive examples only�

In the next section� we formalise the two main strategies for top�down in�
duction of logic programs using resolution as a specialisation operator� resulting
in two strategies for performing example�guided unfolding� In section three� we
analyse these strategies theoretically and compare them with respect to their
computational complexity� the size of their hypothesis spaces and their ability
to produce recursive hypotheses� In section four� we compare the two strategies
empirically w�r�t� e�ciency and size and accuracy of the produced hypotheses�
Finally� we give some concluding remarks in section �ve� The reader is assumed
to be familiar with the standard terminology in logic programming �����

� Covering and Divide�and�Conquer

In this section we formalise Covering and Divide�and�Conquer using resolution
as a specialisation operator and illustrate how the techniques work using an
example� We also show under what conditions the techniques produce valid
hypotheses� Finally� we show that one of these conditions can always be ful�lled�

�The following technique �suggested by the �rst author of this paper� has been proven to
be complete ���	
 Let D be a de�nite clause with variables X�� ����Xn� Let D� be the clause
obtained by adding to D the goal g��X�� ���� Xn��� where g�� is de�ned in the following
way

g�L��

g�L�	
 g��X�L���

for every nary predicate symbol p

g�L�	
 p�X�� ���� Xn�� member�X��L�� ���� member�Xn�L�� g�L��

for every nary function symbol f

g�L�	
 member�f�X�� ���� Xn��L�� member�X��L�� ���� member�Xn�L�� g�L��

Now any clause that is subsumed by D can be obtained by starting with D� and applying
resolution upon the goals g�� andmember�� �assuming the standard de�nition ofmember����






��� Covering

The Covering principle can be applied using resolution as a specialisation op�
erator in the following way� One of the clauses in the overly general hypothesis
is selected and specialised by resolving upon a literal in the clause until the
selected clause does not cover� any negative examples� This process is iterated
until all positive examples are covered by the selected clauses� This technique
is formalised in Figure ��

FUNCTION COVERING�O�B�E�� E��
H �	 �
WHILE E� �	 � DO

C �	 a clause in O that covers some e � E� w�r�t� B
WHILE C covers an element in E� w�r�t� B DO

C �	 a resolvent R of C and a clause in B� such that R covers
some e � E� w�r�t� B

H �	 H � fCg
E� �	 E� n fe � E� � e is covered by C w�r�t� Bg

RETURN H

Figure �� The Covering algorithm�

Example Assume that we are given the overly general hypothesis�

reward�S�R��� suit�S�� rank�R��

and the background predicates in Figure �� together with the following sets of
positive and negative examples�

E� 	 f reward�spades���� reward�clubs�	�g
E� 	 f reward�hearts�
�� reward�clubs�jack�g

Calling Covering with this input results in the following� Since the clause in
the overly general hypothesis covers negative examples� it is specialised� Choos�
ing the �rst literal to resolve upon using the second clause de�ning suit�S�

results in the following clause�

reward�S�R��� black�S�� rank�R��

This clause still covers the second negative example� and is thus specialised�
Choosing the second literal to resolve upon using the �rst clause de�ning rank�R�
results in the following clause�

�A clause A� B�� � � � � Bn is said to cover an atom A� w�r�t� a de�nite program P if and
only if there is an SLDrefutation of P � f�� B�� � � � � Bn��g�
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suit�S��� red�S��

suit�S��� black�S��

rank�R��� num�R��

rank�R��� face�R��

red�hearts��

red�diamonds��

black�spades��

black�clubs��

num���� ��� num�����

face�jack�� face�queen�� face�king��

Figure �� Background predicates�

reward�S�R��� black�S�� num�R��

This clause does not cover any negative examples and is thus added to the re�
sulting hypothesis� Since the hypothesis now covers all positive examples� the
algorithm terminates�

Covering produces a valid hypothesis in a �nite number of steps when i�
all positive examples are covered by the overly general hypothesis w�r�t� the
background predicates� ii� there is a �nite number of SLD�derivations of positive
and negative examples �i�e� the program terminates for all examples� and iii�
there are no positive and negative examples that have the same sequence of
input clauses in their SLD�refutations� This is shown in Appendix A� It should
be noted that this property is not dependent on how the non�deterministic
choices in the algorithm are made� However� these choices are crucial for the
result� Normally� a few number of clauses of high generality are preferred to a
large number of speci�c clauses� and making the wrong choices may result in a
non�preferred� although valid� hypothesis� Since it is computationally expensive
to �nd the optimal choices� these are often approximated� In several approaches
this has been done by selecting the re�nement that maximises the information
gain ���� ��� ����

cov�R�E��

�
log�

cov�R�E��

cov�R�E� �E��
� log�

cov�C�E��

cov�C�E� � E��

�

where R is the resolvent of a clause C and a clause in B and cov�D�E� denotes
the number of elements in a set of examples E that are covered by a clause D�





��� Divide�and�Conquer

The Divide�and�Conquer principle can be applied in a logic programming frame�
work using resolution as a specialisation operator in the following way� Each
clause in the overly general hypothesis covers a subset of the positive and neg�
ative examples� If a clause covers positive examples only� then it should be in�
cluded in the resulting hypothesis� and if it covers negative examples only then
it should be excluded� If a clause covers both negative and positive examples�
then it corresponds to a part of the hypothesis that needs to be further divided
into sub�hypotheses� When dividing a hypothesis into a set of sub�hypotheses�
these should be equivalent to the divided hypothesis� This means that a clause
that covers both positive and negative examples should be split into a number
of clauses� that taken together should be equivalent to the clause that is split�
This can be achieved by applying the transformation rule unfolding� ����� This
technique is formalised in Figure 
�

FUNCTION DAC�C�B�E�� E��
IF E� 	 � THEN H �	 � ELSE
IF E� 	 � THEN H �	 fCg ELSE

Unfold upon a literal in C� giving C�� � � � � Cn

Let E�

i and E�

i be the set of examples in E� and E� respectively
that are covered by Ci w�r�t� B� � � i � n
H �	 DAC�C�� B�E

�

� � E
�

� � � � � � �DAC�Cn� B�E
�
n � E

�

n �
RETURN H

Figure 
� The Divide�and�Conquer algorithm�

Example Consider again the overly general hypothesis� background predicates
and examples in the previous example� Calling Divide�and�Conquer with this
input results in the following�

Since the clause covers both positive and negative examples� unfolding is
applied� Unfolding upon suit�S� replaces the clause with the following two
clauses�

reward�S�R��� red�S�� rank�R��

reward�S�R��� black�S�� rank�R��

The �rst clause covers one negative example only� while the second clause
covers two positive examples and one negative example� The algorithm is then
called once with each of these clauses� The empty hypothesis is returned by the
�rst call since the �rst clause does not cover any positive examples� The clause
used in the second call is unfolded since it covers both positive and negative

�Unfolding upon a literal L in the body of a clause C in a de�nite program P � means that
C is replaced with the resolvents of C and each clause in P whose head uni�es with L�
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examples� Unfolding upon rank�R� replaces the clause with the following two
clauses�

reward�S�R��� black�S�� num�R��

reward�S�R��� black�S�� face�R��

The �rst of these clauses covers two positive and no negative examples and is
therefore included in the resulting hypothesis� while the second covers one nega�
tive example only� and is therefore not included� Hence� the resulting hypothesis
is�

reward�S�R��� black�S�� num�R��

Divide�and�Conquer produces a valid hypothesis in a �nite number of steps
when i� all positive examples are covered by the overly general hypothesis w�r�t�
the background predicates� ii� there is a �nite number of SLD�derivations of
positive and negative examples �i�e� the program terminates for all examples�
and iii� there are no positive and negative examples that have the same sequence
of input clauses in their SLD�refutations� This is shown in Appendix B�

As for Covering� it should be noted that the non�deterministic choices �in
this case of which literals to unfold upon� are crucial for the result when apply�
ing Divide�and�Conquer� Again� the optimal choices can be approximated by
selecting the specialisation that maximises the information gain� as is done in
���� ��� �� �cf� id� ��
��� This is equivalent to minimising�

�c
nX
i��

cov�Ci� E
�� log�

cov�Ci� E
��

cov�Ci� E� � E��
� cov�Ci� E

�� log�
cov�Ci� E

��

cov�Ci� E� � E��

where C�� � � � � Cn are the resolvents upon one of the literals in the current clause
C� cov�Ci� E� denotes the number of elements in E that are covered by Ci and
the constant c is ��cov�C�E� � E���

Note that this heuristic credits a high coverage of either positive or negative
examples� while the information gain for Covering credits a high coverage of
positive examples only�

It should also be noted that in case of multiple SLD�refutations of some
examples� unfolding is not guaranteed to partition the examples� which means
that the sum of the number of examples covered by each resolvent may be larger
than the number of examples covered by the current clause� In such cases� it
seems more appropriate to count the number of SLD�refutations of positive and
negative examples� rather than just counting the number of covered examples�
as the number of SLD�refutations does not change when unfolding is applied
�shown in �����
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��� Guaranteeing Unique Sequences of Input Clauses

One of the conditions for Covering and Divide�and�Conquer to produce valid
hypotheses is that no positive and negative examples have the same sequence
of input clauses in their SLD�refutations� In this section� we present a transfor�
mation technique� which guarantees that this condition holds�

With no loss of generality� we can assume that all terms in the Herbrand
universe are de�ned by a predicate term�X��	 Then we can rewrite the orig�
inal program by adding to each clause de�ning the target predicate� a literal
term�X� for each variable X in the head of the clause� Then each example will
have a unique branch in the SLD�tree� For example� assume that the origi�
nal program consists of one clause� p�X�� and that the Herbrand universe is
f�� s���� s�s����� ���g� Then the program can be written as�

p�X��� term�X��

term����

term�s�X���� term�X��

Whereas in an SLD�tree of the original program the refutations of the two exam�
ples p��� and p�s���� follow identical branches� they follow di�erent branches
in an SLD�tree of the transformed program�

� Theoretical Analysis

In this section we analyse Covering and Divide�and�Conquer with respect to the
computational complexity� the hypothesis spaces that are explored� the ability
to produce recursive hypotheses and the amount of redundancy in the produced
hypotheses�

��� Computational Complexity

Assuming the cost of checking whether a clause covers an example or not to
be constant� we can give upper bounds on the computational complexity of
Covering and Divide�and�Conquer� as described below�

Let l be the maximum length of the SLD�refutations of the positive and
negative examples� m be the maximum number of clauses de�ning a predicate�
p be the number of positive examples� and n the number of negative examples�
By derivation branch� we mean the sequence of derived clauses
 from an overly
general clause to a resolvent that is kept in the produced hypothesis�

The maximum length of a derivation branch is l� and for the ith derived
clause �� � i � l�� there are in the worst case m�l � i� alternative ways of
applying resolution upon the clause� since there are at most l� i literals in the

�One clause is needed for each constant and function symbol�
�Derived clause is de�ned in Appendix C�
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body of the ith derived clause� Thus� for each derivation branch the number of
derived clauses that need to be evaluated is bounded by ml����

For Covering� there are in the worst case p di�erent derivation branches
that need to be considered� and for the ith considered branch �� � i � p�� all
negative examples and p� i� � positive examples have to be checked for each
evaluated derived clause� Thus� for Covering� the number of times a clause is
checked w�r�t� an example is bounded by �ml����p�n� �p� ���� � ���

In the case when no example has more than one SLD�refutation� each ex�
ample needs at most to be checked w�r�t� one derivation branch in Divide�and�
Conquer� since the sets of examples covered by a set of clauses obtained by
unfolding are mutually exclusive� Since there are ml��� derived clauses that
need to be evaluated for each derivation branch� the number of times a clause is
checked w�r�t� an example is bounded by �ml�����n�p�� In the case when there
are more than one SLD�refutation for some examples� the number of times a
clause is checked w�r�t� an example is bounded by the same number as for Cov�
ering�

In summary� the computational cost for Covering grows at most quadrati�
cally in the number of �positive� examples� while it grows linearly in the number
of examples for Divide�and�Conquer when each example has at most one SLD�
refutation� and quadratically otherwise�

The above analysis is consistent with the worst�case complexity analysis
of Divide�and�Conquer and Covering in a propositional framework presented
in ����� where the computational cost of Divide�and�Conquer �represented by
Assistant� was shown to grow linearly with the number of examples� while the
cost of Covering �represented by CN�� was shown to grow quadratically� In
section ���� we show that any propositional learning problem can be transformed
into a top�down ILP problem for which each example has exactly one SLD�
refutation� thus allowing Divide�and�Conquer to run in linear time�

��� The Hypothesis Spaces

Let O be an overly general hypothesis and B be background predicates� The
hypothesis space for Covering is�

Hcov 	 fH � H � fC�	 � � �	Cn � C� � O and C�� � � � � Cn � B� where n 
 �gg�

The hypothesis space for Divide�and�Conquer is�

Hdac 	 fH � H � H � nB� where H � is obtainable from O � B by a number of
applications of unfolding upon clauses that are not in Bg�

Note that Hdac � Hcov� which follows from the fact that each set of clauses
obtained by unfolding can be obtained by resolution and that there are pro�

	C �D denotes a resolvent of C and D upon a literal in the body of C� Note that C �D
is in general not unique�
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grams that can be produced by adding resolvents that cannot be produced by
unfolding� For example� consider the overly general hypothesis�

p�X��� q�X�� r�X��

and the background predicates�

q�X��� s�X��

r�X��� t�X��

Then the following hypothesis is in Hcov� but not in Hdac�

p�X��� s�X�� r�X��

p�X��� q�X�� t�X��

However� for each �non�recursive� hypothesis that can be produced by Cov�
ering� Divide�and�Conquer can produce a hypothesis that is equivalent w�r�t�
the background predicates� This is shown in Appendix C�

��� Recursive Hypotheses

As was stated in section �� the target predicate is assumed to be non�recursive�
The reason for this is that Divide�and�Conquer does not work properly when
specialising clauses that de�ne recursive predicates� This because decisions re�
garding one part of the hypothesis may a�ect the coverage of other parts� and
thus such decisions cannot be made independently as is done in Divide�and�
Conquer� In ����� this problem is approached by assuming that the de�nition
of the target predicate will be equivalent �w�r�t� the background predicates� to
the set of positive examples �as is done in foil ����� and hence the coverage of
di�erent parts of the hypothesis can be determined independently� However� in
many cases this assumption leads to non�valid hypotheses being produced�

Another approach to this problem is to transform the overly general hypoth�
esis into a non�recursive de�nition� as proposed in ���� Let T be the recursive
target predicate and O be the clauses de�ning T � Then introduce a new predi�
cate T � by adding a clause T � � T � where the arguments of T � are all variables
in T �i�e� de�nition ������ Unfold upon T in the clause� and replace each instance
T� in the bodies of the clauses de�ning T and T � �directly or indirectly� with
T �� �i�e� folding ������ Then a non�recursive de�nition of T has been obtained�
such that T� �M�O �B� if and only if T� �M�O� � B�� For example� let the
recursive target predicate be nat�X�� which is de�ned by the two clauses�

nat����

nat�s�X���� nat�X��

Then the non�recursive de�nition will be�
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nat����

nat�s�X���� nat�X��

nat����

nat�s�X���� nat�X��

However� although this transformation allows Divide�and�Conquer to be ap�
plied� it prevents recursive hypotheses from being found� For example� assume
the following positive and negative examples to be given�

E� 	 f nat�s����� nat�s�s�s������� nat�s�s�s�s�s��������g
E� 	 f nat���� nat�s�s������ nat�s�s�s�s������� g

Then the hypothesis produced by Divide�and�Conquer� after having applied the
above transformation� will exclude the negative examples only �i�e� a maximally
general specialization is obtained��

nat�s�����

nat�s�s�s�������

nat�s�s�s�s�s�X�������� nat�X��

nat����

nat�s�X���� nat�X��

It should be noted that although Divide�and�Conquer cannot be used to
produce recursive hypotheses� it does not mean that such cannot be found by
applying unfolding and clause removal� On the contrary� a technique for achiev�
ing this is presented in ����

Covering� on the other hand� can be extended to deal with recursive predi�
cates �c�f� ����� Instead of searching for a clause that together with background
predicates covers some positive examples and no negative examples� a clause can
be searched for that together with the clauses found so far and the background
predicates covers some not yet covered positive examples without covering any
negative examples� and that allows for the remaining positive examples to be
covered without covering any negative examples�

��� Redundancy

When using Covering� the number of SLD�refutations of the positive examples
is not necessarily the same for the resulting hypothesis as for the overly general
hypothesis� i�e� the amount of redundancy may increase or decrease� On the
other hand� when using Divide�and�Conquer� the number of SLD�refutations of
the positive examples is the same for both the overly general and the resulting
hypothesis� This follows from the fact that the number of SLD�refutations does
not increase when unfolding is applied �proven in ����� In order to allow for
reduction of the amount of redundancy when using Divide�and�Conquer� only a
minor change to the algorithm is needed� instead of placing a positive example
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in all subsets that correspond to clauses that cover the example� the example
can be placed in one such subset�

� Empirical Evaluation

In this section we empirically evaluate the performance of Covering and Divide�
and�Conquer� We �rst present four domains that are used in the experiments
and then present the experimental setting and results�

��� Domains

Two domains are taken from the UCI repository of machine learning databases
and domain theories� King�Rook versus King�Pawn on a� and Tic�Tac�Toe�
The third domain� which considers natural language parsing using a de�nite
clause grammar� is taken from ���� while the fourth domain King�Rook�King�
Illegal ���� is one of the most frequently used ILP benchmark domains�

The example sets in the UCI repository are represented by attribute�value
vectors� and have to be transformed into atoms in order to be used together
with the algorithms� The number of examples is 
��� in the �rst domain �of
which ���� are positive� and �� in the second domain �of which ��
� are
positive��

Since the algorithms also require overly general hypotheses as input� such
are constructed for the two �rst domains in the following way �cf� ������ A new
target predicate is de�ned with as many arguments as the number of attributes�
and for each attribute a new background predicate is de�ned to determine the
possible values of the attribute� This technique is illustrated by the following
overly general hypothesis and background predicate for determining win for x
in the Tic�Tac�Toe domain�

win�for�x�S��S��S	�S��S
�S��S��S��S����

square�S��� square�S��� square�S	��

square�S��� square�S
�� square�S���

square�S��� square�S��� square�S���

square�x��

square�o��

square�b��

An alternative formulation of the Tic�Tac�Toe domain is used as well� where a
new intermediate background predicate is introduced� In the alternative formu�
lation� the de�nition of the predicate square�S� is changed into the following�

square�x��

square�S��� o�or�b�S��

o�or�b�o��

o�or�b�b��
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The hypothesis is that the new intermediate predicate will reduce the number of
clauses in the resulting de�nition� and hence increase the accuracy� The reason
for this is that it does not matter in the correct de�nition of the target predicate
whether a square has the value o or b�

The set of positive examples in the third domain consists of all sentences
of up to seven words that can be generated by the grammar in ��� p ��� i�e�
� sentences� The set of negative examples is generated by randomly selecting
one word in each correct sentence and replacing it by a randomly selected word
that leads to an incorrect sentence� Thus the number of negative examples is
also �� Two versions of an overly general hypothesis are used for this domain�
The �rst version is shown below�

sentence��every�X��Y��� s�X�Y��

sentence��a�X��Y��� s�X�Y��

���

s�X�X��

s��every�X��Y��� s�X�Y��

s��a�X��Y��� s�X�Y��

���

where the de�nition of the background predicate s�X�Y� is the same as
for sentence�X�Y�� but with s substituted for sentence and with one ex�
tra clause� s�X�X�� By referring to the background predicate s�X�Y� instead
of sentence�X�Y�� the problem with recursive overly general hypotheses is
avoided� as discussed in section 
�
�

The second version introduces intermediate predicates in the de�nitions of
sentence�X�Y� and s�X�Y�� that group words into classes in the following
way���

sentence�X�Y��� determiner�X�Z�� s�Z�Y��

sentence�X�Y��� noun�X�Z�� s�Z�Y��

���

determiner��every�X��X��

determiner��a�X��X��

���

The hypothesis is� like for the Tic�Tac�Toe domain� that the intermediate pred�
icates will improve the accuracy of the resulting hypotheses�

The number of examples in the King�Rook�King�Illegal domain is ����� of
which ���� are negative� The following overly general hypothesis was used in
the experiments�

�
The word classes are taken from ��	�

�




illegal�A�B�C�D�E�F���

comp�A�B�� comp�A�C�� ���� comp�E�F��

adj�or�not�A�B�� adj�or�not�A�C�� ���� adj�or�not�E�F��

comp�A�A��

comp�A�B��� A � B�

comp�A�B��� A � B�

adj�or�not�A�B��� adj�A�B��

adj�or�not�A�B��� �� adj�A�B��

adj������

���

adj������

adj������

���

adj������

adj������

���

adj������

��� Experimental Setting

Covering and Divide�and�Conquer are compared in the four domains using the
information gain heuristics that were mentioned in section �� In addition� we
include results from using two state�of�the�art ILP systems� Progol ��� ���� and
FOIL ��� �������

An experiment is performed with each domain� in which the entire example
set is randomly split into two halves� where one half is used for training and
the other for testing� The number of examples in the training sets that are
given as input to the algorithms are varied� representing ��� �� ���� ��
and �� of the entire example set� where the last subset corresponds to the
entire set of training examples and a greater subset always includes a smaller�
The same training and test sets are used for all algorithms� Each experiment
is iterated � times and the mean accuracy on the test examples is presented
below� as well as the mean number of clauses in the produced hypotheses� In
addition� the amount of work performed by Divide�and�Conquer and Covering
is presented� measured as the number of times it is checked whether a clause

��The default parameter settings were used in both systems except for that in FOIL the
variable depth �d� was set to � �necessary in the DCG domain� and negated literals were
disallowed �n�� and in Progol� which was used in the last three experiments only� the variable
depth parameter �i� was set to �� � and � respectively and the maximum clause length �c�
was set to �� � and ��
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covers an example or not���

��� Experimental Results

����� King�Rook vs� King�Pawn

The use of Progol in the King�Rook versus King�Pawn domain was prevented
by the large number of identical arguments in the examples �in several cases
more than twenty�� leading to a combinatorial explosion when investigating all
possible ways in which an example can be subsumed��� In Figure ��  and
�� the results from this domain for the three other systems are presented� It
can be seen that Divide�and�Conquer produces more accurate� but less compact�
hypotheses than Covering for all sizes of the training set� Furthermore� Covering
checks more examples than Divide�and�Conquer for all sizes of the training
sets� When the size of the training set is ��� the number of checks made by
Covering is about 
�� times as many as the number of checks made by Divide�
and�Conquer� The mean learning time for Divide�and�Conquer at that point is
����� s� for Covering ���
�� s and for FOIL only ���� s�
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Figure �� Accuracy for the KR vs� KP domain�

��The reason for using this measure of e�ciency and not e�g� cpu seconds� is that this
measure is implementation independent� Nevertheless� for some cases we also present the
learning time for all four systems� DivideandConquer and Covering were implemented in
SICStus Prolog � �� and all four systems executed on a SUN SparcStation ��

��One way of avoiding this problem could be to un�atten each positive example by adding
an equality to the body for each argument� but Progol ��� has problems detecting whether
such an un�attened clause is covered or not�
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����� De�nite Clause Grammar

FOIL requires that all background predicates are de�ned as ground unit clauses�
In this domain� which considers sentences of up to seven words� and where
there are �� di�erent words� a correct de�nition of the background predicate
components�
� whose intensional de�nition is components��X�L��X�L�� would
require more than �� million facts� and the same number of facts would be
needed to de�ne the word classes� giving over �� million facts in total� In order
to make it possible to run FOIL in this domain� the above de�nitions were
reduced to consider only lists of words that appear in the entire set of examples
and su�xes of these lists �this resulted in a de�nition of components�
 with
���� facts� and the same number of facts for the word classes�� However� it
should be noted that this solution is not possible in realistic situations as we
will not know what sequences of words will appear in unseen examples�

In Figure � and � the predictive accuracy and size of the produced hypotheses
is shown with and without word classes �the use of word classes is indicated by
a w in the �gures�� When no word classes are used� Covering and Divide�and�
Conquer produce identical hypotheses� which is shown by the dotted curves for
these algorithms� The reason for this is that there is no choice of what literal to
resolve upon �since there is only one body�literal in each overly general clause�
and no example has more than one SLD�refutation� This experiment also shows
that the amount of background knowledge can be far more important than what
strategy is used�
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In Figure �� it can be seen that Covering checks more examples than Divide�
and�Conquer for all sizes of the training sets and for both overly general hy�
potheses� When the size of the training set is ��� the number of checks made
by Covering without word classes is about 
� times as many as the number of
checks made by Divide�and�Conquer� The mean learning time without word
classes for Divide�and�Conquer at that point is 
�� s� for Covering ���� s� for
FOIL ���� s and for Progol ���� s� The mean learning time with word classes
for Divide�and�Conquer at the same point is ��� s� for Covering ��� s� for
FOIL �
�� s and for Progol ��
��� s�
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����� Tic�Tac�Toe

In Figure ��� �� and ��� the results from the Tic�Tac�Toe domain are presented�
The curves labeled Covering �i� and Divide�and�Conquer �i� represent the ac�
curacy of the hypotheses produced by Divide�and�Conquer and Covering with
the intermediate predicate� while the other curves are obtained whithout the
intermediate predicate��� It can be seen that Covering produces more accu�
rate and compact hypotheses than Divide�and�Conquer both with and without
intermediate predicates�

The amount of work performed by Covering is more than what is performed
by Divide�and�Conquer for all sizes of the training sets and for both overly
general hypotheses� as shown in Figure ��� When the size of the training set
is ��� the mean learning time for Divide�and�Conquer with and without the
intermediate predicate is ���� s and ��� s respectively� for Covering ���� s and

��� s� for FOIL �without the intermediate predicate� ��� s and for Progol ����
s�
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��The intermediate predicate was not given to FOIL and Progol as they could only per
form worse by considering this predicate� since it will not help them in focusing on squares
containing x �in contrast to the resolutionbased approaches��
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����� King�Rook�King�Illegal

In Figure �
� �� and �� the results from the King�Rook�King�Illegal domain
are presented� It can be seen that w�r�t� accuracy and size� all three approaches
based on covering �Progol� FOIL and the resolution�based approach Covering�
outperform the divide�and�conquer approach�
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The amount of work performed by Covering is more than what is performed
by Divide�and�Conquer for all sizes of the training sets� as shown in Figure ��
When the size of the training set is ��� the number of checks made by Covering
without intermediate predicates is about ��� times as many as the number of
checks made by Divide�and�Conquer� The mean learning time for Divide�and�
Conquer at that point is �
��� s� for Covering ���� s� for FOIL ��� s and for
Progol ����
 s�
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����	 Summary of experimental results

In summary� the hypotheses produced by Divide�and�Conquer were more accu�
rate than the hypotheses produced by Covering in the two �rst domains� while
they were less accurate in the two last domains� The results in the two �rst do�
mains illustrate that it can be bene�cial to focus on discriminating positive from
negative examples� which is done by Divide�and�Conquer� rather than focusing
on a high coverage of positive examples� which is done by Covering� The di�er�
ence in accuracy in the two last domains can be explained by the fact that the
number of clauses in the correct hypothesis within the hypothesis space for Cov�
ering is much less than the number of clauses in the correct hypothesis within
the hypothesis space for Divide�and�Conquer �e�g� for the Tic�Tac�Toe domain
these numbers are � and ��� respectively�� and these numbers give lower�bounds
for the number of positive examples needed for producing correct hypotheses�

In all domains� hypotheses were found with a smaller amount of work when
using Divide�and�Conquer compared to when using Covering�

� Concluding Remarks

We have formalised Covering and Divide�and�Conquer when applied to top�
down induction of logic programs using resolution as a specialisation operator�
resulting in two strategies for example�guided unfolding� It should be noted that
in contrast to earlier approaches to example�guided unfolding �e�g� ��� �� ��� 
���
the presented techniques only maintain partial correctness� as the purpose is to
cover a set of positive examples and exclude a set of negative examples�

The main di�erence between the two strategies is that Covering applies

��



unfolding to the same overly general hypothesis repeatedly� while Divide�and�
Conquer only uses the same hypothesis once� We have shown that the com�
putational cost grows at most quadratically in the size of the example set for
Covering� while it grows linearly for Divide�and�Conquer �when each example
has at most one SLD�refutation�� This was also demonstrated by the experi�
ments� in which the amount of work performed by Covering was up to 
� times
the amount of work performed by Divide�and�Conquer� The hypothesis space
is larger for Covering� and thus more compact hypotheses may be found by this
technique than by Divide�and�Conquer� However� we have shown that for each
hypothesis that can be produced by Covering� there is an equivalent hypoth�
esis �w�r�t� the background predicates� that can be produced by Divide�and�
Conquer� A major draw�back of Divide�and�Conquer� in contrast to Covering�
is that it is not applicable to learning recursive de�nitions�

The termination conditions for Covering and Divide�and�Conquer could be
relaxed by slightly altering the algorithms� Instead of requiring that no positive
and negative examples have the same sequence of input clauses in their SLD�
refutations� it is enough to require that for each positive example there is one
SLD�refutation with a unique sequence of input clauses� This alteration would
lead to that some hypotheses can be found that are not found by the algorithms
in their current formulations�

Instead of using resolution as a specialisation operator� literal addition could
have been used in the formalisations and the experiments� In the Covering algo�
rithm� a clause would then be specialised by adding a literal �as in ����� rather
than resolving upon a literal in the body� In the Divide�and�Conquer algorithm�
there are two alternatives to replacing a clause by all resolvents upon a literal�
either the clause is replaced by all clauses obtainable by adding a literal� or as
in ����� by two clauses� where one is obtained by adding a new literal and the
other is obtained by adding the negation of the literal �or a complementary lit�
eral�� All results in the theoretical analysis would still be valid� since the former
alternative corresponds to having a highly redundant overly general hypothesis�
while the latter corresponds to having an overly general hypothesis for which
each example has at most one SLD�refutation� In the light of the theoretical
analysis� the second alternative seems to be superior� However� as was pointed
out earlier� by using resolution instead of literal addition� explicit control of the
possible specialisations is obtained� where the overly general hypothesis is used
as a declarative bias that not only limits what predicate symbols are used� but
also how they are invoked�
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Appendix A

In this section� it is shown that Covering produces a valid hypothesis in a �nite
number of steps when all positive examples are covered by the overly general
hypothesis w�r�t� the background predicates� there is a �nite number of SLD�
derivations of positive and negative examples �i�e� the program terminates for
all examples� and there are no positive and negative examples that have the
same sequence of input clauses in their SLD�refutations�

Theorem � Let E� and E� be two �nite sets of ground atoms and P 	 O�B
be a de�nite program �overly general program�� such that the number of SLD�
derivations of P �f� eg are �nite for all e � E��E�� and there is no e� � E�

and e� � E�� such that the same sequence of input clauses is used both in an
SLD�refutation of P � f� e�g and in an SLD�refutation of P � f� e�g� Then
after a �nite number of steps� Covering outputs a de�nite program H� such that
M�H � B� �M�O � B�� E� �M�H � B� and M�H �B� � E� 	 ��

Proof Since the number of examples in E� is �nite� it su�ces to show that
the inner while�loop in Covering �nds a clause in a �nite number of steps that
covers at least one positive example and no negative examples� This can be
shown by induction on the length l of the longest SLD�refutation of fCg � B
and f� e�g� for some covered e� � E�� where C is the clause selected before
the inner while�loop is entered�

Base case� l	�� Then C is a clause such that C 	 f� e�g 	 �� for some
e� � E�� and C 	 C� 	 � � � 	 Cn� where each Ci is a variant of a clause in
P �� � i � n�� Then there is an SLD�refutation of P � f� e�g with in�
put clauses C�� � � � � Cn� since C� 	 � � � 	 Cn 	 f� e�g 	 �� Assume that
there is some e� � E�

i � such that C 	 f� e�g 	 �� Then it follows that
there is an SLD�refutation of P � f� e�g� with input clauses C�� � � � � Cn� since
C�	 � � �	Cn	f� e�g 	 �� This contradicts the assumption that no e� � E�

and e� � E� have the same sequence of input clauses in their SLD�refutations�
Thus M�fCg � B� �E� 	 ��

Induction step� Assume the longest SLD�refutation of fCg�B�f� e�g for some
e� � E� to be l��� IfM�fCg�B��E� 	 � then the inner while�loop terminates
and H 	 H � fCg� Otherwise� the inner while�loop is entered with a resolvent
C � of C� Since the length of the longest SLD�refutation of fC �g � B � f� e�g�
for some e� � E�� is l� the inner while�loop terminates� with a selected clause
C such that M�fCg � B� � E� �	 � and M�fCg � B� � E� 	 �� according to
the induction hypothesis�

Let H 	 fC�� � � � � Cng� Since the target predicate is non�recursive� M�H �
B� 	 M�fC�g � B� � � � � � M�fCng � B�� Hence� E� � M�H � B� and
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M�H �B� �E� 	 �� Since the clauses in H are resolvents of clauses in O �B�
it follows that M�H �B� �M�O � B��

Appendix B

In this section� it is shown that Divide�and�Conquer produces a valid hypothesis
in a �nite number of steps when all positive examples are covered by the overly
general hypothesis w�r�t� the background predicates� there is a �nite number of
SLD�derivations of positive and negative examples �i�e� the program terminates
for all examples� and there is no positive and negative examples that have the
same sequence of input clauses in their SLD�refutations�

Theorem � Let E� and E� be two �nite sets of ground atoms and P 	 O�B
be a de�nite program �overly general program�� such that the number of SLD�
derivations of P �f� eg are �nite for all e � E��E�� and there is no e� � E�

and e� � E�� such that the same sequence of input clauses is used both in an
SLD�refutation of P � f� e�g and in an SLD�refutation of P � f� e�g� Let
O 	 C�� � � � � Cn and E�

i and E�

i � � � i � n� be all examples in E� and E�

respectively that are covered by Ci� Then for each Ci� E
�

i and E�

i � � � i � n�
Divide�and�Conquer outputs after a �nite number of steps a de�nite program Hi�
such that M�Hi�B� �M�O�B�� E�

i �M�Hi�B� and M�Hi�B��E
�

i 	 ��

Proof When E�

i 	 �� the theorem trivially holds� In the other case� the the�
orem can be proved by induction on the length l of the longest SLD�refutation
of fCig � B and f� e�g� for some e� � E�

i �

Base case� l	�� Then Ci is a clause such that Ci 	 f� e�g 	 �� for some
e� � E�� and Ci 	 D� 	 � � � 	 Dm� where each Dj is a variant of a clause
in P �� � j � m�� Then there is an SLD�refutation of P � f� e�g with in�
put clauses D�� � � � � Dm� since D� 	 � � � 	 Dm 	 f� e�g 	 �� Assume that
there is some e� � E�

i � such that Ci 	 f� e�g 	 �� Then it follows that
there is an SLD�refutation of P �f� e�g� with input clauses D�� � � � � Dm� since
D�	 � � �	Dm	f� e�g 	 �� This contradicts the assumption that no e� � E�

and e� � E� have the same sequence of input clauses in their SLD�refutations�
Thus E�

i 	 �� and Divide�and�Conquer outputs Hi 	 fCig�

Induction step� Assume the longest SLD�refutation of fCig�B and an example
in E�

i to be l � �� If E�

i 	 �� Divide�and�Conquer terminates and outputs
Hi 	 fCig� Otherwise� Divide�and�Conquer is called once for each resolvent
Dj � � � j � m� of Ci obtained by unfolding� with the sets of examples F�

j and

F�

j � Since the length of the longest SLD�refutation of fDjg � B � f� f�g�

�



� � j � m� where f� � F�� is l� the jth call to Divide�and�Conquer re�
sults in Ij � after a �nite number of steps according to the induction hypoth�
esis� where F�

j � M�Ij � B� and M�Ij � B� � F�

j 	 �� Then Divide�and�
Conquer outputs Hi 	 I� � � � �� Im� Since the target predicate is non�recursive
M�fHig � B� 	 M�fI�g � B� � � � � �M�fImg � B�� Hence E�

i � M�Hi � B�
and M�Hi � B� � E

�

i 	 �� Since the clauses in Hi are resolvents of clauses in
O � B� it follows that M�Hi � B� �M�O � B��

Appendix C

In this section� it is shown that for each non�recursive hypothesis that can be
produced by Covering� there is an equivalent hypothesis �w�r�t� the background
predicates� that can be produced by Divide�and�Conquer�

Let C 	 �A� � A�� � � � � Am� andD 	 �B� � B�� � � � � Bp� be de�nite clauses�
Then we write C 	n D to denote the resolvent �A� � A�� � � � � An��� B�� � � � �
Bp� An��� Am�� of C and D where � is an mgu of fAn� B�g� The following
lemma follows from the Switching Lemma in SLD�resolution ���� p ���

Lemma � Let C 	 �L� � L�� � � � � Lm� � � � � Ln� � � � � Lp�� D 	 �A� � A�� � � � � Aq��
and E 	 �B� � B�� � � � � Br� be de�nite clauses� Then �C 	n D� 	m E and
�C 	m E�	n�r�� D are variants�

Let C be a de�nite clause� and P a de�nite program� Then the unfolding of
C w�r�t� P upon the nth body literal of C is the set of clauses fC	nD � D � Pg�

A proof of the following lemma can be found in ���� p �
���

Lemma � Let C be a de�nite clause� P a de�nite program� and U an unfolding
of C w�r�t� P � Then M�P � fCg� 	M�P � U��

Before stating the theorem we need to introduce some terminology�
Let O be a set of de�nite clauses� and P a de�nite program� Then a derived

clause w�r�t� O and P is recursively de�ned as follows�
a� if C � O then C is a derived clause w�r�t� O and P � and
b� if D is a derived clause w�r�t� O and P � and E � P � then D	E is a derived
clause w�r�t� O and P �

Let O be a set of clauses� and P a de�nite program� Then the depth of a
literal in a derived clause w�r�t� O and P is recursively de�ned as follows�
a� if C � O then the depth of the literals in C is �� and
b� if D 	 �A� � A�� � � � � An� � � � � Am� is a derived clause w�r�t� O and P � the
depth of An is d� and �A� � A�� � � � � An��� B�� � � � � Bp� An��� � � � � Am�� is a
resolvent of D and some clause in P � then the depth of the literals B��� � � � � Bp�
is d� ��
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Let O be a set of de�nite clauses� and P a de�nite program� Then a derived
clause �L� � L�� � � � � Lm� w�r�t� O and P is a d�depth derived clause w�r�t� O
and P if and only if all the literals L�� � � � � Lm are of depth d�

Let O be a set of clauses� P a de�nite program� R a set of derived clauses
w�r�t� O and P � and the maximal depth of a literal in a clause in R is � d� Then
a d�depth unfolding set of R w�r�t� P is a set of clauses obtained from R by
repeatedly replacing each clause C � R with the unfolding of C w�r�t� P upon
a body literal of C with a depth � d� until all clauses in R are d�depth derived
clauses w�r�t� O and P �

Theorem 	 Let O be a set of de�nite clauses� P a de�nite program� R a set of
derived clauses w�r�t� O and P � and d the maximal depth of a literal in a clause
in R� Then for every d�depth unfolding set U of O there exists an S � U such
that M�P � S� 	M�P �R��

Proof By Lemma 
� the order of the applications of unfolding is insigni�cant�
Thus� all d�depth unfolding sets of O w�r�t� P are equivalent �up to variable
renaming�� Let UR be a d�depth unfolding set of R w�r�t� P � Then we have
UR � U � By Lemma �� M�P � O� 	M�P � U� and M�P � R� 	M�P � UR��
Consequently� there exists a subset S 	 UR of U such that M�P �S� 	M�P �
R��
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