
Combining Divide�and�Conquer and

Separate�and�Conquer for E�cient and E�ective

Rule Induction

Henrik Bostr�om and Lars Asker

Dept� of Computer and Systems Sciences
Stockholm University and Royal Institute of Technology

Electrum ���� ��	 	� Kista� Sweden
fhenke�askerg
dsv�su�se

Abstract� Divide�and�Conquer �DAC and Separate�and�Conquer
�SAC are two strategies for rule induction that have been used exten�
sively� When searching for rules DAC is maximally conservative w�r�t�
decisions made during search for previous rules� This results in a very
e�cient strategy� which however su�ers from di�culties in e�ectively in�
ducing disjunctive concepts due to the replication problem� SAC on the
other hand is maximally liberal in the same respect� This allows for a
larger hypothesis space to be searched� which in many cases avoids the
replication problem but at the cost of lower e�ciency� We present a hy�
brid strategy called Reconsider�and�Conquer �RAC� which handles the
replication problem more e�ectively than DAC by reconsidering some of
the earlier decisions and allows for more e�cient induction than SAC
by holding on to some of the decisions� We present experimental results
from propositional� numerical and relational domains demonstrating that
RAC signi�cantly reduces the replication problem from which DAC suf�
fers and is several times �up to an order of magnitude faster than SAC�

� Introduction

The two main strategies for rule induction are Separate�and�Conquer and Divide�
and�Conquer� Separate�and�Conquer� often also referred to as Covering� pro�
duces a set of rules by repeatedly specialising an overly general rule� At each
iteration a specialised rule is selected that covers a subset of the positive ex�
amples and excludes the negative examples� This is repeated until all positive
examples are covered by the set of rules� The reader is referred to ��� for an
excellent overview of Separate�and�Conquer rule learning algorithms� Divide�
and�Conquer produces a hypothesis by splitting an overly general rule into a set
of specialised rules that cover disjoint subsets of the examples� The rules that
cover positive examples only are kept� while the rules that cover both positive
and negative examples are handled recursively in the same manner as the 	rst
overly general rule�

For Separate�and�Conquer� the computational cost
measured as the number
of checks to see whether or not a rule covers an example� grows quadratically in

the size of the example set� while it grows linearly using Divide�and�Conquer��

This follows from the fact that Separate�and�Conquer searches a larger hypoth�
esis space than Divide�and�Conquer ���� For any hypothesis in this larger space
there is a corresponding hypothesis with identical coverage in the narrower space�
Hence none of the strategies is superior to the other in terms of expressiveness�
However� for many of the hypotheses within the narrower space there is a hy�
pothesis with identical coverage but fewer rules within the larger space� Since
the number of rules in a hypothesis provides a bound on the minimal num�
ber of examples needed to 	nd it� this means that Separate�and�Conquer often
requires fewer examples than Divide�and�Conquer to 	nd a correct hypothe�
sis� In particular this is true in domains in which the replication problem ���
is frequent� i�e� when the most compact de	nition of the target concept con�
sists of disjuncts whose truth values are
partially or totally� independent� e�g�
p
x�� x�� x�� x���
x� � � x� � �� �
x� � � � x� � ��

The two strategies can be viewed as extremes w�r�t� how conservative they
are regarding earlier decisions when searching for additional rules� Divide�and�
Conquer can be regarded as maximally conservative and Separate�and�Conquer
as maximally liberal� We propose a hybrid strategy� called Reconsider�and�
Conquer� which combines the advantages of Divide�and�Conquer and Separate�
and�Conquer and reduces their weaknesses� The hybrid strategy allows for more
e�ective handling of the replication problem than Divide�and�Conquer by recon�
sidering some decisions made in the search for previous rules� At the same time
it allows for more e�cient induction than Separate�and�Conquer by holding on
to some of the earlier decisions�

In the next section we introduce some basic terminology� In section three� we
formally describe Reconsider�and�Conquer� and in section four we present experi�
mental results from propositional� numerical and relational domains demonstrat�
ing that the hybrid approach may signi	cantly reduce the replication problem
from which Divide�and�Conquer su�ers while at the same time it is several times
faster than Separate�and�Conquer� In section 	ve� we discuss related work and
in section six 	nally� we give some concluding remarks and point out directions
for future research�

� Preliminaries

The reader is assumed to be familiar with the logic programming terminology
���

A rule r is a de	nite clause r � h � b� � � � � � bn� where h is the head� and
b� � � � � � bn is a
possibly empty� body�

A rule g is more general than a rule s w�r�t� a set of rules B
background
predicates�� denoted g �B s� i� Mfgg�B �Mfsg�B � where MP denotes the least
Herbrand model of P
the set of all ground facts that follow from P ��

The coverage of a set of rules H � w�r�t� background predicates B and a set
of atoms A� is a set AHB � fa � a � A �MH�Bg� We leave out the subscript

� assuming that the maximum number of ways to specialise a rule is �xed�

B when it is clear from the context� Furthermore� if H is a singleton H � frg�
then Afrg is abbreviated to Ar�

Given a rule r and background predicates B� a specialisation operator �

computes a set of rules� denoted �B
r�� such that for all r� � �B
r�� r �B r��
Again we leave out the subscript if B is clear from the context�

Given a rule r� background predicates B� and a specialisation operator �� a
split of r is a set of rules s � fr�� � � � � rng� such that ri � �
r�� for all � i � n�
and Mfr������rng�B � Mfrg�B� Furthermore� s is said to be a non�overlapping

split if Mfrig�B �Mfrjg�B � MB for all i� j � � � � � � n such that i 	� j�

� Reconsider�and�Conquer

Reconsider�and�Conquer works like Separate�and�Conquer in that rules are it�
eratively added to the hypothesis while removing covered examples from the
set of positive examples� However� in contrast to Separate�and�Conquer� which
adds a single rule on each iteration� Reconsider�and�Conquer adds a set of rules�
The 	rst rule that is included in this set is generated in exactly the same way
as is done by Separate�and�Conquer� i�e� by following a branch of specialisa�
tion steps from an initial rule into a rule that covers positive examples only�
However� instead of continuing the search for a subsequent rule from the ini�
tial rule� Reconsider�and�Conquer backs up one step to see whether some other
specialisation step could be taken in order to cover some of the remaining posi�
tive examples
i�e� to complete another branch�� This continues until eventually
Reconsider�and�Conquer has backed up to the inital rule� The way in which this
set of rules that is added to the hypothesis is generated is similar to how Divide�
and�Conquer works� but with one important di�erence� Reconsider�and�Conquer
is less restricted than Divide�and�Conquer regarding what possible specialisation
steps can be taken when having backed up since the specialisation steps are not
chosen independently by Divide�and�Conquer due to that the resulting rules
should constitute a
possibly non�overlapping� split�

One condition used by Reconsider�and�Conquer to decide whether or not to
continue from some rule on a completed branch is that the fraction of positive
examples among the covered examples must never decrease anywhere along the
branch
as this would indicate that the branch is focusing on covering negative
rather than positive examples�� However� in principle both weaker and stronger
conditions could be employed� The weakest possible condition would be that
each rule along the branch should cover at least one positive example� This
would make Reconsider�and�Conquer behave in a way very similar to Divide�and�
Conquer� A maximally strong condition would be to always require Reconsider�
and�Conquer back up to the initial rule� making the behaviour identical to that
of Separate�and�Conquer�

In Figure � we give a formal description of the algorithm� The branch of
specialisation steps currently explored is represented by a stack of rules together
with the positive and negative examples that they cover� Once a branch is com�
pleted� i�e a rule that covers only positive examples is added to the hypothesis�

the stack is updated by removing all covered examples from the stack� Further�
more� the stack is truncated by keeping only the bottom part where the fraction
of positive examples covered by each rule does not decrease compared to those
covered by the preceding rule�

function Reconsider�and�Conquer�E�� E�
H �� �
while E� �� � do

r �� an initial rule such that E�
r �� �

H � �� Find�Rules�r� ��� E�
r � E

�
r

E� �� E� n E�

H�

H �� H �H �

return H

function Find�Rules�r� S� E�� E�
if E� �� � then

r� �� a rule � ��r
H �� Find�Rules�r�� �r�E�� E� � S�E�

r�
� E�

r�

else H �� frg
repeat
Update S w�r�t� H
if S �� �� then

Pop �r� E�� E� from S

if there is a rule r� � ��r such that
jE�

r�
j

jE�
r�
�E�

r�
j
� jE�j

jE��E�j
then

H � �� Find�Rules�r�� �r�E�� E� � S�E�
r� � E

�
r�

H �� H �H �

S �� �r�E�� E� � S
until S � ��
return H

Fig� �� The Reconsider�and�Conquer algorithm�

An Example Assume that the target predicate is p
x�� x�� x�� x�� �
x� �
 � x� � � �
x� � � x� � � �
x� � � x� � ��� and that we are given
�� positive and �� negative instances of the target predicate� i�e� jE�j � ��
and jE�j � ��� Assume further that our specialisation operator is de	ned as
�
h � b� � � � � � bn� � fh � b� � � � � � bn � x � cjx is a variable in h and
c � f� � � � � �gg� Now assuming that Reconsider�and�Conquer starts with the ini�
tial rule r� � p
x�� x�� x�� x��� Find�Rules recursively generates a sequence of
more specialised rules� say�

r� � p
x�� x�� x�� x��� x� � jE�
r�
j � �� jE�

r�
j � �

r� � p
x�� x�� x�� x��� x� � � x� � jE�
r�
j � �� jE�

r�
j � �

where the last rule is included in the hypothesis�
Find�Rules then updates the stack by removing all covered
positive� ex�

amples and keeping only the bottom part of the stack that corresponds to a
sequence of specialisation steps that ful	lls the condition of a non�decreasing
fraction of covered positive examples� In this case� the bottom element r� is
kept as it covers �� positive and � negative examples compared to �� positive
and �� negative examples that are covered by the initial rule� So in contrast
to Separate�and�Conquer� Reconsider�and�Conquer does not restart the search
from the initial rule but continues from rule r� and 	nds a specialisation that
does not decrease the fraction of positive examples� say�

r� � p
x�� x�� x�� x��� x� � � x� � � jE�
r�
j � �� jE�

r�
j � �

After the stack is updated� no rules remain and hence Reconsider�and�Conquer
restarts the search from an initial rule� and may choose any specialisation with�
out being restricted by the earlier choices� This contrasts to Divide�and�Conquer�
which would have had to choose some of the other rules in the
non�overlapping�
split from which r� was taken
e�g� fp
x�� x�� x�� x��� x� � �� p
x�� x�� x�� x���
x� � �� p
x�� x�� x�� x�� � x� � �g�� Assuming the same initial rule
r�� is cho�
sen again� the sequence of rules produced by Find�Rules may look like�

r� � p
x�� x�� x�� x��� x� � jE�
r�
j � �� jE�

r�
j � ��

r� � p
x�� x�� x�� x��� x� � � x� � jE�
r�
j � �� jE�

r�
j � �

The last rule is included in the hypothesis and now all positive examples are
covered so Reconsider�and�Conquer terminates� Hence� the resulting hypothesis
is�

r� � p
x�� x�� x�� x��� x� � � x� �
r� � p
x�� x�� x�� x��� x� � � x� � �
r� � p
x�� x�� x�� x��� x� � � x� �

It should be noted that Divide�and�Conquer has to induce seven rules to
obtain a hypothesis with identical coverage� as the disjunct that corresponds to
r� above has to be replicated in 	ve rules�

p
x�� x�� x�� x��� x� � � x� �
p
x�� x�� x�� x��� x� � � x� � �
p
x�� x�� x�� x��� x� � � x� � � � x� � � x� �
p
x�� x�� x�� x��� x� � � x� � � � x� � � x� �
p
x�� x�� x�� x��� x� � � � x� � � x� �
p
x�� x�� x�� x��� x� � � � x� � � x� �
p
x�� x�� x�� x��� x� � � � x� � � x� �

� Empirical Evaluation

We 	rst describe how the experiments were performed and then present the
experimental results�

��� Experimental setting

Reconsider�and�Conquer
RAC� was compared to Divide�and�Conquer
DAC�
and Separate�and�Conquer
SAC� in several propositional� numerical and rela�
tional domains� The domains were obtained from the UCI repository ��� ex�
cept for two relational domains� one consists of four sets of examples regarding
structure�activity comparisons of drugs for the treatment of Alzheimer�s desease�
and was obtained from Oxford University Computing Laboratory and the other
domain is about learning the de	nite clause grammar
DCG� in ��� p ������

All three algorithms were tested both with information gain heuristics and
probability metrics based on the hypergeometric distribution� which for DAC
are those given in ��� and ��� respectively� while the information gain heuristic
modi	ed for SAC
and RAC� is taken from ��� p ���� and the modi	ed version
of the probability metric in ��� for SAC and RAC is�

P
jE�
r� j� jE

�
r� j� jE

�
r j� jE

�
r j� �

�
jE�

r j
jE�

r� j

��
jE�

r j
jE�

r� j

�
�
jE�

r
 E�
r j

jE�
r�
 E�

r� j

�

where r� � �
r�� The specialisation r� of r with lowest probability is chosen from
�
r� given that

jE�
r� j

jE�
r�
E�

r� j
�

jE�
r j

jE�
r
 E�

r j

Following ���� cut�points for continuous�valued attributes were chosen dynam�
ically from the boundary points between the positive and negative examples in
the training sets for the numerical and relational domains�

An experiment was performed in each domain� in which the entire example
set was randomly split into two partitions corresponding to ��� and �� of
the examples respectively� The larger set was used for training and the smaller
for testing� The same training and test sets were used for all algorithms� Each
experiment was iterated �� times and the mean accuracy on the test examples as

� The set of positive examples consists of all sentences of up to �� words that can
be generated by the grammar ����� sentences and the equal sized set of negative
examples was generated by applying the following procedure to each positive exam�
ple� i replace a randomly selected word in the sentence with a randomly selected
word from the corpus� ii go to step i with a probability of ��� and iii restart the
procedure if the resulting sentence is a positive example�

well as the amount of work performed measured as the cpu time� are presented
below� In addition� we also present the mean number of rules in the produced
hypotheses�

��� Experimental results

In Table � we present the accuracy� cpu time and number of rules in the hy�
pothesis produced by each algorithm using both the probability metrics and the
information gain heuristics for all domains� The domains within the 	rst group
in the table are propositional� the domains within the second group are numeri�
cal� and the domains in the last group are relational� For all accuracies� bold face
indicates that there is a statistically signi	cant di�erence between the method
and some less accurate method and no signi	cant di�erence between the method
and some more accurate method
if any�� Furthermore� underline indicates that
there is a statistically signi	cant di�erence between the method and some more
accurate method and no signi	cant di�erence between the method and some less
accurate method
if any��

The accuracies of the three methods are shown in columns ���� To summarise
these results� one can see that DAC has a best�worst score
as indicated by bold
and underline in the table� of ���
����
the 	rst score is for the probability
metrics and the second is for the information gain heuristics�� The corresponding
score for SAC is ���
���� and for RAC ���
����� Looking more closely at the
domains� one can see that there is a signi	cant di�erence in accuracy between
DAC and SAC in favour of the latter in those
arti	cial� domains in which
the replication problem was expected to occur
Tic�Tac�Toe� KRKI� but also
in several of the other
natural� domains
most notably Student loan and Alzh�
chol��� One can see that RAC e�ectively avoids the replication problem in these
domains and is almost as accurate as� or even more accurate than� SAC�

DCG is the only relational domain in which DAC is signi	cantly more accu�
rate than SAC and RAC
although the di�erence is small�� In this domain the
replication problem is known not to occur since the shortest correct grammar
is within the hypothesis space of DAC� The di�erence in accuracy can here be
explained by the di�erent versions of the probability metrics and information
gain heuristics that are used for DAC and SAC�RAC� For DAC these reward
splits that discriminate positive from negative examples while for SAC�RAC
they reward rules with a high coverage of positive examples�

In columns ���� the cputime of the three methods are shown� The median for
the cpu time ratio SAC�DAC is ����
����� and for the cpu time ratio RAC�DAC

� The amount of work was also measured by counting the number of times it was
checked whether or not a rule covers an example� which has the advantage over the
former measure that it is independent of the implementation but the disadvantage
that it does not include the �small overhead of RAC due to handling the stack�
However� both measures gave consistent results and we have chosen to present only
the former� All algorithms were implemented in SICStus Prolog � �� and were
executed on a SUN Ultra ��� except for the numerical domains which were executed
on a SUN Ultra I�

Domain Accuracy �percent� Time �seconds� No� of rules

DAC SAC RAC DAC SAC RAC DAC SAC RAC

Shuttle ����� ����� ����� ���� ���	 ���� ��� ��� ���
����� ����� ����� ���� ���� ���� ��� ��� ���

Housevotes ����� �	��� ����� ���� 	��� ���� ���� ���� ����
����	 ����� ����	 ���� ���� ���� ���� ���� ���	

Tic�Tac�Toe ����� ����� ����� ���	 ���� 	��� ����� ���� ����
����� ����� ����� ���	 ���	 ���� ����� ���	 ����

KRvsKP ����� ����� ����� ����� ������ ������ ���� ���	 ����
����� ����� ����� ����� ����	� �	���� ���� ���� ���	

Splice �n ����� ����� ���	� ��	��� ������	 ��	��� ����� ���� �����
����� ����� ����� ������ ������� ������ ����� �	�� ����	

Splice �ei ����� �	�
� �	��
 ����	� ������� ������ ���� ���� 	���
���	� �	��� �	��� ��	��	 ��		��� ������ ���	 ���� 	���

Splice �ie ����� ����� ����� �	���� 	������ ������ ����� 	��	 ����
����� ����� ����� ������ ������� 	����� ����� 	��� ����

Monks�� ���		 ����� �
��� ���� ����� ���� ����� ����� �����
����� ����� �
��� ���� ����� ���� ����� ����� �����

Monks�� ����� ���	� ���	� ���� ���� ���� ���� ���� ����
����� ����� ���	� ���� ���� ���� ���	 ���� ����

Bupa ����� ����� ����� ����� ������ ����� ���	 ���� ���	
����� ����� ����� 	���� ������ �	��� ���� ���� ����

Ionosphere ����� ����� ����� ������� ������� ������	 ��� ��� ���
����� ����� ����� ������� ������� ������� ��� ��� ���

Pima Indians ����� ����� ����� ������ ������� ����	� ���� ���	 	���
���	� ����� ����� ������ ������� ������ ���	 	��� 	���

Sonar ����� ����� ���	� ��	���� �	�	��� ������� ��� ��� ���
����� �	��� �	��� �����	� ��	��	� ���	��� ��� ��� ��	

WDBC ���	� ����� ����� 	������ ��	��	� 	������ ��� ��� ��	
����� �
�	
 ����� 	������ ������� 	�����	 ��� ��� ����

KRKI ����� ����� ����� ����� ������ ���	� ���� ��� ����
����� ����� ����
 ����� ������ ����� ���� ��	 ����

DCG ����� ����� ����� 	���� ������ ����	� ���� ���� ����
����� ����� ����� 		��� ��	��� ������ ���� ���� ����

Student loan ����� �	��� �	��� ����� ����	 ����� ����	 ���� 		��
����� �	��
 �	��� ����� ����� ���	� ���� ���� 		��

Alzh� toxic ����� ����� ����� ������ ������	 	����� ����	 ���� ����
����� ����� ����� ������ ������� 	����	 ����� �	�� ���	

Alzh� amine ����	 ����� ����� ������ ��	���� ������ �	��� ���� ����
����� ����� �	��� ������ ���	��� ������ �		�� ���� �	��

Alzh� scop� ����� ����� 	���� ������ ������� ������ ����� ��	�� ����	
���	� 	���� 	��
	 �����	 ������� ������ ����� ����	 �����

Alzh� chol� �	��� ����	 ����� 	����	 ���	��	� ������� 	���	 ����� �	���
�	��� ����� ���
� ��	�	� ������� ������� 	���� ����� �		��

Table �� Accuracy� cpu time� and number of rules using probability metrics ��rst line
and information gain �second line�

it is ��
����� The domain in which the SAC�RAC ratio is highest is Splice
ie�
where the ratio is ����
����� Except for Monks��� the domain for which the
SAC�DAC ratio is highest is Alz� chol�� where it is ����
������� The RAC�DAC
ratio in this domain is ����
������ In Monks��� the SAC�DAC ratio is even higher
for the probability metrics
������ but lower for the information gain heuristics

������ The RAC�DAC ratio reaches its highest value in this domain
���� for
the probability metric��

In columns ���� the average number of rules produced are shown� DAC
produces more rules than SAC in all domains except one
DCG�� The median
for the number of rules produced by SAC is ����
����� for RAC ����
����
and for DAC ����
������ These results are consistent with the fact that SAC
and RAC search a larger hypothesis space than DAC in which more compact
hypotheses may be found�

In summary� both RAC and SAC outperform DAC in most domains tested in
the experiments� mainly due to the e�ective handling of the replication problem�
But although RAC is about as accurate as SAC� it is up to an order of magnitude
faster�

� Related Work

Two previous systems� IREP ��� and RIPPER ���� are able to e�ciently process
large sets of noisy data despite the use of Separate�and�Conquer� The main
reason for this e�ciency is the use of a technique called incremental reduced error

pruning� which prunes each rule immediately after it has been induced� rather
than after all rules have been generated� This speeds up the induction process as
the pruned rules allow larger subsets of the remaining positive examples to be
removed at each iteration compared to the non�pruned rules� It should be noted
that this technique could also be employed directly in Reconsider�and�Conquer�
improving the e�ciency
and accuracy� further� especially in noisy domains�

Like Reconsider�and�Conquer� a recently proposed method for rule induction�
called PART� also employs a combination of Divide�and�Conquer and Separate�
and�Conquer ���� One major di�erence between PART and Reconsider�and�
Conquer is that the former method uses Divide�and�Conquer to 	nd one rule
that is added to the resulting hypothesis� while the latter method uses
a gen�
eralised version of� Divide�and�Conquer for generating a set of rules that is
added� The purpose of the former method to use Divide�and�Conquer is not to
gain e�ciency over Separate�and�Conquer� but to avoid a problem called hasty

generalisation that may occur when employing incremental reduced error prun�
ing� like IREP and RIPPER do� Again� the former method may in fact be used
as a pruning technique in conjunction with Reconsider�and�Conquer rather than
Separate�and�Conquer�

In C���rules ���� a set of rules is 	rst generated using Divide�and�Conquer�
and then simpli	ed by a post�pruning process� However� the cost of this process is
cubic in the number of examples ���� which means that it could be even more ex�
pensive than using Separate�and�Conquer in the 	rst place to overcome the repli�

cation problem� Still� the post�pruning techniques employed by C���rules
and
other systems e�g� RIPPER� could be useful for both Separate�and�Conquer as
well as Reconsider�and�Conquer� The main advantage of using Reconsider�and�
Conquer for generating the initial set of rules compared to Divide�and�Conquer
as used in C���rules is that signi	cantly fewer rules need to be considered by the
post�pruning process when having employed the former�

There have been other approaches to the replication problem within the
framework of decision tree learning� One approach is to restrict the form of the
trees when growing them� which then allows for merging of isomorphic subtrees
���� It should be noted that these techniques are� in contrast to Reconsider�and�
Conquer� yet restricted to propositional and numerical domains�

� Concluding Remarks

A hybrid strategy of Divide�and�Conquer and Separate�and�Conquer has been
presented� called Reconsider�and�Conquer� Experimental results from proposi�
tional� numerical and relational domains have been presented demonstrating
that Reconsider�and�Conquer signi	cantly reduces the replication problem from
which Divide�and�Conquer su�ers and that it is several times
up to an order
of magnitude� faster than Separate�and�Conquer� In the trade�o� between accu�
racy and amount of cpu time needed� we 	nd Reconsider�and�Conquer in many
cases to be a very good alternative to both Divide�and�Conquer and Separate�
and�Conquer�

There are a number of directions for future research� One is to explore both
pre� and post�pruning techniques in conjunction with Reconsider�and�Conquer�
The techniques that have been developed for Separate�and�Conquer can in fact
be employed directly as mentioned in the previous section� Another direction is
to investigate alternative conditions for the decision made by Reconsider�and�
Conquer regarding whether or not the search should continue from some rule
on a completed branch� The currently employed condition that the fraction of
covered positive examples should never decrease worked surprisingly well� but
other conditions� e�g� based on some signi	cance test� may be even more e�ective�

Acknowledgements This work has been supported by the European Commu�
nity ESPRIT Long Term Research Project no� ����� Inductive Logic Program�

ming II and the Swedish Research Council for Engineering Sciences
TFR��

References

�� Blake C�� Keogh E� and Merz C�J�� UCI Repository of machine learning databases�
Irvine� CA� University of California� Department of Information and Computer
Science �����

�� Bostr�om H�� �Covering vs� Divide�and�Conquer for Top�Down Induction of Logic
Programs�� Proc� of the Fourteenth International Joint Conference on Arti�cial
Intelligence� Morgan Kaufmann ����� ���	�����

�� Bratko I�� Prolog Programming for Arti�cial Intelligence � ��nd edition� Addison�
Wesley �����

	� Cohen W� W�� �Fast E�ective Rule Induction�� Machine Learning� Proc� of the
��th International Conference� Morgan Kaufmann ����� �������

�� Fayyad U� and Irani K�� �On the Handling of Continuos�Valued Attributes in
Decision Tree Generation�� Machine Learning � ����� ������

�� Frank E� and Witten I� H�� �Generating Accurate Rule Sets Without Global Op�
timization�� Machine Learning� Proc� of the Fifteenth International Conference�
Morgan Kaufmann ����� �		����

�� F�urnkranz J�� �Separate�and�Conquer Rule Learning�� Articial Intelligence Review
�
�� �����

�� F�urnkranz J� and Widmer G�� �Incremental Reduced Error Pruning�� Machine
Learning� Proc� of the Eleventh International Conference� Morgan Kaufmann
����	

�� Kohavi R� and Li C�H�� �Oblivious Decision Trees� Graphs and Top�Down Prun�
ing�� Proc� of the Fourteenth International Joint Conference on Arti�cial Intelli	
gence� Morgan Kaufmann ����� ���������

��� Lavra�c N� and D�zeroski S�� Inductive Logic Programming� Techniques and Appli	
cations� Ellis Horwood ����	

��� Lloyd J� W�� Foundations of Logic Programming� ��nd edition� Springer�Verlag
�����

��� Martin J� K�� �An Exact Probability Metric for Decision Tree Splitting and Stop�
ping�� Machine Learning �� ����� �������

��� Pagallo G� and Haussler D�� �Boolean Feature Discovery in Empirical Learning��
Machine Learning � ����� �����

�	� Quinlan J� R�� �Induction of Decision Trees�� Machine Learning � ����� ������
��� Quinlan J� R�� �Learning Logical De�nitions from Relations�� Machine Learning �

����� �������
��� Quinlan J� R�� C
��� Programs for Machine Learning� Morgan Kaufmann �����

